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Résumé. 2014 On utilise une méthode de simulation de type Monte Carlo pour calculer le seuil de percolation des
trous entre sphères en recouvrement. Le volume critique, 0,966 ± 0,007 correspondant à la densité sans dimension
0,81 ± 0,05, est le point où apparait la localisation dans le modèle de Lorentz.

Abstract. 2014 A Monte Carlo method is used to calculate the threshold of percolation of holes between overlapping
spheres. At the critical volume fraction, 0.966 ± 0.007, corresponding to a dimensionless density of 0.81 ± 0.05
localization in the Lorentz model appears.
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1. Introduction. - Originally percolation theory
was constructed to describe, for example, how a fluid
spreads through a porous medium [1, 2]. These phe-
nomena do not necessarily take place on a regular
lattice; however, most of the calculations were carri-
ed out on lattices because the methods used are

much more effective [3, 4]. One can alternatively
consider -percolation on a continuum, where the
volume fraction ~(~ 1) of « black » material is some-
how controlled [5]. A cluster is then defined as that
part of the « black » material which can be reached
from a « black » point without touching any « white »
material. The simplest way to construct such a sys-
tem is to consider identical noninteracting « black »
discs (in two dimensions) or spheres (in three dimen-
sions) at a given density. Two discs (spheres) belong
to the same cluster if there is a path through overlapp-
ing discs (spheres) from one to the other. Percolation
appears if the density is high enough to have an infi-
nite « black » cluster [6]. It has been shown recently,
that this model probably belongs to the same univer-
sality class as percolation on a lattice [7-9], i.e. the
critical exponents are the same. This justifies the use
of the results on universal quantities for continuum
percolation. However, the critical point is nonuni-
versal and it should be determined separately for
each model of interest.

For any « black » percolation problem one can
define a complementary one where the percolation of
« white » material is investigated. Obviously, if the

geometry of « black » and « white » clusters is the

same, the volume fraction, corresponding to the
critical point of « white » material (p~ ) is simply
related to the « black » threshold (p~) [5] :

This is the case for example for lattice (site) percola-
tion. In the problem of discs (spheres) the geometry
of « white » holes between the « black » discs (sphe-
res) is different from that of the « black » material
and so equation (1) does not hold. In two dimensions
the «black» and «white» infinite clusters cannot
exist at the same time [5]. On the other hand, if the
« black » infinite cluster is cut by the « white » mate-
rial the « white » infinite cluster immediately appears
and vice versa, i.e.

(For more detailed discussion of this problem see
reference [5].) These arguments do not hold for the
three dimensional case, where the «black and
« white » infinite clusters can exist at the same time.

In this letter the percolation of « white &#x3E;&#x3E; holes
between overlapping identical « black » spheres is

investigated. This model should be relevant to the
original percolation problem (how a fluid spreads
through a porous medium) [2], or to the problem of gas
permeability in a compressed powder, an important
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phenomenon in the sintering process [10]. Another
related problem is the localization in the Lorentz
model for the classical motion of a particle in free
space between randomly distributed hard-sphere scat-
terers. At a special density localization appears if the
spheres are allowed to overlap [11]. The volume frac-
tion which corresponds to this threshold density (1)
is the critical point p~ . For the two dimensional
Lorentz model this threshold was found by computer
simulations and equation (2) was confirmed [12].
For the three dimensional case only theoretical

predictions exist [11] because the computer experi-
ments have not been carried out at high enough den-
sities [13]. The present work is the determination of
the critical point by Monte Carlo calculations in
three dimensions.

2. Method. - First a given number (N) of« black »
spheres are put randomly into a unit cube with perio-
dic boundary conditions. The coordinates of the

centres of the spheres are determined using random
numbers (CC « RANF ») equally distributed bet-
ween 0 and 1, so there is no correlation among these
centres. Then the radius of the spheres is varied. The
volume fraction p~ (N) where the path of « white »
material from the top to the bottom is first blocked
by a sphere is the threshold point of the given sample.
The quantity p~ (N) depends both on the configuration
of the N particles and on N itself. The mean ( ~(~V) )
can be identified with the threshold belonging to
size N. In order to obtain p~ (N), a simple cubic lat-
tice is superimposed on the system with lattice cons-
tant a = 1 /(L - 1), i.e. the lattice consists of L 3
sites. Each site can have two states : occupied if it is
located in « white » material and empty if it is locat-
ed in « black ». Filling up the lattice in this manner we
have a (correlated) lattice percolation problem for
which well-developed numerical methods [14] can be
used to find the radius where percolation vanishes.
For a given radius the computer checks whether
there is a spanning cluster. The computer program is
based on a block diagram of reference [14] ; detailed
description of a nonoptimized version will be given
in reference [ 15]. The radius, where percolation first
appears, is confined using iterations [16]. By making
the lattice finer, in the limit a -+ 0 one gets p~ (N).
Single bits were used to store information about the
states of the lattice sites and so it was possible to use
lattices up to L = 95. A single run with L = 95,
N = 2 000 took about 32 s on the CDC Cyber 76 M.
Usually 7 iterations [15] were needed to determine the
threshold point for a given configuration, and 36 con-
figurations were generated for N = 100, 200, 300, 400
and 12 for N = 2 000. An extrapolation according
to the a -+ 0 limit was carried out, using L = 30, 40,

(1) The volume fraction of spheres ( black » material) is simply
related to the dimensionless density : p = 1 - exp(- 4 7c~*/3),
n* = r3 n, r is the radius of spheres, n their density.

50, 60, 75, 85, 95 for N = 100 and L = 50, 75, 85, 95
for N = 200, 300, 400, 2 000. After calculating
p~ (N) for various values of N, another extrapolation
is needed to obtain the threshold value of the infinite

system :

3. Results and discussion. - It is important to

point out that the a -+ 0 extrapolation is for a given
configuration, which means for various lattice cons-
tants N is fixed and the same random numbers are
used to place the spheres. In order to see how the
a -+ 0 extrapolation can be carried out, we generated
36 configurations with N = 100 and 7 different
values of a. Figure 1 shows that data can be extra-

polated by a straight line if plotted against 1/L.
Thus the same type of extrapolation was applied for
the remaining system sizes, but only four values of
L were chosen. The resulting  ~(~V) ~ values are
plotted in figure 2, with the estimated error bars,
against 1/~V. Usually, according to finite size scal-

ing [15], the limiting process is taken as a straight
line extrapolation of ~y(~V)~ versus N - 1/3v (with
the correlation length exponent v), but we do not

Fig. 1. - Extrapolation to the finite size continuum limit with
N = 100 spheres. The auxiliary lattice has the lattice constant

~=1/(L-1).

Fig. 2. - Extrapolation to the infinite size limit (N - oo). The
estimated value of p~ is 0.966 ± 0.007.
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think that our data are accurate enough to be sensi-
tive to the way of extrapolation. As a result we obtain

It should be mentioned that the overall trend in

~(AQ becomes clear only after taking the a -+ 0
limit.
To test the method we calculated also the percola-

tion threshold for overlapping spheres (p~) in the
same way. We obtained p~ = 0.280 ± 0.007 which
should be compared with the value between 0.283
and 0.295 (for references see [7]). There is one early
calculation [ 17] which led to extremely low values of
p~ (0.256). In this work a method somewhat similar
to ours was used. However from our result one can
see that by enlarging the sample size and the number
of lattice points, the extrapolation procedure can be
improved and the obtained threshold is shifted up-
wards.
The critical volume fraction (4) corresponds to a

dimensionless density n* = nr3 = 0.81 ± 0.05. At
this point localization should appear in the Lorentz
model. Unfortunately, there is no computer simula-
tion at densities high enough. If Bruin’s data on the
diffusion coefficient [13] are extrapolated linearly
versus n* one gets the localization density at about
n* ~ 0.72. We think that this linear extrapolation
corresponds to a mean field approximation and devia-
tion from it may appear at higher densities, as indi-
cated by one data point quoted in [11]. The theory
of G6tze et al. [ 11] based on the memory function

technique leads to an n* = 0.716, which is in very
good agreement with the linear extrapolation of
Bruin’s data and is thus somewhat outside of our
error bars; however, the theory appears to work
much better in three dimensions than in two, where
n* = 0.37 (computer simulation, [12]) and n* = 0.637
(theory, [11]). The memory function technique seems
to be a kind of mean field theory : it is better in higher
dimensions but near to the critical point there are
still aberrations.

4. Conclusion. - We investigated the percolation
of holes between overlapping spheres by Monte Carlo
technique. Two kinds of extrapolations were used :
one for the continuum limit of the finite size samples
and the other for obtaining the infinite size limit.
The critical point is at a volume fraction

p~ = 0.966 ± 0.007 of spheres, i.e. above this thre-
shold the percolation between the spheres is not

possible. As far as we know this has been the first
such calculation for a continuum percolation pro-
blem without underlying graph structure.
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