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ABSTRACT
Objective: Circulating CD34+CD45− cell
concentrations are increased in patients with coronary
artery disease, however their pathophysiological
significance is unknown. We determined CD34+CD45−

cell concentrations following percutaneous coronary
intervention (PCI) in order to explore their role in acute
vascular injury.

Methods: In a prospective time-course analysis, we
quantified using flow cytometry circulating
CD34+CD45− cells, traditional CD34+VEGFR-2+ putative
endothelial progenitor cells (EPCs), CD14+ VEGFR−

2+Tie-2+ angiogenic monocytes and intercellular
adhesion molecule expression (CXCR-4 and CD18) in
patients, before and during the first week following
diagnostic angiography (n=13) or PCI (n=23). Vascular
endothelial growth factor-A (VEGF-A) and C reactive
protein (CRP) were quantified by ELISA.

Results: Unlike diagnostic angiography, PCI increased
circulating neutrophil and CRP concentrations at 24 and
48 h, respectively (p<0.002 for both). CD34+CD45− cell
concentrations were unaffected by angiography (p>0.4),
but were transiently increased 6 h following PCI
(median (IQR) 0.93 (0.43–1.49) vs 1.51 (0.96–
2.15)×106 cells/L; p=0.01), returning to normal by 24 h.
This occurred in the absence of any change in serum
VEFG-A concentration, adhesion molecule expression
on CD34+ cells, or mobilisation of traditional EPCs or
angiogenic monocytes (p>0.1 for all).

Conclusions: PCI transiently increases circulating
CD34+CD45− cells, without increasing CD34+ adhesion
molecule expression or VEGF-A concentrations,
suggesting that CD34+CD45− cells may be mobilised
from the vessel wall directly as a result of mechanical
injury. Traditional putative EPC and angiogenic
monocytes are unaffected by PCI, and are unlikely to be
important in the acute response to vascular injury.

INTRODUCTION
Percutaneous coronary intervention (PCI)
strips the treated vessel of its endothelium
and causes laceration of the underlying
intima, initiating platelet aggregation and
thrombus formation.1 This process triggers
an inflammatory cascade that drives vascular
smooth muscle proliferation and neo-intimal

hyperplasia.2 The loss of endogenous
thrombolytic function and anti-inflammatory
signalling by the endothelium potentiates a
maladaptive response to vascular injury that
can lead to in-stent restenosis or thrombosis.
Re-endothelialisation of the denuded arterial
segment is therefore of crucial importance in
protecting against adverse consequences fol-
lowing PCI. We have previously hypothesised
that re-endothelialisation following PCI may
be accelerated by circulating angiogenic
monocytes and endothelial progenitor cells
(EPC). EPCs are naive precursor cells that

KEY MESSAGES

What is already known about the subject?
▸ Consistent with preclinical studies, we have pre-

viously reported an association between
increased CD34+CD45– cell concentrations and
coronary artery disease. The clinical significance
and the source of this population of cells remain
unclear. Conflicting data exist regarding the clin-
ical relevance of traditional CD34+VEGFR-2+

endothelial progenitor cells (EPCs) and their role
following acute vascular injury.

What does this study add?
▸ Consistent with our previous findings, we

observe in the present study that CD34+CD45–

are rapidly mobilised following percutaneous
coronary intervention (PCI). The functional sig-
nificance and source of this CD34+CD45– popu-
lation requires clarification, however it is likely
that these cells are derived from the vessel wall.

In support of previous work, traditional putative
EPCs were unaffected by PCI and as such it
appears unlikely they are important in the acute
response to vascular injury.

How might this impact on clinical practice?
▸ A better understanding of vascular progenitor

cells may lead to therapies aimed at enhancing
vascular repair in the context of atherosclerotic
disease and following angioplasty.
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have the capacity to differentiate into mature endothelial
cells and contribute to vascular regeneration.3

The traditional phenotypic definition of an EPC is
based on the co-expression of VEGFR-2, and the stem
cell marker CD34,4 5 either alone or in combination
with CD133, a haematopoietic cell surface marker
expressed only on very naïve cells.6 Circulating EPC con-
centrations are regulated by angiogenic growth factors
such as vascular endothelial growth factor and stromal
derived factor-1 acting through their cognate receptors,
VEGFR-2 and CXCR-4.7–9 Peripheral homing and
incorporation of EPCs are dependent on the expression
of surface adhesion molecules, including β-integrins
such as CD18.10 EPCs are mobilised in response to car-
diovascular injury such as myocardial infarction,11

improve organ perfusion and function in animal models
of ischaemia,12 and are negatively associated with
adverse cardiovascular outcomes.13 14 Given their puta-
tive vasculoprotective role, it is plausible that EPC might
be mobilised in order to facilitate vascular repair follow-
ing injury. However, several investigators have shown pre-
viously that acute mobilisation of traditional phenotypic
CD34+VEGFR-2+ EPCs in response to a discrete vascular
injury during PCI does not occur.15 Mobilisation of
CD34+VEGFR-2+ cells following PCI may however be
delayed, as measurements have not been performed
beyond 24 h. In a recent study involving a large cohort
of over 200 patients undergoing coronary angiography,
we observed that traditional EPC concentrations are
unrelated to the severity of coronary atheroma, and are
not increased following an acute coronary syndrome
(ACS).16 This would indicate that traditional EPCs are
not clinically relevant to atherosclerosis or acute athero-
thrombotic events. Indeed EPC, defined in the trad-
itional fashion, are characterised by their capacity to
form haematopoietic rather than endothelial colonies in
culture, that lack significant proliferative potential or the
capacity to incorporate into perfusing vessels in vivo.17

In contrast, non-haematopoietic CD34+CD45− cells form
endothelial colonies with robust proliferative potential
and can incorporate into perfusing vessels.17–19

Although not mobilised acutely by an ACS, we found
that non-haematopoietic, CD34+CD45− concentrations,
are directly associated with atheroma burden and also
predict the occurrence of adverse coronary events.16

Circulating CD34+CD45− cells therefore serve as a
measure of vascular injury, but their origin and patho-
physiological significance are unknown. In particular, it
is unclear whether or not they are bone marrow-derived
cells with regenerative capacity.
Various alternate cell populations have been proposed

as having vascular regenerative capacity. In particular,
monocytes have received much attention. Monocytes
accumulate at sites of new vessel formation and augment
the differentiation and proliferation of endothelial cells
via the secretion of pro-angiogenic factors.20 21 Vascular
injury associated with PCI mobilises monocyte-derived
angiogenic colony forming units (EC-CFU) within 24 h,

indicating that this population participates in the acute
cellular response to vascular injury.15 The specific subpo-
pulations responsible for EC-CFU generation are
unknown, however, monocytes expressing the endothelial
epitopes vascular endothelial growth factor receptor-2
(VEGFR-2) and Tie-2, accelerate re-endothelialisation
and improve left ventricular function following experi-
mental cardiovascular injury,22–24 and are mobilised fol-
lowing an ACS.16 Their behaviour in response to discrete
vascular injury, however, is unknown.
We conducted this study in order to determine the

time course of circulating concentrations of a variety of
putative angiogenic cell populations over a 1-week period
following a discrete vascular injury caused by PCI.

METHODS
Subjects
The study was performed with the approval of the local
research ethics committee in accordance with the
Declaration of Helsinki, and the written informed
consent of all volunteers. Patients undergoing elective
coronary angiography at Edinburgh Royal Infirmary,
Edinburgh, UK, for the investigation of suspected
angina (Canadian Cardiovascular Society grade 2 or
more) or prior to valve replacement surgery were identi-
fied prospectively and invited to take part in the study.
Patients with a recent ACS (<3 months), significant
comorbid illness, haematological or internal malignancy,
hepatic or renal failure or concurrent infection were
excluded from the study. Clinical characteristics and
medical therapy during admission were documented.

Coronary angiography
Coronary angiography was performed via the femoral or
radial artery using 5–6F arterial catheters and standard
angiographic projections. Stenoses affecting a major epi-
cardial artery of ≥50% were defined as significant, and
the overall atheroma burden was graded using the
Gensini scoring system.25 Patients underwent PCI at the
discretion of the operator following pretreatment with
oral clopidogrel 300 mg and 5000 IU of intravenous
unfractionated heparin. Intracoronary stents were
implanted following lesion optimisation by balloon pre-
dilation and intracoronary glyceryl trinitrate.

Blood sampling and assays
Prior to coronary angiography, peripheral venous blood
anticoagulated with ethylene diamine tetra-acetic acid
(Sarstedt-Monovette, Germany) was collected for flow
cytometry in all subjects. Whole blood was analysed for
the differential leucocyte count using an autoanalyser
(Sysmex, UK). Plasma troponin concentrations were
measured using the ARCHITECT STAT troponin I assay
(Abbott Laboratories, Abbott Park, Illinois, USA).
An ELISA was used to quantify serum vascular endothe-
lial growth factor A (VEGF-A) concentration according
to the manufacturer’s instructions (Invitrogen).26 Serum
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high-sensitivity C reactive protein (CRP) was quantified
using an immunoturbidimetric method (Dade-Behring
Marburg, Germany).27

Flow cytometric identification of EPCs
EPCs were phenotyped using flow cytometry as previously
described.26 In brief, cells were stained directly and ana-
lysed for phenotypic expression of surface proteins using
preconjugated antihuman monoclonal antibodies;
anti-CD45-PercP (Becton Dickinson, Oxford, UK);
anti-CD34-FITC; anti-VEGFR-2-APC; anti-VEGFR-2-PE;

anti-Tie2-APC; anti-CXCR-4-APC; anti-CD18-PE (R&D
systems, Minneapolis, USA); anti-CD-133-PE (Miltenyi
Biotec Ltd, Surrey, UK); and anti-CD14-FITC (Caltag
Systems, Buckingham, UK). Flow-cytometric analysis
identified leucocytes by their characteristic forward and
side scatter profile (figure 1). For each sample, approxi-
mately 500 000 events were acquired in the leucocyte gate
using a FACS-Calibur flow cytometer (Becton Dickinson,
UK). Data were analysed using FlowJo (Treestar). For
quantification of subpopulations, the proportion of leu-
cocytes bearing each epitope was determined individually

Figure 1 Flow cytometric analysis of putative progenitor cells. Representative dot plots of negative controls and stained
samples are shown in red and blue respectively. First, leucocytes were identified on the basis of their characteristic forward and
side scatter profile (A). CD34-FITC (B and C) expression and the proportion of CD34+ events expressing CD18 (D and E) and
CXCR-4 (F and G) were determined. Similarly CD133-PE+ (H and I), CD45-PercP+ ( J and K), and VEGFR-2-APC+ (L and M)
events were identified. Co-expression of surface markers was determined using Boolean principles. In separate analyses
CD14-FITC+ events were identified (N), and those expressing Tie-2-APC and or VEGFR-2-PE were determined using quadrant
analysis (O and P). Gates were set on single or unstained negative controls where appropriate.
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using side scatter profile against the appropriate fluores-
cence channel, and permutations of co-expression were
determined automatically using Boolean principles.
Unstained samples served as negative controls (figure 1).
Absolute cell concentrations per millilitre of blood were
calculated by equating the total number of events in the
leucocyte gate to the total leucocyte count.

Data analysis and statistics
Continuous variables are reported as the mean±SD or
median and inter-quartile range where appropriate.
Statistical analyses were performed with SPSS V.17 (SPSS
Inc, Chicago, USA). The Shapiro-Wilk test was used to
test for normality of distribution. Analyses were per-
formed using parametric or non-parametric analysis of
variance (ANOVA), where appropriate. The two-tailed
Student t test, Mann-Whitney tests and Pearson’s χ2 tests
for between and within group comparisons were per-
formed where appropriate. Statistical significance was
taken at a two-sided p value of 0.05. At a significance
level of 5% and based on power calculations derived
from previous studies, a sample size of n=20 will give

80% power of detecting a twofold increase in traditional
phenotypic EPC (CD34+VEGFR-2+ cells).

RESULTS
Subjects and procedures
Thirteen patients underwent diagnostic coronary angiog-
raphy alone and 23 underwent PCI using intracoronary
stents. Patients were well matched in terms of age and sex
and with respect to their cardiovascular risk profile and
baseline medications (table 1). A diagnosis of hyperten-
sion was more frequently present in patients undergoing
PCI compared to diagnostic coronary angiography alone
(46% vs 83%; p=0.02). Patients undergoing diagnostic
coronary angiography alone were more likely to have left
main stem or three-vessel disease (p=0.001), although
Gensini scores were similar (26 (16–80) vs 34 (26–79)
units; p>0.70). Patients undergoing PCI required a
longer total procedure time compared to diagnostic angi-
ography alone (36±2.2 vs 16±1.6 min; p<0.001). Patients
received a median of 1 (1–2) stent with a median total
balloon inflation time of 44 (30–54) seconds. Drug
eluting stents were used in 57% of patients (table 2). No

Table 1 Demographic, clinical characteristics and medical therapy of the study population

Angiography (n=13) PCI (n=23) p Value

Demographics
Age, years 63±2.7 61±2.3 0.51
Male gender, n (%) 10 (77) 19 (83) 0.68
Body mass index, kg/m2 27.5±1.8 28.9±0.9 0.51

Clinical characteristics
Smoking status, n (%)

Current smoker 4 (31) 2 (9) 0.11
Ex smoker 6 (46) 11 (48) 0.71
Non smoker 3 (23) 10 (44) 0.22

Hypertensive, n (%) 6 (46) 19 (83) 0.02
Diabetic, n (%) 2 (15) 3 (13) 0.85
Hyperlipidaemia, n (%) 8 (62) 17 (74) 0.32
Family history of CAD, n (%) 5 (39) 16 (70) 0.07
Previous MI, n (%) 5 (39) 13 (57) 0.30
CABG, n (%) 1 (8) 2 (9) 0.92
PCI, n (%) 2 (15) 10 (44) 0.09
PVD, n (%) 2 (15) 3 (13) 0.85
LVSD, n (%) 3 (23) 6 (26) 0.84
Stroke, n (%) 1 (8) 1 (4) 0.67
Creatinine, mg/dL 103±4 98±3 0.34
Cholesterol, mg/dL 4.3±0.3 4.4±0.2 0.95

Medical therapy
Aspirin, n (%) 9 (77) 23 (100) 0.05
Clopidogrel, n (%) 4 (31) 18 (78) 0.01
β-blocker, n (%) 7 (54) 17 (74) 0.22
Statin, n (%) 10 (77) 22 (96) 0.09
ACE inhibitor, n (%) 4 (31) 14 (61) 0.08
ARB, n (%) 1 (8) 1 (4) 0.67

Continuous variables are expressed as the mean±SE or median (IQR) with statistical comparisons between patients with ACS and suspected
stable angina performed using the Student t test or Mann–Whitney, where appropriate. Categorical variables are expressed as the absolute
number of cases and the group proportion (%) with statistical comparisons performed using a χ2 test.
ARB, angiotensin receptor blocker; CABG, coronary artery bypass; CAD, coronary artery disease; LVSD, left ventricular systolic dysfunction;
MI, myocardial infarction; PCI, percutaneous coronary intervention; PVD, peripheral vascular disease.
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significant complications arose during the course of the
study and all patients were discharged within 24 h of the
procedure.

Measures of inflammation and myocyte necrosis
All parameters were similar in both groups at baseline
(p>0.05 for all; table 3). The median troponin concen-
tration at 24 h was undetectable in both groups
(p=0.13). Following PCI, the leucocyte count was
increased (p=0.04 for ANOVA of repeated measures),
peaking at 24 h (7.21±0.28 vs 6.24±0.20×106 cells/L;
p=0.002). Serum CRP also increased following PCI
(p=0.002 for ANOVA of repeated measures), peaking at
48 h (3.95 (1.26–8.26) vs 1.02 (0.64–2.33) mg/L;
p=0.001). Serum VEGF-A concentrations were
unchanged following PCI (p=0.16 for ANOVA of
repeated measures). Diagnostic coronary angiography
alone had no effect on the total leucocyte count, CRP

or serum VEGF-A concentration throughout the study
period (p>0.5 for ANOVA of repeated measures for all).

Progenitor cell populations
All cell concentrations were similar in both groups at
baseline (p>0.2 for all; table 4). Following PCI circulating
CD34+CD45− cell concentrations were increased
(p=0.0001, for one-way ANOVA of repeated measures),
peaking at 6 h before returning to baseline concentra-
tions at 24 h (1.51 (0.96–2.15) v 0.93 (0.43–
1.49)×106 cells/L; p=0.01; table 4 and figure 2). The
CD34+CD45− concentration was unaffected by diagnostic
coronary angiography alone (p=0.43 for ANOVA of
repeated measures; table 4 and figure 2). Traditional
EPC phenotypes expressing CD34+VEGFR-2+ and those
expressing CD34+VEGFR-2+CD133+ and CD34+CD45+

were unaffected in both groups (p>0.2 for all; table 4).
CXCR-4 and CD18 expression on CD34+ cells was 47±7%
and 36±5%, respectively, at baseline and were unchanged
throughout the study period in both groups (p>0.2 for
all; data not shown). The total CD14 count was not
affected by either procedure (p>0.5 for both).
Angiogenic monocytes expressing Tie-2 and VEGFR-2
comprised 0.72% (0.28–2.65) of circulating CD14+ cells
and circulating concentrations were unchanged through-
out the study in both groups (p>0.2 for all; table 4).

DISCUSSION
We have examined the behaviour of a variety of circulat-
ing angiogenic cells in response to a discrete vascular
injury caused by PCI. We observed a rapid but transient
mobilisation of CD34+CD45− cells into the peripheral
circulation following PCI, with circulating concentrations
returning to baseline by 24 h. The systemic inflamma-
tory response caused by PCI however, was relatively pro-
longed and continued to increase for at least 48 h.
CD34+CD45− cells were mobilised without a detectable
change in CD34+ surface adhesion molecules or serum
VEGF-A concentration. Taken together, these observa-
tions would suggest that mobilisation of CD34+CD45−

cells following PCI is not mediated by a circulating
cytokine or growth factor acting on the bone marrow.
Given the close association between CD34+CD45− and
atheroma burden that we have previously observed,16 it
is plausible that mechanical injury causes CD34+CD45−

cells to be released from the coronary artery
directly. Traditional phenotypic EPC populations
(CD34+VEGFR-2+ and CD34+VEGFR-2+CD133+), and
haematopoietic CD45+ subpopulations including angio-
genic monocytes were both unaffected by discrete vascu-
lar injury up to 1 week following PCI. This would suggest
that these populations are not mobilised in acute
response to vascular injury and are unlikely to play a
direct role in vascular repair; however, it remains pos-
sible that local cytokine production might increase adhe-
sion of circulating proangiogenic monocytes or CD34+

cells to increase incorporation of these cell types to sites

Table 2 Procedural characteristics of the study
population

Angiography
(n=13)

PCI
(n=23)

p
Value

Radial access, n (%) 9 (69) 18 (78) 0.55
Coronary disease severity

Normal/minor
disease, n (%)

2 (15) 1 (5) 0.27

1 vessel, n (%) 2 (15) 10 (46) 0.09
2 vessel, n (%) 2 (15) 6 (27) 0.46
3 vessel, n (%) 7 (54) 5 (23) 0.05
3 vessel or left
main stem, n (%)

9 (69) 5 (23) 0.01

Gensini score,
units

34 (26–79) 26 (16–80) 0.70

Target vessel, n (%)
LAD – 11 (48) –

LCx – 10 (44) –

RCA – 5 (22) –

SVG – 2 (9) –

Multivessel – 7 (30) –

Balloon inflation
time, s

– 44 (30–54) –

Number of stents – 1 (1–2) –

Drug eluting stents – 13 (57) –

Stent length, mm – 25.3±3.2 –

Stent diameter, mm – 3.1±0.1 –

Predilation, n (%) – 18 (78) –

Postdilation, n (%) – 4 (17) –

Case time, min 16±1.6 36±2.2 <0.001

Continuous variables are expressed as the mean±SE or median
and IQR with statistical comparisons between patients with ACS
and suspected stable angina performed using the Student t test
or Mann–Whitney, where appropriate. Categorical variables are
expressed as the absolute number of cases and the group
proportion (%) with statistical comparisons performed using a χ2

test. Statistical comparisons were performed using the Student t
test, Mann-Whitney test or χ2 analysis where appropriate.
LAD, left anterior descending; LCx, left circumflex; PCI,
percutaneous coronary intervention; RCA, right coronary artery;
SVG, saphenous vein graft.
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of vascular injury. Two small clinical studies have demon-
strated a fall in CD34+VEGFR-2+ cells within the first few
hours of coronary angioplasty. Neither of these studies
used a control group, and interpretation is therefore
limited, but it is likely that this ‘dip’ in CD34+ cell con-
centration is explained by the diurnal variation that is
recognised to affect these populations,26 rather than
incorporation to sites of vascular denudation. Previous
studies have not specifically examined the behaviour of
CD34+CD45− cells following PCI. Pelliccia et al

28 found
that higher concentrations of circulating
CD34+VEGFR-2+CD45− and CD133+VEGFR-2+CD45−

cells prior to revascularisation identified patients more
likely to develop restenosis. Similarly, a direct relation-
ship exists between coronary atheroma burden and both
CD34+CD45− cells16 and CD34+CD45− cell-derived late
outgrowth colonies.29 CD34+CD45− cells are therefore a
measure of vascular injury; however, whether or not they
are derived from the bone marrow or possess reparatory
function remains unclear. Mature endothelial cells also
express CD34+30 and are CD45−, and circulating
CD34+CD45− cells may therefore simply reflect shedding
of vascular detritus to the peripheral circulation as a
consequence of cell turnover in atherosclerotic arteries.
The early and transient appearance of CD34+CD45−

cells in the circulation following vascular perturbation
observed in the current study is consistent with this
hypothesis. Furthermore, despite mobilisation of
CD34+CD45− cells, neither plasma VEGF concentration
nor the expression of the surface receptors, CXCR-4 or
CD18 on circulating CD34+ cells were affected by PCI. It
is possible that we have observed progenitor cell mobil-
isation from either the marrow or a marginated, vascular
resident population and have failed to detect the circu-
lating factors responsible for their release. Stem cell
mobilisation occurs via activation of the phosphatidylino-
sitol 3-kinase/Akt/endothelial nitric oxide synthase
(PI3K/Akt/eNOS) pathway via angiogenic factors such
as VEGF, through the stimulation of nitric oxide synthe-
sis by bone marrow stromal cells.8 Increased nitric oxide
bioavailability leads to cleavage of intracellular adhesions
between stem cells and stromal cells of the bone
marrow,31 allowing them to mobilise to the peripheral
circulation in response to a stromal cell-derived factor-1
gradient generated by bone marrow stromal cells acting
through the CXCR-4 receptor.7 9 Cell surface adhesion
molecules such as CD18 mediate EPC homing and cells
adhesion and are required for incorporation of EPCs
into the vasculature.10 Although we have not performed
a comprehensive evaluation of the factors involved in
the mobilisation of stem cells from the bone marrow,
the absence of any change in VEGF concentration or
CD18 and CXCR-4 expression further supports the
hypothesis that CD34+CD45− cells were not mobilised
from the bone marrow, but released directly from the
injured coronary artery.16 32

While we did not observe an increase in CD34+CD45−

cells in the present study, this has been described
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Table 4 Cell frequencies following diagnostic angiography and percutaneous coronary intervention

0 h* 6 h 24 h 48 h 72 h 168 h ANOVA

Angiography
CD34+ 2.45 (1.54–3.21) 2.17 (1.59–2.94) 1.63 (1.37–2.28) 1.74 (1.31–2.75) 2.17 (1.35–3.13) 1.88 (1.66–2.79) 0.14
CD34+VEGFR-2+ 0.27 (0.09–0.71) 0.36 (0.08–1.50) 0.13 (0.03–0.41) 0.21 (0.09–0.48) 0.06 (0.02–0.40) 0.13 (0.07–0.87) 0.22
CD34+VEGFR-2+CD133+ 0.04 (0.01–0.55) 0.10 (0.03–0.44) 0.10 (0.0–0.36) 0.05 (0.01–0.19) 0.03 (0.0–0.49) 0.03 (0.0–0.24) 0.44
CD34+CD45+ 1.77 (0.90–2.48) 1.11 (0.94–1.87) 1.31 (0.97–1.96) 1.36 (1.08–1.69) 1.46 (0.86–1.96) 1.36 (0.81–1.67) 0.73
CD34+CD45− 0.71 (0.31–1.20) 0.60 (0.31–1.70) 0.39 (0.27–0.82) 0.41 (0.26–0.67) 0.52 (0.21–1.4) 0.61 (0.21–1.1) 0.43
CD34+CD45−VEGFR-2+ 0.06 (0.01–0.31) 0.08 (0.02–0.31) 0.02 (0.002–0.17) 0.06 (0.0–0.13) 0.02 (0.0–0.29) 0.05 (0.01–0.11) 0.33
CD14+Tie 2+VEGFR-2+† 3.0 (1.8–11.1) 2.8 (1.2–14.3) 2.0 (1.3–10.8) 2.5 (0.70–6.37) 3.2 (2.1–12.6) 2.7 (0.97–8.61) 0.39

PCI
CD34+ 2.58 (1.70–3.36) 2.94 (2.07–4.05) 2.36 (1.74–3.52) 2.42 (1.75–3.29) 2.20 (1.60–2.64) 2.49 (1.36–3.25) 0.08
CD34+VEGFR-2+ 0.13 (0.02–0.52) 0.18 (0.05–0.85) 0.17 (0.03–0.47) 0.22 (0.02–0.56) 0.12 (0.05–0.41) 0.11 (0.03–0.38) 0.3
CD34+VEGFR-2+CD133+ 0.05 (0.0–0.92) 0.14 (0.0–1.3) 0.04 (0.0–0.77) 0.08 (0.0–0.75) 0.03 (0.0–0.74) 0.04 (0.0–0.72) 0.27
CD34+CD45+ 1.41 (0.84–2.14) 1.69 (0.97–2.34) 1.79 (1.12–2.69) 1.64 (1.28–2.11) 1.72 (0.96–2.07) 1.63 (0.96–2.34) 0.6
CD34+CD45− 0.93 (0.43–1.49) 1.51 (0.96–2.15)‡ 0.71 (0.40–0.98) 0.70 (0.46–1.14) 0.52 (0.21–0.73) 0.76 (0.36–1.05) <0.0001
CD34+CD45−VEGFR-2+ 0.09 (0.0–0.32) 0.17 (0.02–0.52) 0.09 (0.01–0.37) 0.06 (0.0–0.36) 0.05 (0.0–0.19) 0.04 (0.02–0.16) 0.1
CD14+Tie 2+VEGFR-2+ 3.1 (0.98–7.1) 4.3 (2.4–13) 4.1 (1.8–11) 3.1 (0.30–13) 3.1 (0.55–6.1) 2.1 (1.1–9.3) 0.68

Concentrations are the median and IQR×106/L of blood. Statistical analyses are performed using repeated measures ANOVA (Friedman’s test) with Dunn’s Multiple comparison post test.
Comparisons between time points are made using a Wilcoxon test.
*Between group comparisons at baseline were made for each variable using a Mann–Whitney test.
†n=10.
‡p=0.01 for baseline compared to time point.
ANOVA, analysis of variance; CD, cluster of differentiation; CRP, C reactive protein; PCI, percutaneous coronary intervention; VEGFR-2, vascular endothelial growth factor receptor-2.
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following PCI, previously. However, these studies did not
evaluate vascular injury in isolation and included
patients with significant myocardial necrosis following
acute myocardial infarction.33 34 Peak mobilisation
varied from 24 h to a week, and was proportional to the
degree of systemic inflammation with CD34+CD45− con-
centrations predicting future development of in-stent
restenosis. Whether CD34+CD45− cells contribute dir-
ectly to the development of restenosis is unknown,
although it is interesting to note that the use of
drug-eluting stents was associated with less inflammation
and CD34+CD45− mobilisation. This suggests
drug-eluting stents may in part suppress restenosis by
attenuating inflammatory typo (signaling) to the bone
marrow by suppressing local vascular inflammation.
CD34+CD45− cells have the capacity to adopt smooth
muscle cell characteristics in vitro and may therefore
potentiate the development of in-stent restenosis by
acting as circulating smooth muscle progenitor cells.35

Putative smooth muscle progenitor cells have been
reported to express both CD34 and VEGFR-2,36 and
both CD34 and CD133 are expressed at higher concen-
trations in the neo-intima of restenotic lesions compared
with de novo lesions.37 Inoue et al

33 demonstrated that
circulating mononuclear cells of patients with in-stent
restenosis exhibit a propensity to develop a smooth
muscle phenotype over that of an endothelial phenotype
compared with those without. Therefore, plasticity of cir-
culating CD34+ cells may lead to acceleration of
neo-intimal hyperplasia if a pro-inflammatory micro-
environment in a particular patient dictates such a
response.
Monocytes will express a variety of endothelial

characteristics in-vitro under appropriate angiogenic
stimulation.20 38 39 Monocyte chemoattractant protein-1
(MCP-1) is released by endothelial cells in response to
shear stress and tissue ischaemia,40 causing monocytes
to accumulate at sites of new vessel formation, adhere to
injured endothelium, accelerate re-endothelialisation

and improve endothelial vasomotor function.22 23

However, the remarkable plasticity of monocytes may
result in a diverse response to vascular injury depending
on the local microenvironment. For instance, there is a
strong correlation between circulating monocyte concen-
tration and the development of in-stent restenosis,41 and
MCP-1 is significantly elevated in both plasma42 and cor-
onary atherectomy specimens of patients who develop
in-stent restenosis following PCI.43 Furthermore, treat-
ment with anti-MCP-1 monoclonal antibodies following
balloon angioplasty in rats inhibits neo-intimal hyperpla-
sia.44 The role of monocytes following vascular injury is
therefore diverse and again probably depends on the
local microenvironment. PCI mobilises EC-CFU within
24 h although whether specific subpopulations partici-
pate in the acute cellular response to vascular injury is
unknown.15 We recently observed that monocytes
expressing Tie-2 and VEGFR-2 are mobilised acutely fol-
lowing an ACS; however, this appeared to be a conce-
quence of myocyte necrosis rather than the presence of
atheroma burden or the presence of an ACS, per se.16

In the present study, CD14+Tie-2+VEGFR-2+ cells were
not mobilised following PCI, suggesting that mobilisa-
tion of this monocytic subpopulation occurs in response
to more extensive myocardial injury rather than discrete
vascular injury.

STUDY LIMITATIONS
Although we hypothesise that CD34+CD45− cells have
been liberated directly from the coronary artery, we have
not proven this definitively and further confirmatory
studies are required. Patients undergoing PCI were more
frequently hypertensive. Hypertension has been linked to
impaired mobilisation of ‘EPC’ and related cell popula-
tions, and this may therefore be relevant to our results.45

If PCI-mediated vascular injury does mobilise traditional
EPC, this effect might be muted in a group of hyperten-
sive patients, potentially leading to a type 2 error.

Figure 2 Inflammatory response and CD34+CD45− cell release following percutaneous coronary intervention (PCI). PCI rapidly
but transiently mobilised CD34+CD45− cells into the peripheral circulation, peaking at 6 h; p=0.01. Circulating concentrations had
fallen back to baseline by 24 h. In contrast, the systemic inflammatory response caused by PCI was relatively prolonged, with
CRP concentrations continuing to increase for at least 48 h; p=0.001. Diagnostic coronary angiography alone did not cause an
inflammatory response or effect the CD34+CD45− concentration; p>0.5 for all. Data are median and IQR.
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However, previous investigators have demonstrated the
absence of mobilisation of traditional EPC in a group of
largely non-hypertensive patients.46 Patients undergoing
PCI were all administered heparin, which has been
shown to increase circulating CD34+ cell concentrations,
possibly through disruption of SDF/CXCR-4 inter-
action.47 Heparin may have led to CD34+CD45− mobilisa-
tion; however, if this were the case one would expect the
CD45+ fraction to be similarly increased.

CONCLUSIONS
Discrete vascular injury associated with PCI causes a
rapid but transient release of CD34+CD45− cells into the
peripheral circulation in the absence of a concurrent
increase in CD34+ adhesion molecule expression or
VEGF-A secretion. Confirmatory studies are required to
determine whether CD34+CD45− cells released into the
circulation following PCI arise directly from the vessel
wall through mechanical injury, or are progenitors with
reparatory capacity mobilised from a stem cell niche.
Traditional EPC and VEGFR-2+Tie-2+ monocytes are
unaffected by PCI, and are unlikely to be important in
the acute response to vascular injury.
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