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PERCOLATION PROCESSES: LOWER BOUNDS FOR THE
CRITICAL PROBABILITY

By J. M. HAMMERSLEY

United Kingdom Atomic Energy Research Establishment

1. Introduction. A percolation process is the spread of a fluid through a
medium under the influence of a random mechanism associated with the me-
dium. This contrasts with a diffusion process, where the random mechanism
is associated with the fluid. Broadbent and Hammersley [1] gave examples
illustrating the distinction.

Here we shall consider a medium consisting of an infinite set of atoms and
bonds. A bond is a path between two atoms: it may be undirected (in which
case it will allow passage from either atom to the other) or it may be directed
(in which case it will allow passage from one atom to the other but not vice
versa). Two atoms may be linked by several bonds, some directed and some
undirected. Broadbent and Hammersley [1] dealt with crystals, i.e., media in
which the atoms and bonds satisfied three postulates denoted by P1, P2, and
P3. Here, however we shall dispense with P1 and a part of P3; and our sur-
viving assumptions are:

P2. The number of bonds from (but not necessarily f0) any atom is finite.

P3(a). Any finite subset of atoms contains an atom from which a bond leads

to some atom not in the subset.

With this medium we associate the following random mechanism: each bond
has an independent probability p of being undammed and ¢ = 1 — p of being
dammed. Fluid, supplied to the medium at a set of source atoms, spreads along
undammed bonds only (and in the permitted direction only for undammed
directed bonds) and thereby wets the atoms it reaches. Associated with each
atom A, there is a critical probability pi(4), defined as the supremum of all
values of p such that, when A is the only source atom, A wets only finitely
many atoms with probability one. We seek lower bounds for p, .

An n-stepped walk is an ordered connected path along n bonds, each step
being in a permitted direction along its bond and starting from the atom reached
by the previous step. Walks (as opposed to fluid) may traverse dammed bonds:
a walk is dammed or undammed according as it traverses at least one or no
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dammed bond. A walk is self-avoiding if it visits no atom more than once. The
number of n-stepped self-avoiding walks starting from the atom A is denoted
by fa(n). The connective bound of the medium is defined to be
) N = sup limsup #n™" log f.(n).

A n->0
Hammersley [3] showed that, under the fuller assumptions required by a crys-
tal, there existed a connective constant
(2) k = lim n™" log fa(n),

n->0

independent of 4. Clearly A = « when the latter exists.

The principal n-neighbourhood of an atom A, written N"(4), is the atom 4
together with all atoms accessible from 4 by walks of n or fewer steps. The
principal n-boundary of A is B"(4) = N"(4) — N"7'(4), where N°(4) is A
alone. A walk belongs to a set of atoms S if every step of the walk starts from
some atom of S: notice that the final step may terminate at some atom not in S.

2. Statement of results. Let E,(A4, p) denote the expected number of atoms
of B"(A) which can be reached from A by at least one undammed walk be-
longing to N"7(4). Define F, = F,(p) = sups E.(4, p).

TureoreM 1. F.(ps + 0) = 1.

It is an easy matter to show from P2 and P3(a) that N"(4) has only finitely
many atoms, and that every atom of B"(4) can be reached from A by at least
one (perhaps dammed) walk belonging to N"7*(4), and that B"(4) contains at
least one atom. Therefore E.(4, p) is an increasing function of p, and F,(p) is
a nondecreasing function of p, and 0 = E,(4,0) = F,(0)and 1 £ E,(4,1) £
F.(1). Thus Theorem 1 provides a lower bound for p;, because p; exceeds any
solution of F,(p) < 1.

Let P, = P.(A) be the probability that the single source atom A wets at
least one atom of B"(4).

TaeoreEM 2. If F, < 1 for some particular n, then Py < Ly for all N,
where [N /n] denotes the integer part of N/n.

Theorem 2 is a rather more precise form of Theorem 1 and will be required
elsewhere [5]. Here we shall deduce Theorem 1 from Theorem 2.

THEOREM 3. pa = €.

Theorem 3 is a straightforward generalization of a previous result ([1], Theo-
rem 7). ,

I have not yet succeeded in proving or disproving

ConNJECTURE 1. For each fixed p, F, is a subexponential function of n, thai s
to say, Fiom < FiF o .

Example 1 below shows that Theorem 1 is sometimes stronger than Theorem
3. Theoretically, Theorem 1 is never weaker than Theorem 3. However, when
the medium is a crystal it is not hard to estimate x by Monte Carlo methods,
and Theorem 3 may prove more useful than Theorem 1 in cases in which F, is
hard to calculate for large n. Similarly, it may occasionally happen that Theorem
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1, although weakened theoretically thereby, may yet be strengthened prac-
tically by redefining E, as the expected number of wet atoms in B"(4).

ExampLE 1. Let the atoms of the medium lie in the Euclidean plane at the
points (z, y), where 2, y = 0, 1, 2, --- . Suppose that from each (z, y) there
is a directed bond to (z + 1, y) and a directed bond to (z, ¥y + 1). Then f4(n) =
2", A = log 2, and Theorem 3 gives ps = . However, Fy(p) = 4p° — p*; so that
Theorem 1 gives ps > v/ — /I = 0.518 --- . F; gives a slightly sharper
result, but is much more tedious to calculate. We may also notice that Fy(p) =
2p; so that Fy, < Fi, and inequality is certainly required in Conjecture 1.

ExampLE 2. Consider the familiar branching process in which each individual
has 0, 1, or 2 descendants with independent probabilities ¢, 2pq, p°. This, like
all branching processes, is a special form of percolation process (see [1] for
further details of this question). We consider the atoms of the medium to be
the actual or potential individuals of the branching process. Each atom has
just two directed bonds from it, and the fluid is life transforming a potential
into an actual individual. We have F, = (2p)" and p; = 3, agreeing with well-
known results. Also A = log 2. Thus Theorems 1 and 3 are equally strong and
best possible. Also Conjecture 1 holds with equality. This and other branching
processes suggest

ProsrLEM 1. Under what conditions is lim inf, .. Fo(pa) = 1 valid?

We cannot in general use E in the role of F nor omit the 4-0 in Theorem 1,
though perhaps the exceptional cases are rare. Example 3 provides one such
exception.

ExampLE 3. Suppose that the atoms 4;, 42, - - - are connected by 27 directed
bonds from A4; to 4 ;1 . Then

m+n—1

Edm,p) = [l 0 -¢)<1
J=m
for p < 1. However ps = 0, because F_ (4., p) is also the probability that
A, wets infinitely many atoms and the infinite product converges for ¢ < 1.
As a matter of passing interest, B (4;, p) = (81/2¢"*)"%, where ¢ plays the
usual theta-function role of Jacobi’s nome [6], p. 473; see also [2], Sec. 21.7:
indeed, 27 rather than 7 bonds from A ; preserved the nomenclature.

3. Proof of theorems. Let A; be a fixed atom and n a fixed positive integer.
In studying the spread of fluid from the single source atom A; , we shall suppose
that the spreading occurs in consecutive recursively defined stages. Immedi-
ately before the jth stage takes place, we shall know two sets of atoms, denoted
by W(j) and S(5) respectively. Here W(j) is the set of atoms already wet up to
but excluding the jth stage, and S(5) is the set of atoms about to serve as sources
in the jth stage. The process starts from W(1) = S(1) = A4, . If S(j) is empty,
then S(j 4 1) is empty, and W(j + 1) = W(j). If S(j) is not empty, let 4 be
any atom of S(j) and proceed as follows. Define X(4) to be the set of all atoms
in N"(A) — W(j), which can be reached from A by at least one undammed



PERCOLATION PROCESSES 793

self-avoiding walk belonging to [N"(4) — W(j)] + A. Define Y(4) as the
intersection of X(4) and B"(4). Lastly define

3) SG+ 1) = 24Y(A); WG+ 1) = W) + 2.XA),

where Y, denotes summation over all atoms A belonging to S(j). We shall
also require sets of atoms T(1), T(2), - - - defined recursively by

4) T(1) = 4 TG+ 1) = D aer»B™(4), j=1,2,---.

Let A be an atom in S(j), supposed not empty, and let B be an
atom of T(j + 1). We write A — B to denote the existence of at least one un-
dammed self-avoiding walk from A to B belonging to [N"7'(4) — W(5)] + A.
By the foregoing definitions, A — B implies that B ¢ S(j 4+ 1); and conversely
there exists an atom 4; & S(5) if and only if we can find atoms 4,, 4., ---,
A ;_; belonging to S(1), S(2), ---,S(j — 1) suchthat 4, —> A — --- = 4, ; —
A; . Notice also that the sets S(1), S(2), - - - are mutually disjoint; and that
S(1), S(2), -+, S(j) are all subsets of W(5). Finally S(j) is a subset of T(5).
It may also be a subset of T (k) for k& £ j; but this will not affect our argument.

If A is an atom of the nonempty set S(j), we define its score 8(A) = Y_z0(B),
where Y 5 denotes summation over all atoms B ¢ S(j — 1) such that B — A.
We begin this recursive definition from 6(4;) = 1 when j = 1. To the set T(5)
we attach the score

{ > 6(4) if S(7) is not empty,
5 ¢; =4SP
0 if S(j) is empty.

Suppose that W(j — 1) is given, and that S(; — 1) is not empty. This means
that S(1), S(2), -+, S(j — 1) are all given and not empty. Hence 6(B) is given
for each B &€ S(j — 1). Consider the conditional expectation of ¢; given W(j — 1)
with nonempty S(; — 1). We have

Elg; | WG — 1), S(@G—1) 0]
© = > 6(B) Prob [B —» 4 | W(j — 1)]

4 e T(),B e S(i—1)

= > aB) E.Prob[B-aA\W(j—l)]-

B e S(ji—1)
Since B — A involves the existence of at least one undammed self-avoiding
walk from B to A belonging to [N"(B) — W(j — 1)] + B, this event depends

only upon the condition of bonds whose condition does not affect W(; — 1).
Hence,

(7) Prob [B— A | W(j = 1)] < Prob [B ~ 4],

where B ~ A, in the unconditional probability on the right of (7), means that
there is at least one undammed walk from B to 4 belonging to N"™(B). Then,
by definition of E.(B, p) and F.(p), we have

(8) Z Prob [B ~ 4] = En(B, p) = Fn(p)°

A eT(5)
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Combination of (6), (7), and (8) yields
9) Elg;|W(G — 1), SG —1) #01=Fulp) 2, 6B).

BeS(@G—-1)

In (9), we can remove the condition S(j — 1) £ 0, provided we interpret the
right-hand empty sum as zero when S(j — 1) = 0. Hence,

Elé;] = 2 Elé;| W(j — 1)] Prob [W(j — 1)]
< F.p) 2o )Z 8(B) Prob [W(j — 1)] = Fa(p)El¢;-l.

B e S(j—1

(10)

Since every walk from 4, to BY(4,) contains at least N steps, 4; cannot wet
any atom of BY(4,) unless none of S(1), S(2), - -+, S(» + 1) are empty. where
v = [N/»]. If S(» 4+ 1) is not empty, ¢,41 = 1. Thus, by (10),

(11) Py £ Prob o1 = 1] £ Elpa] £ Fo = FIV™,

which is Theorem 2. The relation (11) is true but useless if F, = 1.
If

(12) F,=F,(p) <1,

then

(13) lim P, = 0,
N->o0

by (11). Since N¥(4,) contains only finitely many atoms, (13) implies that 4,
wets infinitely many atoms with probability zero. Therefore, by definition of

pa = pa(4y),
(14) D= Pa.

Since (14) is a consequence of (12), we deduce Theorem 1.

Theorem 3 is easy; for 4; does not wet BY(4;) unless there is at least one
N-stepped self-avoiding walk from A4,. The probability of this event is less
than or equal to the expected number of such walks, namely p"f.(N), because
all bonds of a self-avoiding walk are distinct. If p < €™, limpaw " f4(N) = 0 by
(1), and Theorem 3 follows.

To see that Theorem 1 is always as strong as Theorem 3, notice that, given
e > 0, there exists n such that f4(m) < e*™™ for m = n; and hence E.(4, p) <
> mzn (€)™, The right-hand side does not depend on 4, so that we may
write Fo(p) for En(4, p). Then, if p < ¢, F, — 0 asn — «; and the re-
sult follows because ¢ is arbitrary.
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NON-PARAMETRIC UP-AND-DOWN EXPERIMENTATION!

By Cyrus DERMAN

Columbia University

1. Introduction. Let Y (z) be a random variable such that P(Y(z) = 1) = F(x)
and P(Y(z) = 0) = 1 — F(x) where F(z) is a distribution function. It is some-
times of interest, as in sensitivity experiments, to estimate a given quantile of
F(z) with observations distributed like Y (x) where the choice of z is under con-
trol. A procedure for estimating the median was suggested by Dixon and Mood
[2]. The validity of their procedure depends on the assumption that F(z) is
normal. Robbins and Monro [6] suggested a general scheme which can be used
for estimating any quantile and which imposes no parametric assumptions on
F(z). Their method does assume, however, that the range of possible experi-
mental values of z is the real line. In practice, this will not be the case. Limita-
tions on the precision of measuring instruments, or natural limitations such as
when z is obtained by a counting procedure, will usually restrict the experimental
range of z to a set of numbers of the form

a+h(—o <a< o,h>0,n=0=x1,---).

In this note we suggest a non-parametric procedure for estimating any quantile
of F(z) on the basis of quantal response data when, experimentally, z is restricted
to the form a + hn.

For convenience we assume a = 0, » = 1. Suppose we wish to estimate that
value of £ = G such that /(6 — 0) S a S F#),: S a< 1l.If0<a=3}or
a # 0 or b ## 1 the necessary modifications will be apparent. The experimental
procedure is as follows: choose z; arbitrarily. Recursively, let

Za = @na — 1,  with probability 51& if gy = 1,

1) — 2a1+1, with probability 1 — -2-15 iy = 1,

= Lo + 1, with probability 1 if y,—; = 0.
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