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PERELMAN’S ENTROPY AND KÄHLER-RICCI FLOW

ON A FANO MANIFOLD

GANG TIAN, SHIJIN ZHANG, ZHENLEI ZHANG, AND XIAOHUA ZHU

Abstract. In this paper, we extend the method in a recent paper of Tian

and Zhu to study the energy level L(·) of Perelman’s entropy λ(·) for the
Kähler-Ricci flow on a Fano manifold M . We prove that L(·) is independent
of the initial metric of the Kähler-Ricci flow under an assumption that the
modified Mabuchi’s K-energy is bounded from below on M . As an application
of the above result, we give an alternative proof to the main theorem about
the convergence of Kähler-Ricci flow found in a 2007 paper by Tian and Zhu.

0. Introduction

In this paper, we extend the method in [TZhu5] to study the energy level L(·)
of Perelman’s entropy λ(·) for the Kähler-Ricci flow on an n-dimensional compact
Kähler manifold (M,J) with positive first Chern class c1(M) > 0 (namelyM , called
a Fano manifold). We will show that L(·) is independent of initial Kähler metrics
in 2πc1(M) under an assumption that the modified Mabuchi’s K-energy μ(·) is
bounded from below; see Proposition 3.1 in Section 3. The modified Mabuchi’s
K-energy μ(·) is a generalization of Mabuchi’s K-energy. It was showed in [TZhu2]
that μ(·) is bounded from below if M admits a Kähler-Ricci soliton.

The proof of Proposition 3.1 depends on certain asymptotic estimates for mini-
mizing functions (we call ft-functions) defined by Perelman’s W -functional associ-
ated to evolved metrics gt of the Kähler-Ricci flow (cf. Sections 2, 3, 4). We can
compute the exact quantity L(·) = (2π)−n[nV − NX(c1(M))], where NX(c1(M))
is a nonnegative invariant depending only on the Kähler class 2πc1(M) and an
extremal holomorphic vector field X defined for Kähler-Ricci solitons on (M,J).
Moreover, NX(c1(M)) is zero iff the Futaki-invariant vanishes (cf. Lemma 1.3).
The quantity (2π)−n[nV − NX(c1(M))] is in fact the supremum of λ(·) in a class
of KX -invariant Kähler metrics in 2πc1(M) which can be achieved by a Kähler-
Ricci soliton on (M,J) (cf. Corollary 1.5, Corollary 3.2). Here KX denotes a
one-parameter compact subgroup of a holomorphism transformation group of M
generated by X.

As an application of Proposition 3.1, we prove the following convergence result
about Kähler-Ricci flow.
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Theorem 0.1. Let (M,J) be a compact Kähler manifold which admits a Kähler-
Ricci soliton (gKS , X). Then Kähler-Ricci flow with any initial Kähler metric in
KX will converge to a Kähler-Ricci soliton in C∞ in the sense of Kähler potentials.
Moreover, the convergence can be made fast exponentially.

We note that without loss of generality we may assume that a Kähler-Ricci
soliton gKS on M is associated to the above X (cf. [TZhu1], [TZhu2]). Theorem
0.1 was first proved by Tian and Zhu in [TZhu3] by using an inequality of Moser-
Trudinger type established in [CTZ].1 Here we will modify arguments in [TZhu5]
in our general case that (M,J) admits a Kähler-Ricci soliton to give an alternative
proof of Theorem 0.1. This new proof does not use such an inequality of Moser-
Trudinger type. Moreover, in particular, in the case that (M,J) admits a Kähler-
Einstein metric, this new proof allows us to avoid the use of a deep result recently
proved by Chen and Sun in [CS] for the uniqueness of Kähler-Einsteins in the sense
of an orbit space to give a self-contained proof to the Main Theorem in [TZhu5].

The organization of the paper is as follows. In Section 1, we discuss an upper
bound of λ(·) in the general case, without any condition for μ(·), and we show that
the quantity (2π)−n[nV −NX(c1(M))] is an upper bound of λ(·) in KX (cf. Propo-
sition 1.4). In Section 2, we will summarize to give some estimates for modified
Ricci potentials of evolved Kähler metrics along the Kähler-Ricci flow (cf. Propo-
sition 2.3). In Section 3, we prove Proposition 3.1. Theorem 0.1 will be proved in
Section 6. In Section 4, we improve our key Lemma 3.3 in Section 3 independent
of time t (cf. Proposition 4.2). Section 5 is a discussion about an upper bound
of λ(·) in KY for a general holomorphic vector field Y . Section 7, Section 8 and
Section 9 are three appendices about the gradient estimate and Laplace estimate
for ft, a proof of Lemma 6.1, and an a priori estimate about the local regularity of
the Kähler-Ricci flow, respectively.

1. An upper bound of λ(·)
In this section, we first review Perelman’s W -functional for triples (g, f, τ ) on

a closed m-dimensional Riemannian manifold M (cf. [Pe], [TZhu5]). Here g is a
Riemannian metric, f is a smooth function and τ is a constant. In our situation,
we will normalize the volume of g by

(1.1)

∫
M

dVg ≡ V

and so we can fix τ by 1
2 . Then the W -functional depends only on a pair (g, f) and

it can be reexpressed as follows:

W (g, f) = (2π)−m/2

∫
M

[
1

2
(R(g) + |∇f |2) + f ]e−fdVg,(1.2)

where R(g) is a scalar curvature of g and (g, f) satisfies a normalization condition

(1.3)

∫
M

e−fdVg = V.

1We need to add more details about how to use the Moser-Trudinger type inequality in the
general case.
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Then Perelman’s entropy λ(g) is defined by

λ(g) = inf
f
{W (g, f)| (g, f) satisfies (1.3)}.

It is well known that λ(g) can be attained by some smooth function f (cf. [Ro]).
In fact, such an f satisfies the Euler-Lagrange equation of W (g, ·),

(1.4) �f + f +
1

2
(R− |∇f |2) = (2π)m/2V −1λ(g).

Following Perelman’s computation in [Pe], we can deduce the first variation of λ(g),

(1.5) δλ(g) = −(2π)−m/2

∫
M

〈δg,Ric(g)− g +∇2f〉e−fdVg,

where Ric(g) denotes the Ricci tensor of g and ∇2f is the Hessian of f . Hence, g
is a critical point of λ(·) if and only if g is a gradient shrinking Ricci soliton which
satisfies

(1.6) Ric(g) +∇2f = g,

where f is a minimizer of W (g, ·). The following lemma was proved in [TZhu5] for
the uniqueness of solutions (1.4) when g is a gradient shrinking Ricci soliton.

Lemma 1.1. If g satisfies (1.6) for some f , then any solution of (1.4) is equal to
f modulo a constant. Consequently, a minimizer of W (g, ·) is unique if the metric
g is a gradient shrinking Ricci soliton. Conversely, if f is a function in (1.6) for
g, then f satisfies (1.4).

In the case that (M,J) is an n-dimensional Fano manifold, for any Kähler metric
g in 2πc1(M), (1.1) is equal to

(1.7)

∫
M

dVg =

∫
M

ωn
g = (2π)n

∫
M

c1(M)n ≡ V.

Moreover, (1.6) becomes an equation of Kähler-Ricci solitons,

Ric(ωg)− ωg = LXωg,

where Ric(ωg) is a Ricci form of g and LX denotes the Lie derivative along a
holomorphic vector field X on M . By the uniqueness of Kähler-Ricci solitons
[TZhu1], [TZhu2], we may assume thatX lies in a reductive Lie subalgebra ηr(M) of
η(M) after a holomorphism transformation, where η(M) consists of all holomorphic
vector fields on M . Such an X (we call it an extremal holomorphic vector field for
Kähler-Ricci solitons) can be determined as follows.

Let Autr(M) be a connected Lie subgroup of an automorphism group of M
generated by ηr(M). Let K be a maximal compact subgroup of Autr(M). Without
loss of generality, we may choose a K-invariant background metric g with its Kähler
form ωg in 2πc1(M). In [TZhu2], as an obstruction to Kähler-Ricci solitons, Tian
and Zhu introduced a modified Futaki-invariant FX(v) for any X, v ∈ η(M) by

(1.8) FX(Z) =

∫
M

Z(hg − θ̂X,ωg
)eθ̂X,ωgωn

g , ∀ Z ∈ η(M),

where hg is a Ricci potential of g and θ̂X,ωg
is a complex-valued potential of X

associated to g defined by LXωg =
√
−1∂∂̄θ̂X,ωg

with a normalization condition

(1.9)

∫
M

θ̂X,ωg
ehgωn

g = 0.
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It was shown that there exists a unique X ∈ ηr(M) with its real-valued potential

θ̂X,ωg
such that

FX(v) ≡ 0, ∀ v ∈ ηr(M).

Moreover, FX(v) ≡ 0 for any v ∈ η(M) if (M,J) admits a Kähler-Ricci soliton.
LetKX be a one-parameter compact subgroup of a holomorphism transformation

group generated by X. We denote KX to be a class of KX -invariant Kähler metrics
in 2πc1(M). Let θX,ωg

be a real-valued potential of X associated to g with a
normalization condition

(1.10)

∫
M

eθX,ωgωn
g =

∫
M

ωn
g = V.

Clearly, θX,ωg
= θ̂X,ωg

− cX for some constant cX which is independent of g ∈ KX .

Definition 1.2. For g ∈ KX , define NX(ωg) by

NX(ωg) =

∫
M

θX,ωg
eθX,ωgωn

g .

By Jensen’s inequality, it is easy to see

1

V

∫
M

(−θX,ωg
)eθX,ωgωn

g

≤ log{ 1

V

∫
M

e−θX,ωg eθX,ωgωn
g } = 0.

The equality holds if and only if θX,ωg
= 0. This shows that NX(ωg) is nonnegative

and it is zero if and only if the Futaki-invariant vanishes [Fu]. Moreover, we have

Lemma 1.3. NX(ωg) is independent of the choice of g in KX .

Proof. Choose a K-invariant Kähler form ω in 2πc1(M). Then for any Kähler
metric g in KX there exists a Kähler potential ϕ such that the imaginary part of
X(ϕ) vanishes and the Kähler form of g satisfies

ωg = ωϕ = ω +
√
−1∂∂̄ϕ.

Thus we suffice to prove

NX(ωϕ) = NX(ωtϕ), ∀ t ∈ [0, 1],

where ωtϕ = ω + t
√
−1∂∂̄ϕ. This follows from

dNX(ωtϕ)

dt
=

∫
M

X(ϕ)eθX,ωtϕωn
tϕ +

∫
M

θX,ωtϕ
(X +�)(ϕ)eθX,ωtϕωn

tϕ

=

∫
M

X(ϕ)eθX,ωtϕωn
tϕ −

∫
M

∇iϕ∇īθX,ωtϕ
ωn
tϕ

= 0.

Here we have used the fact

θX,ωtϕ
= θX,ωg

+ tX(ϕ).

�

By the above lemma, NX(·) is an invariant on KX , which is independent of the
choice of g. For simplicity, we denote this invariant by NX(c1(M)). The following
proposition gives an upper bound of λ(·) in KX related to NX(c1(M)).
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Proposition 1.4.

sup
g∈KX

λ(g) ≤ (2π)−n[nV −NX(c1(M))].

Proof. Since λ(g) ≤ W (g,−θX,ωg
), we suffice to prove

(1.11) W (g,−θX,ωg
) = (2π)−n[nV −NX(c1(M))].

In fact, by using the facts R(g) = 2n+Δhg and

∫
M

(ΔθX,ωg
+ |∇θX,ωg

|2)eθX,ωgωn
g = 0,

we have ∫
M

(R(g) + |∇θX,ωg
|2)eθX,ωgωn

g

= 2nV +

∫
M

(Δhg −ΔθX,ωg
)eθX,ωgωn

g

= 2nV −
∫
M

〈∇(hg − θX,ωg
),∇θX,ωg

〉eθX,ωgωn
g

= 2nV − 2

∫
M

X(hg − θX,ωg
)eθX,ωgωn

g

= 2nV − 2e−cXFX(X).

In the last equality above, we used the relation (1.8). Since X is extremal, we have

FX(X) = 0.

Thus by (1.2) for f = −θX,ω, together with Lemma 1.3, one will get (1.11). �

In the case thatM admits a Kähler-Ricci soliton gKS , by Lemma 1.1, a minimizer
f of W (gKS, ·) in KX must be −θX . Thus for any g ∈ KX , by Proposition 1.4, we
have

λ(gKS) = W (gKS,−θX)

= (2π)−n[nV −NX(c1(M))] ≥ λ(g).

Therefore we get the following corollary.

Corollary 1.5. Suppose that (M,J) admits a Kähler-Ricci soliton gKS. Then gKS

is a global maximizer of λ(·) in KX and

(1.12) λ(gKS) = (2π)−n[nV −NX(c1(M))].

Remark 1.6. Corollary 1.5 implies that a Kähler-Einstein metric is a global max-
imizer of λ(·) in 2πc1(M), even with varying complex structures and a supremum
of λ(·) (2π)−nnV since NX(c1(M)) = 0. Note that NX(c1(M)) > 0 if the Futaki-
invariant does not vanish. Thus Corollary 1.5 also implies that the supremum of
λ(·) in the case that (M,J) admits a Kähler-Ricci soliton is strictly less than one
in the case that (M,J) admits a Kähler-Einstein metric.
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2. Estimates for modified Ricci potentials

In this section, we summarize some a priori estimates for modified Ricci poten-
tials of evolved Kähler metrics along the Kähler-Ricci flow. Some similar estimates
have also been discussed in [TZhu3] and [PSSW]; we refer the readers to those two
papers. We consider the following (normalized) Kähler-Ricci flow:

(2.1)
∂g(t, ·)

∂t
= −Ric(g(t, ·)) + g(t, ·), g(0) = g,

where g is an initial Kähler metric with its Kähler form in 2πc1(M). It was proved
in [Ca] that (2.1) has a global solution gt = g(t, ·) for all time t > 0. For simplicity,
we denote by (gt; g) a solution of (2.1) with the initial metric g. Since the flow
preserves the Kähler class, we may write the Kähler form of gt as

ωφ = ωg +
√
−1∂∂φ

for some Käher potential φ = φt.
Let X ∈ ηr(M) be the extremal holomorphic vector field on M as in Section 1

and σt = exp{tX} be a one-parameter subgroup generated by X. Let φ′ = φσt

be the corresponding Kähler potentials of σ�
t ωφt

. Then ωφ′ will satisfy a modified
Kähler-Ricci flow,

(2.2)
∂

∂t
ωφ′ = −Ric(ωφ′) + ωφ′ + LXωφ′ .

Equation (2.2) is equivalent to the following Monge-Ampère flow for φ′ (modulo a
constant):

(2.3)
∂φ′

∂t
= log

ωn
φ′

ωn
g

+ φ′ + θX,ωφ′ − hg, φ′(0, ·) = c,

where c is a constant and all Kähler potentials φ′ = φ′
t = φ′(t, ·) are in a space

given by

PX(M,ω) = {ϕ ∈ C∞(M)| ωϕ = ω +
√
−1∂∂ϕ > 0, Im(X(ϕ)) = 0}.

By using the maximum principle to (2.2) or (2.3), we get

(2.4) hφ′ − θX,ωφ′ = − ∂

∂t
φ′ + ct,

for some constants ct. Here hφ′ are Ricci potentials of ωφ′ which are normalized by

(2.5)

∫
M

ehφ′ωn
φ′ = V.

The following estimates are due to G. Perelman. We refer the readers to [ST] for
their proof.

Lemma 2.1. There are constants c > 0 and C > 0 depending only on the ini-
tial metric g such that (a) diam(M,ωφ′) ≤ C; (b) vol(Br(p), ωφ′) ≥ cr2n; (c)
‖hφ′‖C0(M) ≤ C; (d) ‖∇hφ′‖ωφ′ ≤ C; (e) ‖Δhφ′‖C0(M) ≤ C.

Recall that the modified Mabuchi’s K-energy μ(·) is defined in PX(M,ω) by

μ(ϕ) = − n

V

∫ 1

0

∫
M

ψ̇[Ric(ωψ)− ωψ −
√
−1∂∂θX,ωψ

+
√
−∂(hωψ

− θX,ωψ
) ∧ ∂θX,ωψ

] ∧ eθX,ωψωn−1
ψ ∧ dt,
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where ψ = ψt (0 ≤ t ≤ 1) is a path connecting 0 to ϕ in PX(M,ω). If X = 0, then
μωg

(φ) is nothing but Mabuchi’s K-energy [Ma]. Then by (2.2), we have

(2.6)
dμ(φ′)

dt
= − 1

V

∫
M

‖∂ ∂φ
′

∂t
‖2ωφ′ e

θX,ω
φ′ (ωφ′)n ≤ 0.

This implies that μ(φ′) is uniformly bounded if μ(·) is bounded from below in
PX(M,ω).

Let uX,φ′ = uX,ωg′t
= hφ′ − θX,ωφ′ . Then

Lemma 2.2. There exists a uniform C such that

‖∇uX,φ′‖ωφ′ ≤ C.

Proof. First we note that θX,ωφ′ is uniformly bounded in PX(M,ω) [Zhu1], [ZZ].

Then by (c) of Lemma 2.1, we have

‖uX,φ′‖C0 = ‖uX,ωg′s
‖C0 ≤ C, ∀ s > 0

for some uniform constant C. Now we consider the flow (2.3) with zero as an
initial Kähler potential and the background Kähler form ωg replaced by ωg′

s
. By

an estimate in Lemma 4.3 in [CTZ], we see

t‖∇uX,ωg′
s+t

‖2ωg′
s+t

≤ e2t‖uX,ωg′s
‖C0 , ∀ t > 0.

In particular, we get

‖∇uX,ωg′
s+t

‖2ωg′
s+t

≤ C ′, ∀ t ∈ [1, 2].

Since the above estimate is independent of s, we conclude that the lemma is true.
�

Now we begin to prove the main result in this section.

Proposition 2.3. Suppose that μ(·) is bounded from below in PX(M,ω). Then we
have:

(a) limt→∞ ||uX,φ′ ||C0 = 0;
(b) limt→∞ ||∇uX,φ′ ||ωφ′ = 0;

(c) limt→∞ ||�uX,φ′ ||C0 = 0.

Proof. Let H(t) =
∫
M

|∇uX,ω′
gt
|2eθX,ω′

gt ωn
g′
t
. Then, by (2.6), one sees that there

exists a sequence of ti ∈ [i, i+ 1] such that

lim
i→∞

H(ti) = 0.

Thus by using a differential inequality

dH(t)

dt
≤ CH(t),

where C is a uniform constant (cf. [PSSW]), we get

(2.7) lim
t→∞

∫
M

|∇uX,ωg′t
|2g′

t
e
θX,ω

g′t ωn
g′
t
= 0.

Let

ũt = uX,ωg′t
− 1

V

∫
M

uX,ωg′t
eh

′
tωn

g′
t
,
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where h′
t = hφ′(t,·). Then by using the weighted Poincaré inequality in [TZhu3]

together with (c) of Lemma 2.1, we obtain from (2.7),
∫
M

ũ2
t e

h′
tωn

g′
t
≤

∫
M

|∇uX,ωg′t
|2g′

t
eh

′
tωn

g′
t
→ 0, as t → ∞.

Consequently, we derive

(2.8) lim
t→∞

∫
M

ũ2
tω

n
g′
t
= 0.

We claim

lim
t→∞

‖ũt‖C0 = 0.

The claim immediately implies (a) of Proposition 2.3 by the normalization condi-
tions ∫

M

e
θX,ω

g′t ωn
g′
t
=

∫
M

eh
′
tωn

g′
t
= V.

To prove the claim, we need to use an inequality

(2.9) ‖ũt‖n+1
C0 ≤ C‖∇uX,ωg′t

‖ng′
t
[

∫
M

ũ2
tω

n
g′
t
]
1
2 .

(2.9) can be proved by using the noncollapsing estimate (b) in Lemma 2.1 (cf.
[PSSW], [Zhu2]). Thus by Lemma 2.2 and (2.8), the claim is proved.

By (a) we can show that after a suitable choice of constant c in the flow (2.3) it
holds that

lim
t→∞

‖ ∂

∂t
φ′‖C0 = 0.

In fact, under the assumption of a lower bound of modified K-energy, one can
choose such a c (cf. [TZhu3]) such that

lim
t→∞

∫
M

∂

∂t
φ′e

θX,ωφ′ ωn
φ′ = 0.

Then, by (2.4), we will get the conclusion. On the other hand, by Lemma 2.2 and
(d) of Lemma 2.1, we have

sup
t∈[0,∞)

‖X‖g′
t
< C

for some uniform constant C. Therefore, by using the following lemma we prove
(b) and (c). �

Lemma 2.4 ([PSSW]). There exist δ,K > 0 depending only on n and the constant
CX = supt∈[0,∞) ‖X‖g′

t
with the following property. For ε with 0 < ε ≤ δ and any

t0 > 0, if

‖∂φ
′

∂t
‖C0(t0) ≤ ε,

then

‖∇uX,ωg′
t0+2

‖2g′
t0+2

+ ‖ΔuX,ωg′
t0+2

‖C0 ≤ Kε.
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3. Estimate for L(·)
According to [TZhu5], the energy level L(g) of entropy λ(·) for the Kähler-Ricci

flow (gt; g) is defined by
L(g) = lim

t→∞
λ(gt).

By the monotonicity of λ(gt), we see that L(g) exists and is finite. In this section,
our goal is to prove

Proposition 3.1. Suppose that the modified Mabuchi’s K-energy is bounded from
below in KX . Then for any g ∈ KX ,

(3.1) L(g) = (2π)−n(nV −NX(c1(M)).

Proposition 3.1 shows that L(g) does not depend on the initial Kähler metric
g ∈ KX . Thus by using the Kähler-Ricci flow (gt; g) for any Kähler metric g ∈ KX

and the monotonicity of λ(gt), we get the following generalization of Corollary 1.5.

Corollary 3.2. Suppose that the modified Mabuchi’s K-energy is bounded from
below. Then

(3.2) sup{λ(g′)| g′ ∈ KX} = (2π)−n[nV −NX(c1(M))].

To prove Proposition 3.1, we need the following key lemma.

Lemma 3.3. Let ft be a minimizer of the W (gt, ·)-functional associated evolved
Kähler metric gt of (2.1) at time t and ht a Ricci potential of gt which satisfies the
normalization (2.5). Then there exists a sequence of ti ∈ [i, i+ 1] such that

(a) limti→∞ ‖Δ(fti + hti)‖L2(M,ωgti
) = 0;

(b) limti→∞ ‖∇(fti + hti)‖L2(M,ωgti
) = 0;

(c) limti→∞ ‖fti + hti‖C0 = 0.

Proof. Lemma 3.3 is a generalization of Proposition 4.4 in [TZhu5]. We will follow
the argument there. First, by (1.5), it is easy to see that

d

dt
λ(gt) = (2π)−n

∫
M

|Ric(gt)− gt +∇2ft|2gte
−ftωn

gt .

It follows that
d

dt
λ(gt) ≥ (2π)−n 1

2n

∫
M

|�(ht + ft)|2e−f(t)ωn
gt .

Since λ(gt) ≤ W (gt, 0) = (2π)−nnV are uniformly bounded, we see that there exists
a sequence of ti ∈ [i, i+ 1] such that

lim
i→∞

∫
M

|�(hti + fti)|2e−ftiωn
gti

= 0.

Note that ft is uniformly bounded [TZhu5]. Hence we see that that (a) of the
lemma is true. By (a), we also get

lim
ti→∞

‖∇(fti + hti)‖L2(M,ωgti
)

≤ lim
ti→∞

∫
M

|fti + hti ||�(fti + hti)|ωn
gti

≤ C lim
ti→∞

‖Δ(fti + hti)‖L2(M,ωgti
) = 0.

(3.3)

This proves (b) of the lemma. It remains to prove (c).
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Let qt = ft + ht. Then

−Δqt = −Δft −Δht

= ft +
1

2
(R− |∇ft|2)− (2π)2nV −1λ(gt)−Δht ≤ C.

(3.4)

Define
q̃t = qt − c(t),

where c(t) = 1
V

∫
M

qte
htωn

gt . By using the weighted Poincaré inequality [TZhu3],
we have ∫

M

q̃t
2ehtωn

gt ≤
∫
M

|∇qt|2ehtωn
gt .

It follows by (b) that

(3.5) lim
i→∞

∫
M

q̃2tiω
n
gti

= 0.

Hence, following an argument in the proof of Proposition 4.4 in [TZhu5], we will
get estimates

(3.6) ‖q̃ti+‖C0 ≤ C‖q̃ti‖L2(M,ωgti
) → 0, as i → ∞

and

(3.7) lim
i→∞

∫
M

q̃ti
−ωn

gti
= 0,

where q+t = max{qt, 0} and q−t = min{qt, 0}. Consequently, we derive

lim
i→∞

∫
M

q̃tie
−ftiωn

gti
= 0.

On the other hand, by (3.6) and (3.7), one sees that for any ε > 0

lim
i→∞

mesEi(ε) = 0,

where Ei(ε) = {x ∈ M | |q̃ti | ≥ ε} and mesEi(ε) =
∫
Ei(ε)

ωn
gti

. Then by the nor-

malization
∫
M

e−ftωn
gt =

∫
M

ehtωn
gt = V and the fact that ft and gt are uniformly

bounded, it is easy to prove that

lim
i→∞

c(ti) = 0.

This implies

(3.8) lim
i→∞

∫
M

qtie
−ftiωn

gti
= 0.

Next we improve (3.8) to

(3.9) lim
i→∞

‖qti‖C0 = 0.

Let ut = e−
ft
2 − e

ht
2 . We claim

(3.10) lim
i→∞

‖uti‖L2(M,ωgti
) = 0.

In fact, by Jensen’s inequality and (3.8), one sees

1

V

∫
M

e−
fti
2 e

hti
2 ωn

gti
=

1

V

∫
M

e
fti

+hti
2 e−ftiωn

gti

≥ e
1

2V

∫
M

(fti+hti)
e
−ftiωn

gti → 1, as i → ∞.
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On the other hand,∫
M

e−
ft
2 e

ht
2 ωn

gt ≤ (

∫
M

e−ftωn
gt)

1
2 (

∫
M

ehtωn
gt)

1
2 = V.

Hence

lim
i→∞

∫
M

e−
fti
2 e

hti
2 ωn

gti
= V.

It follows that

lim
i→∞

∫
M

u2
tiω

n
gti

= 2V − 2 lim
i→∞

∫
M

e−
fti
2 e

hti
2 ωn

gti
= 0.

This completes the proof of the claim.
Since equation (1.4) is equivalent to

(3.11) Δvt −
1

2
ftvt −

1

4
R(gt)vt =

1

2V
(2π)nλ(gt)vt,

where vt = e
−ft
2 , by Lemma 2.1, it is easy to see that

|Δut| ≤ C.

Then by the standard Moser’s iteration, we get from (3.10) that

‖uti‖C0 ≤ C‖uti‖L2(M,ωgti
) → 0, as i → ∞.

This implies (3.9), so we prove (c) of the lemma. �

Proof of Proposition 3.1. Note that R(gt)
2 = n + 1

2Δht, where Δ is the Beltrima-
Laplacian operator associated to the Riemannian metric gt. Then∫

M

1

2
(R(gt) + |∇ft|2)e−ftdVgt = nV +

1

2

∫
M

Δ(ft + ht)e
−ftdVgt .

Thus by (a) of Lemma 3.3, one sees that there exists a sequence of time ti such
that

(3.12) lim
i→∞

∫
M

1

2
(R(gti) + |∇fti |2)e−ftidVgti

= nV.

On the other hand, since the modified Mabuchi’s K-energy is bounded from below,
we see that (a) of Proposition 2.3 is true. Then by (c) of Lemma 3.3, it follows that

(3.13) lim
i→∞

‖fti + θX,ωgti
‖C0 = 0.

Here we used the fact σ�
t θX,ωgt

= θX,ωg′t
(cf. Section 2) since X lies in the center

of ηr(M) [TZhu1]. Hence

lim
i→∞

∫
M

ftie
−ftidVgti

= − lim
i→∞

∫
M

θX,ωgti
e
θX,ωgti ωn

gti
= −NX(c1(M)).

(3.14)

By combining (3.12) and (3.14), we get

lim
i→∞

λ(gti) = lim
i→∞

∫
M

[
1

2
(R(gti) + |∇fti |2) + fti ]e

−ftidVgti

= nV −NX(c1(M)).

Therefore, by using the monotonicity of λ(gt) along the flow (gt; g), we obtain
(3.1). �
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It was showed in [TZhu4] that a Kähler-Ricci soliton is a local maximizer of λ(·)
in the Kähler class 2πc1(M). Using this together with Corollary 1.5, one may guess
that a Kähler-Ricci soliton is a global maximizer of λ(·). More generally, according
to Corollary 3.2, we propose the following conjecture.

Conjecture 3.4. Suppose that the modified Mabuchi’s K-energy is bounded from
below. Then

sup
ωg′∈2πc1(M)

λ(g′) = (2π)−n[nV −NX(c1(M))].

4. Improvement of Lemma 3.3

In this section, we use Perelman’s backward heat flow to improve the estimates
(b) and (c) in Lemma 3.3 independent of t. Moreover, we show that the gradient
estimate of ft + ht also holds. Although Lemma 3.3 is sufficient to be applied to
prove Proposition 3.1 and Theorem 0.1, results of this section are independent of
interests. We hope that these results will have applications in the future.

Fix any t0 ≥ 1. We consider a backward heat equation in t ∈ [t0 − 1, t0],

(4.1)
∂

∂t
ft0(t) = −�ft0(t) + |∇ft0(t)|2 −�ht,

with an initial ft0(t0) = ft0 . Clearly, the equation preserves the normalizing condi-
tion 1

V

∫
M

e−ft0 (t)ωn
gt = 1. Moreover, since �ht and ft are uniformly bounded, by

the maximum principle, we have

(4.2) ‖ft0(t)‖C0 ≤ C(g), ∀ t ∈ [t0 − 1, t0].

Here the constant C(g) depends only on the initial metric g of (2.1).
Similarly to (1.5), we can compute

d

dt
W (gt, ft0)

= (2π)−n

∫
M

(|∂∂(ht + ft0(t))|2 + |∂∂ft0(t)|2)e−ft0(t)ωn
gt
.

(4.3)

By using (4.3), we want to prove

Lemma 4.1.

(4.4) ‖ft + ht − ct‖L2(M,gt) → 0, as t → ∞,

where ct =
1
V

∫
M
(ft + ht)e

htωn
gt .

Proof. First, by (4.3), one sees

λ(gt0)− λ(gt0−1) ≥ W (gt0 , ft0(t0))−W (gt0−1, ft0(t0 − 1))

≥ (2π)−n 1

2n

∫ t0

t0−1

∫
M

|�(ft0(t) + ht)|2e−ft0 (t)ωn
gtdt.

It follows that ∫ t0

t0−1

∫
M

|�(ft0(t) + ht)|2ωn
gtdt → 0, as t0 → ∞.
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Thus by using the weighted Poincaré inequality as in (3.4) in the last section, we
will get ∫ t0

t0−1

dt

∫
M

(ft0(t) + ht − ct0(t))
2ωn

gt

≤ C(g0)[

∫ t0

t0−1

dt

∫
M

|�(ft0(t) + ht)|2ωn
gt ]

1/2 → 0, as t0 → ∞,

(4.5)

where ct0(t) =
1
V

∫
M
(ft0(t) + ht)e

htωn
gt .

Next, since dht

dt = Δht+ht−at, where at =
1
V

∫
M

hte
htωn

gt , by a straightforward
calculation, we see

d

dt

∫
M

(ht + ft0(t)− ct0(t))
2ωn

gt

=

∫
M

[2(ht + ft0(t)− ct0(t))(�ft0 − |∇ft0(t)|2 + ht − at −
dct0
dt

)

− (ht + ft0(t)− ct0(t))
2�ht]ω

n
gt .

Then, by Lemma 2.1, we get

| d
dt

∫
M

(ht + ft0(t)− ct0)
2ωn

gt |

≤ C + C

∫
M

(
|�(ft0(t) + ht)|+ |∇ft0(t)|2 + |dct0(t)

dt
|
)
ωn
gt

≤ C + C

∫
M

(
|∇∇̄(ft0(t) + ht)|2 + |dct0(t)

dt
|
)
ωn
gt .

In this section, we will always denote C to be a uniform constant which may be
different in different places. Notice that

dct0
dt

=
1

V

∫
M

[�ft0(t)− |∇ft0(t)|2 − (ht + ft0(t))(ht + at)]e
htωn

gt .

We can also estimate

|dct0
dt

| ≤ C + C

∫
M

|∇∇̄(ft0(t) + ht)|2ωn
gt .

Hence we derive
∣∣ d
dt

∫
M

(ft0(t) + ht − ct0(t))
2dv

∣∣

≤ C + C

∫
M

|∇∇̄(ft0(t) + ht)|2ωn
gt .

(4.6)

Therefore, according to∫ t0

t0−1

dt

∫
M

|∇∇̄(ft0(t) + ht)|2e−ft0 (t)ωn
gt

≤ (2π)n(λ(gt0)− λ(gt0−1)) → 0, as t0 → ∞,

(4.5) and (4.6) will imply

‖ft0(t) + ht − ct0(t)‖L2(gt,M) → 0, as t0 → ∞, ∀ t ∈ [t0 − 1, t0].

Consequently, we get (4.4). �
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Proposition 4.2.

(4.7) ‖ft + ht‖C0 + ‖∇(ft + ht)‖gt → 0, as t → ∞.

Proof. With the help of Lemma 4.1, by using the same argument in the proof of
(c) in Lemma 3.3, we can prove that

(4.8) ‖ft + ht‖C0 → 0, as t → ∞.

So we suffice to prove

(4.9) ‖∇(ft + ht)‖gt → 0, as t → ∞.

We will use Moser’s iteration to obtain (4.9) as in Lemma 7.2 in Appendix 1. We
note by (4.8) and Theorem 7.1 in Appendix 1 that

(4.10)

∫
M

|∇qt|2ωn
gt = |

∫
M

−Δ(ft + ht)(ft + ht)ω
n
gt | ≤ C‖ft + ht‖C0 → 0,

where qt = ft + ht satisfies the equation

�qt =
1

2
(|∇ft|2 − 2ft +�ht) + (2π)nV −1λ(gt)− n.

Let wt = |∇qt|2. Then, by the Bochner formula, we have

�wt = |∇∇qt|2 + |∇∇̄qt|2 +∇i�qt∇īqt +∇ī�qt∇iqt +Rij̄∇īqt∇jqt.

Hence for any p ≥ 2, it follows that

4(p− 1)

p2

∫
M

|∇w
p/2
t |2ωn

gt = −
∫
M

wp−1
t �qtω

n
gt

= −
∫
M

wp−1
t (|∇∇qt|2 + |∇∇̄qt|2)ωn

gt

− 2Re

∫
M

qp−1
t ∇i�qt∇īqtω

n
gt
−
∫
M

qp−1
t Rij̄∇īqt∇jqtω

n
gt
.

(4.11)

On the other hand, by Lemma 2.1 and Theorem 7.1, we estimate

− 2Re

∫
M

wp−1
t ∇i�qt∇īwtω

n
gt

= −Re

∫
M

wq−1
t ∇i(|∇ft|2 − 2f +�ht)∇īqtω

n
gt

= −Re

∫
M

(|∇ft|2 − 2ft +�ht)(
2(p− 1)

p
w

p
2−1
t ∇iw

p/2
t ∇īqt + wq−1

t �qt)ω
n
gt

≤ C(g)[

∫
M

2(p− 1)

p
w

p−1
2

t |∇w
p/2
t |ωn

gt +

∫
M

wp−1
t |�qt|]ωn

gt

≤ p− 1

p2

∫
M

|∇wp/2|2ωn
gt + C(g)′p

∫
M

wp−1ωn
gt

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



PERELMAN’S ENTROPY AND KÄHLER-RICCI FLOW 6683

and

−
∫
M

wp−1
t Rij̄∇īqt∇jqtω

n
gt

= −
∫
M

wp
tω

n
gt −

∫
M

wp−1
t ∇i∇j̄ht∇īqt∇jqtω

n
gt

= −
∫
M

wp
tω

n
gt +

∫
M

wp−1
t ∇j̄ht(∇īqt∇i∇jqtω

n
gt +�qt∇jqt)ω

n
gt

+
2(p− 1)

p

∫
M

w
p
2−1
t ∇iw

p/2
t ∇j̄ht∇īqt∇jqω

n
gt

≤
∫
M

wp−1
t (|∇∇qt|2 +

1

2
|∇∇̄qt|2)ωn

gt +
p− 1

p2

∫
M

|∇w
p/2
t |2ωn

gt

+ C(g)(p− 1)

∫
M

wp
tω

n
gt .

Then substituting the above two inequalities into (4.11), we get∫
M

|∇w
p/2
t |2ωn

gt
≤ C(g)(p− 1)2

∫
M

wp−1
t ωn

gt
, ∀ p ≥ 2.

By using Zhang’s Sobolev inequality [Zha], we deduce

( ∫
M

wpν
t

)1/ν
ωn
gt ≤ C(g)Cs(q − 1)2

∫
M

wp−1
t ωn

gt , ∀ p ≥ 2,(4.12)

where ν = n
n−1 . To run the iteration we put p0 = 1 and pk+1 = pkν + ν, k ≥ 0.

Hence

‖wt‖Lpk+1 ≤ (CCs)
1

pk+1 p
2

pk+1

k ‖w‖
pk

pk+1

Lpk

≤ (CCs)
∑i=k

i=0
νk−i

pk+1

i=k∏
i=0

p
2νk−i

pk+1

i ‖wt‖
∏ pi

pi+1

L1

≤ C(n, g)C
n
2
s ‖wt‖γ(n)L1

for a constant γ(n) depending only on n, where we have used the fact that pk ≤ 2νk

for k ≥ 1. Therefore by (4.10) we prove

‖wt‖C0 ≤ C(n, g)C
n
2
s ‖wt‖γ(n)L1 → 0, as t → ∞.

�

5. Another version of NX(ωg)

Let Y ∈ ηr(M) so that Im(Y ) generates a one-parameter compact subgroup of
K. Denote KY to be a class of KY -invariant Kähler metrics in 2πc1(M). Then
according to the proof of Proposition 1.4, we actually prove

sup
g∈KY

λ(g) ≤ (2π)−n[nV − F̃Y (Y )−NY (c1(M))],(5.1)

where

F̃Y (Y ) =

∫
M

Y (hg − θY,ω)e
θY,ωgωn

g

and

NY (c1(M)) =

∫
M

θY,ωg
eθY,ωgωn

g

are both holomorphic invariants of M . In this section, we want to show
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Proposition 5.1. Let H(Y ) = F̃Y (Y ) +NY (c1(M)). Then

sup
Y ∈ηr(M)

H(Y ) = NX(c1(M)),

where X is the extremal vector field determined in Section 1.

Proof. Choose a constant cY so that θ̂Y,ωg
= θY,ωg

+ cY satisfies a normalization
condition ∫

M

θ̂Y,ωg
ehgωn

g = 0.(5.2)

Then θ̂Y,ωg
satisfies the equation

Δθ̂X,ωg
+X(hg) + θ̂X,ωg

= 0.

Thus using integration by parts, we have

F̃Y (Y ) +

∫
M

θ̂Y,ωg
eθY,ωgωn

g = 0.

It follows that

(5.3) H(Y ) = −cY V =

∫
M

θY,ωg
ehgωn

g .

We compute the first variation of H(Y ) in ηr(M). By the definition of θY+tY ′ ,
we see that there exist constants b(t) such that θY+tY ′ = θY + tθY ′ + b(t). Since∫
M

eθY +tY ′ωn
g = V , we have

e−b(t) =
1

V

∫
M

eθY +tθY ′ωn
g .

Thus we get

(5.4)
dH(Y + tY ′)

dt
|t=0 =

∫
M

θY ′ehgωn
g −

∫
M

θY ′eθY ωn
g = F̃Y (Y

′).

Therefore, by [TZhu2], we see that there exists a unique critical X ∈ ηr(M) of H(·)
such that

(5.5) F̃X(Y ′) = FX(Y ′) ≡ 0, ∀ Y ′ ∈ ηr(M).

Similarly, we have

θtY+(1−t)Y ′ = tθY + (1− t)θY ′ + b(t)′, ∀ t ∈ [0, 1]

for some constants b(t)′. Then

V =

∫
M

eθtY +(1−t)Y ′ωn
g = eb(t)

′
∫
M

etθY +(1−t)θY ′ωn
g

≤ eb(t)
′
[t

∫
M

eθY ωn
g + (1− t)

∫
M

eθY ′ωn
g ]

= eb(t)
′
V.

Thus b(t)′ ≥ 0. Consequently

H(tX + (1− t)Y ) ≥ tH(X) + (1− t)H(Y ).

This means that H(·) is a concave functional on ηr(M). It follows that X is a
global maximizer of H(·). Therefore we prove the proposition by using the fact
that H(X) = NX(c1(M)). �
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Corollary 5.2. Let KK be a class of K-invariant Kähler metrics in 2πc1(M).
Suppose that

sup
g∈KK

λ(g) < inf
Y ∈ηr(M)

(2π)−n[nV − FY (Y )−NY (c1(M))].(5.6)

Then (M,J) could not admit any Kähler-Ricci soliton. Furthermore, the modified
Mabuchi’s K-energy could not be bounded from below.

Proof. The first part of the corollary follows from Proposition 5.1 and Corollary
1.5. The second part follows from Proposition 5.1 and Corollary 3.2. �

The above corollary gives a new obstruction to the existence of Kähler-Ricci
solitons.

6. Proof of Theorem 0.1

In this section, we will modify the proof of the Main Theorem in [TZhu5] to
prove Theorem 0.1. The proof in [TZhu5] depends on a generalized uniqueness
theorem for Kähler-Einsteins recently proved by Chen and Sun in [CS]. Here we
avoid using Chen-Sun’s theorem so that we can generalize the proof to the case of
Kähler-Ricci solitons by applying Proposition 3.1.

As in [TZhu5], we write an initial Kähler form ωg of Kähler-Ricci flow (2.2) by

ωg = ωϕ = ωgKS
+
√
−1∂∂ϕ ∈ 2πc1(M)

for a Kähler potential ϕ on M . We define a path of Kähler forms

ωgs = ωsϕ = ωgKS
+ s

√
−1∂∂ϕ

and set

I = {s ∈ [0, 1]| (gst ; gs) converges to a Kähler-Ricci soliton

exponentially in C∞ in the sense of Kähler potentials}.

Clearly, I is not empty by the assumption of the existence of Kähler-Ricci solitons
on M . We want to show that I is in fact both open and closed. Then it follows
that I = [0, 1]. This will finish the proof of Theorem 0.1.

The openness of I is related to the following stability theorem of Kähler-Ricci
flow, which was proved in [Zhu2].

Lemma 6.1. Let (M,J) be a compact Kähler manifold which admits a Kähler-Ricci
soliton (gKS , X). Let ψ be a Kähler potential of a KX-invariant initial metric g of
(2.2). Then there exists a small ε such that if

‖ψ‖C3(M) ≤ ε,

the solution g(t, ·) of (2.2) converges to a Kähler-Ricci soliton with respect to X in
C∞ in the sense of Kähler potentials. Moreover, the convergence can be made fast
exponentially.

For the convenience of the readers, we will give another proof to Lemma 6.1 in
Appendix 2 by using a similar argument in the proof of closedness of I later in this
section. We also note that Lemma 6.1 is still true if the KX -invariant condition is
removed for the initial metric g [Zhu2]. But we do not know whether or not the
convergence is exponentially fast.
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Proof of openness of I. Suppose that s0 ∈ I. Then by the uniqueness of Kähler-
Ricci solitons [TZhu1], the flow (gs0t ; gs0) converges to gKS after a holomorphism
transformation in Autr(M). Namely, there exists a σ ∈ Autr(M) such that
σ�ωg

s0
t

= ωKS +
√
−1∂∂(φs0

t )σ with property

‖(φs0
t )σ‖Ck(M) ≤ Cke

−αkt,

where Ck, αk > 0 are two uniform constants. Then we can choose T sufficiently
large such that

‖(φs0
T )σ‖C3(M) <

δ

2
,

where δ is the small number determined in Lemma 6.1. Since the Kähler-Ricci flow
is stable in any fixed finite time, there is a small ε > 0 such that

‖φ̂s
T − (φs0

T )σ‖C3(M) <
δ

2
, ∀ s ∈ [s0, s0 + ε],

where φ̂s
T is a Kähler potential of the evolved Kähler metric ĝsT of the Kähler-Ricci

flow (ĝst ;σ
�gs) at time T . Hence, we have

‖φ̂s
T ‖C3(M) < δ, ∀ s ∈ [s0, s0 + ε].(6.1)

Then the flow (gt; ĝ
s
T ) with initial ĝsT will converge to a Kähler-Ricci soliton expo-

nentially in C∞ according to Lemma 6.1. Consequently, the flow (gst ; g
s) converges

to a Kähler-Ricci soliton exponentially. This shows s ∈ I for any s ∈ [s0, s0+ε]. �
Let φs

t be a family of Kähler potentials of the evolved Kähler metric gst of the
Kähler-Ricci flow (gst ; g

s). To make the potentials φs
t smaller so that they can be

controlled, we need the following lemma, which was proved in [TZhu1].

Lemma 6.2. Let M be a compact Kähler manifold which admits a Kähler-Ricci
soliton (gKS , X). Let ϕ be a KX-invariant Kähler potential and ϕγ = γ�ϕ + ργ
for any γ ∈ Autr(M), where ργ is defined by γ�ωKS = ωKS +

√
−1∂∂ργ with a

normalization condition
∫
M

e−ργωn
KS =

∫
M

ωn
KS . Then there exists a unique σ ∈

Autr(M) such that ϕσ ∈ Λ⊥(ωKS) with property

J(ϕσ) = inf
γ∈Autr(M)

J(ϕγ),

where Λ⊥(ωKS) is an orthogonal space-to-kernel space of the linear operator (ΔgKS
+

X + Id)(ψ) and

J(ϕ) = −
∫
M

ϕeθX,ωϕωn
ϕ +

∫ 1

0

∫
M

ϕeθX,ωλϕωn
λϕ ∧ dλ ≥ 0.

Moreover,
‖σ − Id‖ ≤ C(‖ϕ‖C5(M)),

where ‖σ − Id‖ denotes the distance norm in Lie group Autr(M).

Proof of closedness of I. By the openness of I, we see that there exists a τ0 ≤ 1
with [0, τ0) ⊂ I. We need to show that τ0 ∈ I. In fact we want to prove that for
any δ > 0 there exists a large T such that

‖(φs
t )σs,t

‖C5(M) ≤ δ, ∀ t ≥ T and s < τ0,(6.2)

where σs,t are some holomorphisms in Autr(M). We will use an argument by
contradiction as in [TZhu5]. On the contrary, by Lemma 6.2 one can find a sequence
of evolved Kähler metrics gsiti of Kähler-Ricci flows (gsit ; gsi), where si → τ0 and
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ti → ∞, and a sequence of unique holomorphisms σsi,ti ∈ Autr(M) for pairs (si, ti)
such that (φsi

ti )σsi,ti
∈ Λ⊥(ωKS) and

‖(φsi
ti )σsi,ti

‖C5(M) ≥ δ0,(6.3)

for some constant δ0 > 0. On the other hand, since the Kähler-Ricci flow (gst ; g
s)

(s < τ0) converges to some Kähler-Ricci soliton, by the uniqueness of the Kähler-
Ricci solitons [TZhu1], there exists a unique σs ∈ Autr(M) for each s such that

lim
t→∞

‖(φs
t )σs

‖C5(M) = 0.

It follows by Lemma 6.2 that

lim
t→∞

‖(φs
t )σs,t

‖C5(M) = 0,

where (φs
t )σs,t

∈ Λ⊥(ωKS). Thus by (6.3), we may further assume that φsi
ti satisfies

‖(φsi
ti )σsi,ti

‖C5(M) ≤ 2δ0.(6.4)

We claim that there exists a subsequence (φsi
ti )σsi,ti

(still used by (φsi
ti )σsi,ti

) of

(φsi
ti )σsi,ti

converging to a potential φ∞ ∈ Λ⊥(ωKS) with property

δ0 ≤ ‖φ∞‖C5(M) ≤ 2δ0.(6.5)

In fact, we will show that (φsi
ti )σsi,ti

is Ck-convergent to φ∞ for any integer k ≥ 0.
Then the claim follows.

By (2.3), (φs
t ) satisfies the equation

∂φ′

∂t
= log

ωn
φ′

ωn
KS

+ φ′ +X(φ′), φ′(0, ·) = sϕ+ c,

where ωφ′ = ωKS+
√
−1∂∂φ′. Then (φsi

ti )σsi,ti
is a solution of the following equation

at time ti:

(6.6)
∂φ

∂t
= log

ωn
φ

ωn
KS

+ φ+X(φ), ωφ(0,·) = (σsi,ti)
�ωsiϕ.

Since the modified K-energy μ(·) is bounded from below and hφ′ is uniformly
bounded by Lemma 2.1, as in [TZhu3] (or [TZhu5]), one can choose a suitable
c such that

|∂φ
′

∂t
| < C(ωsϕ) ≤ C.

It follows that

|∂φ
∂t

| ≤ |∂φ
′

∂t
|+ 2 sup

ωψ∈KX

θX,ωψ
< C ′.

In particular,

(6.7) |∂φ
∂t

| < C ′, ∀ t ∈ (ti −
1

2
, ti +

1

2
).

(6.7) implies

(6.8) |φ(t, ·)| < C ′ + 2δ0, ∀ t ∈ (ti −
1

2
, ti +

1

2
),

because of
|φ(ti, ·)| = |(φsi

ti )σsi,ti
| ≤ 2δ0.

By (6.7) and (6.8), we can apply Proposition 9.1 in Appendix 3 to see that

‖φ(t, ·)‖Ck(M) ≤ Ck, ∀t ∈ (ti −
1

4
, ti +

1

2
).
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In particular, (φsi
ti )σsi,ti

is uniformly Ck-bounded, and consequently it is Ck-con-
vergent to φ∞ for any integer k ≥ 0.

Next we want to show that

λ(ωφ∞) = λ(gKS) = (2π)−n(nV −NX(c1(M))).(6.9)

First we note that the modified K-energy is bounded from below since M admits
a Kähler-Ricci soliton [TZhu2]. Then by Proposition 3.1 and the monotonicity of
λ(gτ0t ), we see that for any ε > 0, there exists a large T > 0 such that

λ(gτ0t ) ≥ (2π)−n(nV −NX(c1(M)))− ε

2
, ∀ t ≥ T.

Since the Kähler-Ricci flow is stable in finite time and λ(gst ) is monotonic in t, there
is a small δ > 0 such that for any s ≥ τ0 − δ, we have

λ(gst ) ≥ (2π)−n(nV −NX(c1(M)))− ε, ∀ t ≥ T.(6.10)

Since si → τ0 and ti → ∞, we conclude that

lim
si→τ0,ti→∞

λ(σ�
si,tig

si
ti ) = lim

si→τ0,ti→∞
λ(gsiti ) = (2π)−n(nV −NX(c1(M))).

By the continuation of λ(·), we will get (6.9).
Now by Corollary 1.5 together with (6.9), we see that ωφ∞ is a global maximizer

of λ(·) in KX . Then by the monotonicity of λ(·), it is easy to show that ωφ∞ is a
Kähler-Ricci soliton if we compute the first variation of λ(·) along the Kähler-Ricci
flow (2.1) with the initial metric ωφ∞ as done in (1.5). Thus by the uniqueness
result for Kähler-Ricci solitons [TZhu1], [TZhu2], we get

ωφ∞ = σ�ωKS ,

where σ ∈ Autr(M). Since φ∞ ∈ Λ⊥(ωKS), by Lemma 6.2, φ∞ must be zero. This
is a contradiction to (6.5). The contradiction implies that (6.2) is true.

By (6.2), we see that for any δ > 0 there exists a large T0 and σ0 ∈ Autr(M)
such that

‖(φτ0
T0
)σ0

‖C5(M) ≤ δ.(6.11)

Then by Lemma 6.1, the Kähler-Ricci flow (gt;ω(φ
τ0
T0

)σ0
) converges to a Kähler-Ricci

soliton exponentially. It follows that the Kähler-Ricci flow (gt;σ
�
0g

τ0) converges to
a Kähler-Ricci soliton exponentially and so does (gτ0t ; gτ0). Thus, we prove that
τ0 ∈ I. �

7. Appendix 1

In [TZhu5], it was proved that the minimizer ft of the W (gt, ·)-functional asso-
ciated to the evolved Kähler metric gt of the Kähler-Ricci flow (2.1) is uniformly
bounded (see also [TZha]). In this appendix, we show that the gradient of ft and
�ft are also uniformly bounded. Namely, we prove

Theorem 7.1. There is a uniform constant C such that

‖ft‖C0 + ‖∇ft‖gt + ‖�ft‖C0 ≤ C, ∀ t > 0.

We will derive ‖∇ft‖ in Theorem 7.1 by studying a general nonlinear elliptic
equation as follows:

(7.1) �w(x) = w(x)F (x,w(x)),
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where the Laplace operator � is associated to a Kähler metric g in 2πc1(M) and
F is a smooth function on M × R

+, which satisfies a structure condition:

(7.2) −A−Btα ≤ F (·, t) ≤ H(t).

Here 0 ≤ A,B ≤ ∞, 0 ≤ α < 2
n are constants, and H is a proper function on R

+

which satisfies a growth control at 0:

(7.3) lim sup
t→0

(
tH(t)

)
< ∞.

Lemma 7.2. Let w be a positive solution of (7.1). Then

(7.4) ‖∇w‖C0 ≤ C(n)C
n
2
s

(
‖∇h‖C0 + ‖wF‖C0

)n( ∫
M

(1 + |∇w|2)dVg

)1/2
,

where Cs is a Sobelev constant of g and h is a Ricci potential of g.

Proof. We will use Moser’s iteration to the Lp-estimate of |∇w|. By the Bochner
formula, we have

�|∇w|2 = |∇∇w|2 + |∇∇̄w|2 +∇i�w∇īw +∇iw∇ī�w +Rij̄∇īw∇jw

= |∇∇w|2 + |∇∇̄w|2 +∇i(wF )∇īw +∇iw∇ī(wF ) +Rij̄∇īw∇jw.

Put η = |∇w|2 + 1 . Then for p ≥ 2, it follows that

4(p− 1)

p2

∫
M

|∇ηp/2|2dVg

= −
∫
M

ηp−1�ηdVg

= −
∫
M

ηp−1
(
|∇∇w|2 + |∇∇̄w|2

)
dVg −

∫
M

ηp−1Rij̄∇īw∇jwdVg

−
∫
M

ηp−1
(
∇i(wF )∇īw +∇ī(wF )∇iw

)
dVg.

(7.5)

The last term on the right hand side can be estimated as follows:

(7.6)

−
∫
M

ηp−1
(
∇i(wF )∇īw +∇ī(wF )∇iw

)
dVg

=

∫
M

wF
(
∇iη

p−1∇īw +∇īη
p−1∇iw + 2ηp−1�w

)
dVg

=
2(p− 1)

p

∫
M

wFη
p
2−1

(
∇iη

p/2∇īw +∇īη
p/2∇iw

)
dVg

+ 2

∫
M

wFηp−1�wdVg

≤ 2(p− 1)

p2

∫
M

|∇ηp/2|2dVg + 2(p− 1)p

∫
M

(wF )2ηp−2(η − 1)dVg

+

∫
M

ηp−1
( (�w)2

2n
+ 2n(wF )2

)
dVg

≤ 2(p− 1)

p2

∫
M

|∇ηp/2|2dVg +
1

2n

∫
M

ηp−1(�w)2dVg

+ 2[p(p− 1) + n]‖wF‖2C0

∫
M

ηpdVg.
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For the second term on the right hand side, we note that

Rij = gij + hij .

Then

−
∫
M

ηp−1Rij̄∇īw∇jwdVg

=

∫
M

ηp−1∇i∇j̄h∇īw∇jwdVg −
∫
M

ηpdVg

=
2(p− 1)

p

∫
M

ηp/2−1∇j̄h∇iη
p/2∇īw∇jwdVg

+

∫
M

ηp−1∇j̄h
(
�w∇jw +∇īw∇i∇jw

)
dVg −

∫
M

ηpdVg.

Thus

(7.7)

−
∫
M

ηp−1Rij̄∇īw∇jwdVg

≤ p− 1

p2

∫
M

|∇ηp/2|2dVg + p(p− 1)‖∇h‖2C0

∫
M

ηp−2(η − 1)2dVg

+
1

2n

∫
M

ηp−1(�w)2dVg +
n

2
‖∇h‖2C0

∫
M

ηp−1(η − 1)dVg

+
1

2n

∫
M

ηp−1|∇∇w|2dVg +
n

2
‖∇h‖2C0

∫
M

ηp−1(η − 1)dVg

≤ p− 1

p2

∫
M

|∇ηp/2|2dVg +
1

2n

∫
M

ηp−1(�w)2dVg

+
1

2n

∫
ηp−1|∇∇w|2dVg + [p(p− 1) + n]‖∇h‖2C0

∫
M

ηpdVg.

Substituting (7.6) and (7.7) into (7.5), we get

p− 1

p2

∫
M

|∇ηp/2|2dVg

≤ −
∫
M

ηp−1
(
|∇∇w|2 + |∇∇̄w|2

)
dVg

+
1

n

∫
M

ηp−1(�w)2dVg +
1

2n

∫
M

ηp−1|∇∇w|2dVg

+ [2(p− 1)p+ n]
(
‖∇h‖2C0 + ‖wF‖2C0

) ∫
M

ηpdVg

≤ C(n)p2
(
‖∇h‖2C0 + ‖wF‖2C0

) ∫
M

ηpdVg.

It follows that∫
M

|∇ηp/2|2dVg ≤ C(n)p3
(
‖∇h‖2C0 + ‖wF‖2C0

) ∫
M

ηpdVg, ∀ p ≥ 2.

Therefore, by iteration, we derive that

sup η ≤ C(n)Dn/2
( ∫

M

η2dVg

)1/2
,

where D = Cs

(
‖∇h‖2C0

+ ‖wF‖2C0

)
. This implies (7.4). �

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



PERELMAN’S ENTROPY AND KÄHLER-RICCI FLOW 6691

Proposition 7.3.

(7.8) ‖∇w‖C0 ≤ C(‖w‖L2),

where the constant C depends only on n,Cs, A,B, α,H, Vol(g), ‖∇h‖C0 and ‖w‖L2 .

Proof. First we note that by using the standard Moser’s iteration to the equation

�w(x) ≥ −A−Bwα,

it is easy to see that
supw ≤ C(1 + ‖w‖γL2)

for some constants C and γ which depend only on n,Cs, A,B, α,H and Vol(g). On
the other hand, by (7.1), we have∫

M

|∇w|2dVg = −
∫
M

w�wdVg = −
∫
M

wFdVg.

Then we see that ‖∇w‖L2 is bounded by ‖w‖L2 . Thus the proposition follows from
Lemma 7.2. �

Since vt = e−
ft
2 satisfies (3.11) which is a type of the equation (7.1), then by

Perelman’s estimates (d) in Lemma 2.1 and Zhang’s estimate for Sobelev constants
associated to gt in [Zha] together with the C0-estimate for ft in [TZhu5], we obtain
a uniform gradient estimate for vt from Proposition 7.3, and so for ft. By equation
(1.4), we also derive a a uniform Laplacian estimate for ft. Thus Theorem 7.1 is
true. Theorem 7.1 was used in Section 4.

8. Appendix 2

Proof of Lemma 6.1. As in Section 6, we need to prove that for any δ > 0 there
exists an ε > 0 such that

‖(φt)σt
‖C5(M) ≤ δ, ∀ t ≥ 0,(8.1)

as long as ‖ψ‖C3(M) ≤ ε, where φt are potentials of evolved Kähler metrics in
(2.2) with an initial Kähler metric ωψ and σt are some holomorphisms in Autr(M).
On the contrary, by Lemma 6.2, one can find a sequence of functions ψi with
‖ψi‖C3(M) → 0 as i → ∞ and a sequence of evolved Kähler metrics giti of Kähler-

Ricci flows (git;ωψi
), and a sequence of unique holomorphisms σti ∈ Autr(M) such

that

(φi
ti)σti

∈ Λ⊥(ωKS) and ‖(φi
ti)σti

‖C5(M) ≥ δ0 > 0,(8.2)

for some constant δ0. Furthermore, by the stability of the Kähler-Ricci flow in finite
time and Lemma 6.2, we may assume that φi

ti satisfies

‖(φi
ti)σti

‖C5(M) ≤ 2δ0.(8.3)

Then there exists a subsequence (φi
ti)σti

(still used by (φi
ti)σti

) of (φi
ti)σti

converging

to a potential φ∞ ∈ Λ⊥(ωKS) with property

δ0 ≤ ‖φ∞‖C5(M) ≤ 2δ0.(8.4)

In fact, (8.4) can be obtained by using the same argument as in the proof of (6.5)
in Section 6.

On the other hand, by the monotonicity of λ(git) in t for each i, we have

λ(ωφ∞) = λ(gKS) = (2π)−n(nV −NX(c1(M)).(8.5)
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Then, by Corollary 1.5, we see that ωφ∞ is a global maximizer of λ(·) in KX and ωφ∞

is a Kähler-Ricci soliton with respect to X. Thus by the uniqueness of Kähler-Ricci
solitons [TZhu2], it follows that

ωφ∞ = σ�ωKS ,

for σ ∈ Autr(M). Since φ∞ ∈ Λ⊥(ωKS), by Lemma 6.2, φ∞ must be zero. This is
a contradiction to (8.4). The contradiction implies that (8.1) is true.

By (8.1), one can apply an argument in [TZhu3] to show that there exist another
family of σ̂t in Autr(M) such that (φt)σ̂t

are uniformly bounded in Ck for any
integer k ≥ 0. Then by the uniqueness of Kähler-Ricci solitons and the monotonicity
of modified K-energy, it follows that ω(φt)σ̂t

(σ̂t may be modified) converges to ωgKS

in C∞ in the sense of Kähler potentials. Since ω(φt)σ̂t
satisfies a modified equation of

(2.2), we can use an argument in [Zhu2] (or [PSSW]) to show that ω(φt)σ̂t
converges

to ωgKS
exponentially in C∞ in the sense of Kähler potentials. It follows that the

flow (2.2) converges to a Kähler-Ricci soliton exponentially with respect to X in
C∞ in the sense of Kähler potentials. �

9. Appendix 3

In this appendix, we give an a priori estimate about the local regularity of the
Kähler-Ricci flow which was used in Section 6.

Proposition 9.1. Let (M,J) be a Fano manifold which admits a Kähler-Ricci
soliton (gKS , X) with its Kähler form ωKS in 2πc1(M). Let φ = φ(t, ·) = φt be a
KX-invariant solution of the Kähler-Ricci flow,

(9.1)
∂φ

∂t
= log

ωn
φ

ωn
KS

+ φ+X(φ), t ∈ (0, 1).

Suppose that

(9.2) |φ| ≤ A and |φ̇| = |∂φ
∂t

| ≤ A.

Then for any integer k ≥ 0 there exists a uniform Ck = Ck(ωKS , A, k) such that

‖φt‖Ck(M) < Ck, ∀ t ∈ [
1

4
, 1).

We first prove

Lemma 9.2. Under the condition (9.2), it holds that

n+Δφ ≤ e
B
t , ∀ t ∈ (0, 1).

Proof. Let Δ′ = Δ′
t be the Laplacian operator associated to ωφt

. Set

F =
∂φ

∂t
−X(φ)− φ.

Note that F is uniformly bounded by (9.2). Then for sufficiently large c, using (9.1)
and following the arguments in [Ya], we compute that

(9.3)

Δ′(e−
c
t (φ+A+1)(n+Δφ))

≥ e−
c
t (φ+A+1)[�F − C1 −

c

t
n(n+Δφ)

+
c

2t
(n+Δφ)

n∑
i=1

1

1 + φii

],
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where we choose a local coordinate system at a given point p ∈ M so that ωKS =√
−1

∑n
i=1 dz

i ∧ dzi and φij = δijφii at p. Note that

(9.4)

ΔF = Δφ̇− (n+Δφ) + n−Δ(X(φ))

≥ ∂

∂t
(n+Δφ)− (|∇X|ωKS

+ 1)(n+Δφ)

− c

t
(n+Δφ) sup

M
X(φ)− e

c
t (φ+A+1)(X(e−

c
t (φ+A+1)(n+Δφ)))

≥ ∂

∂t
(n+Δφ)− C2c

t
(n+Δφ)

− e
c
t (φ+A+1)(X(e−

c
t (φ+A+1)(n+Δφ))).

Since
n∑

i=1

1

1 + φii

≥
n∏

i=1

(1 + φii)
− 1

n−1 (n+Δφ)
1

n−1

= e−
F

n−1 (n+Δφ)
1

n−1

≥ δ(n+Δφ)
1

n−1

and
∂

∂t
(e−

c
t (φ+A+1)(n+Δφ))

= e
−c
t (φ+A+1) ∂

∂t
(n+Δφ)− c(

1

t
φ̇− 1

t2
(φ+A+ 1))e−

c
t (φ+A+1)(n+Δφ),

we get from (9.3) and (9.4) that

(9.5)
(Δ′ − ∂

∂t
)(e−

c
t (φ+A+1)(n+Δφ)) +X(e−

c
t (φ+A+1)(n+Δφ))

≥ e−
c
t (φ+A+1)(

c

C3t
(n+Δφ)1+

1
n−1 − C4c

t2
(n+Δφ)− C5).

Since H = e−
c
t (φ+A+1)(n + Δφ) = 0 at t = 0, one can apply the maximum

principle to H in (9.5) to see that there exist t0 > 0 and x0 ∈ M such that
maxM×[0,1]H = H(x0, t0) and

n+Δφ|(t0,x0) ≤
C6

tn−1
0

.

It follows that

(9.6)

e−
c
t (φ+A+1)(n+Δφ))

≤ e−
c
t (φ+A+1)(n+Δφ))|(t0,x0) ≤ e−

c
t0

(φ(t0,x0)+A+1) C6

tn−1
0

≤ C7.

This proves the lemma. �
We also have

Lemma 9.3. Under the condition (9.2), the following is true:
i) the metric ωKS+

√
−1∂∂φt is uniformly equivalent to ωKS for any t ≥ t0 > 0;

ii) we have a uniform estimate

(9.7) ‖φ‖C3(M) ≤ e
γ
t , ∀ t ∈ (0, 1),

where γ = γ(ωKS , A).
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Proof. (i) follows easily from equation (9.1) and Lemma 9.2. For the third derivative
estimate, we consider Calabi’s function

S = g
′irg

′sjg
′ktφijkφrst,

where (g
′ij) is the inverse of the Hermitian matrix function associated to the metric

ωφ. Note that S is equivalent to the quantity

girgsjgktφijkφrst, ∀t ≥ t0 > 0,

where gir denotes the inverse of the Hermitian matrix function associated to the
metric ωKS .

As in the proof of (9.5), by i) in Lemma 9.3, it is easy to get

(Δ′ − ∂

∂t
)(e−

2α
t (n+Δφ)) +X[e−

2α
t (n+Δφ)]

≥ C1e
−α

t (n+Δφ)− C2.

Moreover, following Calabi’s computation as in [Ya], by i) in Lemma 9.3, we can
estimate

(Δ′ − ∂

∂t
)(e−

2β
t S) +X(e−

2β
t S)

≥ −C3e
− β

t S − C4.

Here α and β are both sufficiently large numbers. By choosing β > α and another
sufficiently large A, it follows that

(9.8)
(Δ′ − ∂

∂t
)(e−

2β
t S +Ae−

2α
t (n+Δφ)) +X(e−

2β
t S +Ae−

2α
t (n+Δφ))

≥ C5e
−α

t S − C6.

Thus by applying the maximum principle to the function e−
2β
t S +Ae−

2α
t (n+Δφ)

in (9.8), we will get

S ≤ C7e
2β
t .

This implies (9.7). �

Proposition 9.1 follows from Lemma 9.3 and the regularity theory to the para-
bolic equation (9.1).
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