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Within the coupled Fokas-Lenells equations framework, we show explicitly that, in contrast to the

expected threefold-amplitude magnification, Peregrine solitons can reach a peak amplitude as high as

5 times the background level. Besides, the interaction of two such anomalous Peregrine solitons can

generate a spikelike rogue wave of extremely high peak amplitude, depending on the parameters used. We

numerically confirm that the Peregrine soliton beyond the threefold limit can be reproduced from either a

deterministic initial profile or a chaotic background field, hence anticipating the feasibility of its

experimental observation.
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The Peregrine soliton (PS) concept, as a paradigm of

coherent structures in modeling extreme wave events [1,2],

is attracting great interest in a variety of scientific areas

ranging from hydrodynamics and oceanography to non-

linear optics [3–5]. It was first discovered in 1983 by

Peregrine when looking for surface waves in deep water

modeled by the nonlinear Schrödinger (NLS) equation [6],

hence its current name. Afterwards, its dynamics were seen

in a number of physical settings, first in nonlinear fibers [7],

then in water wave tanks [8] and plasmas [9], and recently

in an irregular oceanic sea state [10]. Contrarily to the usual

shape-invariant soliton [11], the PS, basically expressed by

a rational function of second degree, presents a double

spatiotemporal localization on a finite continuous back-

ground. Starting from this continuous background, it

develops progressively towards reaching a climax worth

3 times the level of the background field and then vanishes

completely as if it had never occurred [12]. This feature

explains well the formation of rogue-wave events [13–18],

which have a high amplitude and may appear from nowhere

and disappear without a trace [19].

Recent studies reveal that the PS is a universal funda-

mental solution, characteristic of scalar nonlinear integrable

systems such as the celebrated NLS equation [20] and also

of vector ones such as Manakov systems [21]. In the latter

case, due to the energy transfer between different compo-

nents, the central amplitude of the vectorial PS can be

varied from zero to triple that of the background [22–25].

This is markedly different from the PS in scalar systems,

which always has a fixed peak amplitude [20,26]. As a

special case, the rogue wave that falls to zero in the dip

center is usually referred to as a black (or, loosely, a dark)

rogue wave [22,24,27], the counterpart of the usual bright

PS that has also been observed lately [28]. More

interestingly, a frequency-chirped version of the PS, or

chirped PS [26], was unequivocally shown to exist in

nonlinear media exhibiting a self-steepening effect, which

features a doubly localized chirp besides the inherited

threefold-amplitude hallmark.

However, there is more and more numerical and exper-

imental evidence that a single rogue-wave event can appear

with a peak amplitude higher than 3 (when normalized to the

background) [20,29–32]. Such ultrahigh rogue-wave ampli-

tudes are generally attributed to the collisions of several

Peregrine breathers [30–32], yielding field profiles that can

match well higher-order rational solutions [20]. Now, a

fundamental question occurs: Is it possible that a single

anomalous PS exists with a peak amplitude more than triple

the backgroundheight? If so,would such an anomaly possess

enough robustness to be observed in a realistic environment,

amid the onset of modulation instability (MI)?

In this Letter, we present a first-ever systematic study

addressing this question. We clearly show that a PS

solution, still expressed by a rational function of second

degree, can surprisingly reach an amplitude limit as high as

5 times the background level, in a multicomponent system.

Moreover, the interaction of such two PS states can create a

spikelike rogue wave of extremely high peak amplitude

(nearly 15-fold for certain given parameters). Our result is

different from the deterministic colliding events of ordinary

solitons [33–35], which could also yield a hump of very

high amplitude, yet predictable. We confirm numerically

that these high-amplitude PS solutions are robust and can

be excited amid the onset of MI. This finding may help

shed more light on the anomalous dynamics of rogue waves

in other complex multicomponent systems [36].

For our study, we consider an integrable extension of the

Manakov system [37], expressed in a normalized form as
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where u1;2ðξ; τÞ are the complex envelopes of the two field

components, with ξ and τ the distance and retarded time,

respectively. Dτ ¼ 1þ iϵð∂=∂τÞ is the differential operator
with respect to τ, and ϵð>0Þ scales the perturbation to the

Manakov system, which corresponds to the ϵ ¼ 0 case

here. The parameter σ (¼�1) denotes the type of

dispersion, i.e., þ1 for anomalous dispersion and −1 for

normal dispersion. As usual, the asterisk denotes the

complex conjugate. This coupled form of nonlinear wave

equations is a natural extension of the scalar version [38]

obtained separately by Fokas on the mathematical side

(using a bi-Hamiltonian method) [39] and by Lenells from

the standpoint of physics (starting from Maxwell’s equa-

tions) [40]; hence it is referred to as the coupled Fokas-

Lenells (CFL) equations. As an important generalization,

the CFL system includes, besides the group-velocity

dispersion and self- and cross-phase modulation terms that

constitute the Manakov system, the effects of space-time

coupling (through the presence of the differential operator

in the first term) [41] and self-steepening (through the

presence of the differential operator in the last two terms)

[42]. These additional terms arise as corrections to the

slowly varying envelope approximation [40], when con-

sidering the propagation of few-cycle pulses, a situation

which can be met in ultrafast optics as well as in hydro-

dynamics. Thus, the CFL system is relevant to model the

propagation of ultrashort optical pulses in birefringent

optical fibers [40,43,44] or crossing sea waves in the open

ocean [3,45].

By virtue of the standard Darboux transformation

procedure [21,46], a special type of fundamental PS

solutions of the CFL Eqs. (1) and (2) can be found to be
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with νj¼ϵωj−1, κ ¼ ν1 þ ν2, δ ¼ ν1 − ν2, ι1 ¼
ffiffiffi

3
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Here uj0 (j ¼ 1, 2) are the initial plane-wave seeds

uj0 ¼ aj expðikjξþ iωjτÞ; ð8Þ

defined by their amplitudes (aj), frequencies (ωj), and

wave numbers (kj) through the dispersion relations
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It follows easily from Eq. (11) that the condition of

existence of the PS solutions (3) is ωj < 1=ϵ for the

anomalous dispersion (σ > 0) case and ωj > 1=ϵ for the

normal dispersion (σ < 0) case.

We find from Eqs. (3)–(6) that the above PS solutions,

which consist of quadratic polynomials, each have a central

amplitude given below:

juc
1
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�

�
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�

�
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�
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�

�
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These central amplitudes, calculated at the origin, can be

varied with the parameter ϵ and with the frequencies

ω1 and ω2. For example, as ω1 ¼ 1=ϵ − σ=ð3ϵ3Þ and

ω2¼2ω1−1=ϵ, one can obtain a PS peak amplitude

for the u1 field that triplicates the background height

[see Figs. 1(a) and 1(b)]. As ω1 ¼ 1=ϵ − σ=ð21ϵ3Þ and

ω2 ¼ 5ω1 − 4=ϵ, the PS peak amplitude of the u1 field

becomes now 4 times the background height [see Figs. 1(c)

and 1(d)]. If we take ω1 ¼ 1=ϵ − σ=ð4033ϵ3Þ and

ω2 ¼ 64ω1 − 63=ϵ, the peak amplitude can reach nearly

5 times the background level, as seen in Figs. 1(e) and 1(f).

Correspondingly, in the above three cases, the u2 field
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would feature an intermediate, a dark, and a near-planar

rogue wave, respectively. In either case, the amplitude ratio

of the two background fields is given by a2=a1 ¼
ffiffiffiffiffiffiffiffiffiffiffi

ν2=ν1
p

.

Under the amplitude conditions (11), one can verify that the

maximum peak-to-background ratio is able to reach 5, by

letting one frequency, say, ω1, approach infinitely to 1=ϵ,
whereas letting the other one, say, ω2, be away from it. We

should point out that the factor of 5 was usually peculiar to

the second-order rogue-wave solutions [19,20,31,47] but

now is also achievable in the case of a fundamental PS,

contrarily to the common conception developed before. All

these properties are exemplified in Fig. 1 for the anomalous

dispersion scenario, but they unfold as well with normal

dispersion.

The fact that this PS may involve a peak amplitude

higher than threefold is very intriguing, as no such case

occurs in integrable systems known so far [12,21–25,48].

We attribute this unique amplitude property to the coupling

between field components and to the coupling between

space and time. Thanks to the former coupling, an energy

transfer occurs between different components, so that one

component can grow in amplitude at the expense of the

other. Meanwhile, due to the space-time coupling in the

presence of the self-steepening effect, there occurs a further

spatiotemporal rearrangement such that the upper ampli-

tude limit of the usual PS solution can be breached. It is

self-evident that the specific conditions for which a more

than threefold PS amplitude appears are absent in the

Manakov limit (ϵ ¼ 0), where, instead, the peak amplitude

for both components is just twice the background height [21].

Moreover, the rational solutions describing the interac-

tion of two such PS states are given by
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ϵ
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2
þ 4Þσξ
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2

; ϕ ¼ expðiπ=3Þ; ð18Þ

and γ1, γ2, and γ3ð≠ 0Þ being three complex constants. As

seen, these solutions, compact yet asymmetrical in form,

are composed of polynomials of degree 4 and can reduce to

the PS solutions (3) when γ3 ¼ 0. They are allowable in

either the anomalous or the normal dispersion regime, as

seen in Figs. 2(a)–2(d). It is exhibited that the two PS

components that constitute a rogue-wave doublet may have

a different peak amplitude during interaction; e.g., for the

specific parameters used in Fig. 2(a), if one component

grows higher than the factor 4, the other one should be

lowered below 4.

Interestingly, the superposition state of two PS compo-

nents can reach a very high peak amplitude under a certain

parameter condition. A typical example is shown in

Figs. 2(e) and 2(f), in which the peak amplitude of the

superposed two-PS state can reach nearly 15 times the

background, for which the initial plane-wave parameters

are the same as in Figs. 1(e) and 1(f), with other parameters

being given in the caption. This unusual peak-amplitude

feature, corresponding to an intensity factor of around 225,

is actually consistent with the rogue-wave anomaly recently

found via a PIC (particle-in-cell) simulations in the

gyrotron microwave turbulence, where the rogue waves

generated could have an intensity factor of 100–150 [36].

Lastly, one may wonder if these unusual PS solutions

could be generated by solving numerically the CFL

FIG. 1. Surface (top) and contour (bottom) plots of the PS

solutions in the anomalous dispersion (σ ¼ 1) regime, normalized

to their respective background heights: (a),(b) ϵ ¼ 1, ω1 ¼ 2=3,
ω2 ¼ 1=3; (c),(d) ϵ ¼ 3=5, ω1 ¼ 820=567, ω2 ¼ 320=567; (e),(f)
ϵ ¼ 1=5, ω1 ¼ 20040=4033, ω2 ¼ 12165=4033.
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equations, in the presence of numerical noise that will favor

the development of MI. In that prospect, we first inspect the

MI gain of the background fields perturbed according to

uj ¼ uj0f1þ pj exp½−iΩðμξ − τÞ� þ q�j exp½iΩðμ�ξ − τÞ�g
(j ¼ 1, 2), wherepj and qj are small parameters andΩ and μ

are assumed to be positive and complex, respectively, as was

done inRef. [12]. Figure 3(a) shows the logarithmic gainmap

lnðγhÞ, where γh ¼ ΩjImðμÞj, versus Ω and ω1 for the PS

solution of factor 4, under the specific parameter conditions

σ ¼ 1, ϵ ¼ 3=5, and ω2 ¼ 5ω1 − 4=ϵ. As ω1 ¼ 820=567,
which corresponds to the analytical solution shown in

Figs. 1(c) and 1(d), the gain maximum is found to be γmax
h ≈

1.026 occurring atΩ ≈ 0.2, as indicated by the blue cross in

Figs. 3(a) and 3(b). This small gainvalue suggests that the PS

structures of such a kindwill be easily generated numerically

despite the competing spontaneous MI, and therefore acces-

sible to the experimental observation.

We have numerically solved Eqs. (1) and (2) to repro-

duce the PS solutions beyond the threefold limit, using the

split-step Fourier and spectral methods [49]. Figure 4

shows the simulation results of a fourfold-amplitude PS

(u1 field) and a dark PS (u2 field), under the same

parameter condition as in Figs. 1(c) and 1(d). It is clear

that the whole PS solution is obtained, at least within the

region indicated by the white dashed line, perfectly con-

sistent with those shown in Figs. 1(c) and 1(d). Soon

afterwards, other periodic waves manifest because of the

inherent spontaneous MI; see those occurring at ξ ¼ 4

in Fig. 4.

Getting closer to realistic experimental conditions, we

then confirm numerically that PS solutions featuring an

unusual peak-amplitude reinforcement can be excited amid

a chaotic background field. To do so, we use the plane-

wave solutions (8) as initial conditions, perturbed by white

noise of a strength of 10−2 [48]. This noisy background

subsequently develops into a “sea” of different waves as

seen in Figs. 5(a) and 5(b), among which one such typical

PS structure could be singled out. For further comparison,

the temporal cross-sectional profiles of the numerical

solutions selected by white circles at ξ ¼ 18 are plotted

in Figs. 5(c) and 5(d), showing an excellent agreement with

the analytical solutions, which confirms our observation

above. In addition, one can estimate the period of MI waves

occurring at ξ ¼ 5 to be around T ¼ 80=3, corresponding

FIG. 2. PS doublets (normalized to background) in either (a),(b)

the anomalous dispersion (σ ¼ 1) or (c),(d) the normal dispersion

(σ ¼ −1) regime, under the parameter conditions ϵ ¼ 3=5,

ω1¼1=ϵ−σ=ð21ϵ3Þ, ω2 ¼ 5ω1 − 4=ϵ, γ1 ¼ 0, γ2 ¼ −10þ 10i,
and γ3 ¼ 1. (e), (f) show the formation of extreme rogue-wave

spikes with γ1 ¼ −1, γ2 ¼ 75i, γ3 ¼ 1, and other parameters being

the same as in Figs. 1(e) and 1(f).

FIG. 4. Simulations of the PS of fourfold amplitude (u1 field)

and the dark PS (u2 field) shown in Figs. 1(c) and 1(d), starting

from ξ ¼ −2 to a longer distance ξ ¼ 4.

FIG. 3. (a) Logarithmic MI gain map [lnðγhÞ] of the PS of

fourfold amplitude and (b) its gain profile γh at ω1 ¼ 820=567,
under the parameter conditions σ ¼ 1, ϵ ¼ 3=5, and ω2 ¼
5ω1 − 4=ϵ. The blue cross corresponds to the case seen in

Figs. 1(c) and 1(d), showing a maximum gain γmax
h ¼ 1.026

at Ω ≈ 0.2.
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to a modulation frequency of Ω ¼ 2π=T ≃ 0.23, which is

also well consistent with our MI analysis shown in Fig. 3.

In conclusion, we reported the discovery of a novel

rogue-wave anomaly in the context of first-order PS

solutions of integrable multicomponent systems. This

contrasts sharply with the generally acknowledged maxi-

mum of threefold peak amplitude associated to the usual PS

solutions, which was ubiquitous among the various inte-

grable models used to date. The salient original features of

our work can be exposed as follows. We have obtained

explicit analytical rogue-wave solutions of the CFL equa-

tions, comprising the PS solutions as well as their two-

soliton interaction solutions. Owing to the spatiotemporal

coupling of the two involved waves in the presence of the

self-steepening effect, the PS solutions can reach a peak

amplitude between 3 and 5 times the background level,

according to the parameters used. We have supported these

analytical predictions by numerical simulations of the

propagation model. This was illustrated by the excitation

of a fourfold-amplitude PS in the presence of realistic noise

on a continuous background. The latter subsequently

developed into a chaotic field among which the PS structure

could be singled out, as a robust pattern, therefore antici-

pating the possibility of experimental observation. Such an

anomaly of rogue-wave creation is not an exception but a

manifestation of novel physical mechanisms that take place

in complex multicomponent nonlinear systems, resulting in

an extreme wave event of higher amplitude [36]. We expect

that our work may spark significant research interest in

generation of rogue waves as well as their anomalies

in birefringent fibers [44], crossing sea states [3,45],

semiconductor planar waveguides [50], and even micro-

wave turbulence [36].
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