Perennial-Streamflow Characteristics Related to Channel Geometry and Sediment in Missouri River Basin

GEOLOGICAL SURVEY PROFESSIONAL PAPER 1242

Perennial-Streamflow Characteristics Related to Channel Geometry and Sediment in Missouri River Basin

By W. R. OSTERKAMP and E. R. HEDMAN

GEOLOGICAL SURVEY PROFESSIONAL PAPER 1242

UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1982

UNITED STATES DEPARTMENT OF THE INTERIOR

JAMES G. WATT, Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

Library of Congress Cataloging in Publication Data Osterkamp, W. R. Perennial-streamflow characteristics related to channel geometry and sediment in the Missouri River basin. (Geogical Survey Professional Paper 1242) Bibliography: p. 19 Supt. of Docs. No.: 1 19.16 1. Stream measurements—Missouri Valley. 2. River channels—Missouri Valley. 3. Sediment transport—Missouri Valley I. Hedman, E. R. II. Title. III. Series. GB1227.M7084 551.48'3'0978 81–607905 AACR2

For sale by the Branch of Distribution, U.S. Geological Survey, 604 South Pickett Street, Alexandria, VA 22304

CONTENTS

	Page
Conversion factors	IV
Abstract	1
Introduction	1
Purpose and scope	1
Previous investigations	2
Data collection and analysis	3
Onsite procedures	3
Laboratory techniques and data analysis	6
Results	7
Computer analyses	7
Implications of the computer analyses	11
Effect of sediment	11
Effect of gradient and other variables on width-discharge relations	13
Variability and error analysis	17
Utility and conclusions	18
References cited	19
Supplemental information	22

ILLUSTRATIONS

		Page
FIGURE 1.	Diagram showing commonly used reference levels	2
2.	Map showing location of measurement and sampling sites	4
3.	Graph showing structural relations between active-channel width and mean	
	discharge for stream channels of specified sediment characteristics	11
4.	Graph showing structural relations between active-channel width and	
	discharge characteristics for selected streams of the Sand Hills area,	
	Nebraska	13
5-11.	Graphs showing structural relations between active-channel width and	
	discharge characteristics for:	
	5. High silt-clay bed channels	13
	6. Medium silt-clay bed channels	14
	7. Low silt-clay bed channels	14
	8. Sand-bed, silt-banks channels	15
	9. Sand-bed, sand-banks channels	15
	10. Gravel-bed channels	16
	11. Cobble-bed channels	16
12.	Graph showing width-gradient-discharge relations for mean discharges and	
	the 25-year floods for sand-bed, sand-banks channels using representative	
	values of gradient	17
	. III	

CONTENTS

TABLES

		Page
TABLE 1.	Descriptions of data groups based on channel material	8
2.	Width-discharge relations for channels of specified sediment properties	8
3.	Width-discharge relations resulting from analysis of all data	10
4.	Width-gradient-discharge relations for channels of specified sediment properties	10
5.	Width-gradient-discharge relations resulting from analysis of all data	11
6.	Width-discharge relations for selected stream channels of the Sand Hills area, Nebraska	12
7.	Width-discharge and width-gradient-discharge relations for sand-bed, sand-banks channels of differing discharge variability	17
8.	Discharge characteristics of selected streams	22
9.	Geometry measurements and sediment characteristics of selected streams	29
10.	Width-discharge and width-gradient discharge relations expressed in inch-pound units	36

CONVERSION FACTORS

The International System (SI) of Units is used in this report, although approximate conversions to inch-pound units are provided where practical. The coefficients of all power-function equations provided here are calculated from data expressed in SI units; conversions using inchpound units are given in table 10. SI units used in this report may be expressed as inch-pound units by use of the following conversion factors:

To convert <u>SI units</u> millimeter (mm) meter (m) kilometer (km) cubic meter per second (m³(s) Multiply by 0.0394 3.28 0.622 35.3 To obtain <u>inch-pound units</u> inch (in) foot (ft) mile (mi) cubic foot per second (ft³/s)

PERENNIAL-STREAMFLOW CHARACTERISTICS RELATED TO CHANNEL GEOMETRY AND SEDIMENT IN MISSOURI RIVER BASIN

By W. R. OSTERKAMP and E. R. HEDMAN

ABSTRACT

Geometry, channel-sediment, and discharge data were collected and compiled from 252 streamflow-gaging stations in the Missouri River basin. The stations, with several exceptions, have at least 20 years of streamflow records and represent the complete ranges of hydrologic and geologic conditions found in the basin. The data were analyzed by computer to yield simple and multiple power-function equations relating various discharge characteristics to variables of channel geometry and bed and bank material. The equations provide discharge as the dependent variable for the purpose of making estimates of discharge characteristics at ungaged sites.

Results show that channel width is best related to variables of discharge, but that significant improvement, or reduction of the standard errors of estimate, can be achieved by considering channel-sediment properties, channel gradient, and discharge variability. The channel-material variables do not have uniform effects on width-discharge relations and, therefore, are considered as sediment-data groups, or stream types, rather than as terms in multiple power-function equations.

Relative to streamflow, narrowest channels occur when streams of steady discharge transport sufficient silt and clay to form stable, cohesive banks but have a small bed-material load of sand and coarser sizes. Stable channels also are associated with relatively large channel gradients, relatively large channel roughness, and armoring of bed and bank by coarse particle sizes. The widest, most unstable channels are ones that apparently transport a large bedmaterial load of sand sizes. The downstream rates of change of width with discharge reflect these trends, indicating that a given bed-material load necessitates a minimum width for movement of tractive material.

Comparisons of standard errors of estimate given here with similar results from regional studies are variable. It is assumed, however, that a benefit of this study is that the use of the equations is not limited to the Missouri River basin. Besides the principal utility of estimating discharge characteristics of ungaged streams, the equations given here can be used for the design of artificial channels and can be used as a basis of predicting channel changes resulting from upstream alterations of the basin or channel.

INTRODUCTION

Numerous studies have related the geometry of alluvial stream channels to the amount and variation of discharge, sediment characteristics, climate and vegetation, and various basin characteristics. In recent years, a practical result of these studies has been the use of channel-geometry measurements to estimate the discharge characteristics of ungaged streams. By correlating variables of channel size and shape to specified flows at gaged sites, the relations, generally expressed as power-function equations, can provide estimates of discharge for the same recurrence frequencies at ungaged sites. Because a value of streamflow is determined, discharge is treated as the dependent variable. Therefore, the channel-geometry technique is the use of channel measurements as an indirect means of evaluating streamflow characteristics at a site.

The channel-geometry technique differs from that of hydraulic geometry by relying on measurements taken from an identifiable geomorphic reference point or level in the channel section rather than from the water surface. The size and shape of the channel cross section are assumed to be the integrated resultant of all discharges, water and sediment, conveyed by that channel (Pickup and Rieger, 1979, p. 41; Osterkamp, 1979a, p. 2). Because it is based on channel rather than basin characteristics, the technique provides discharge estimates more closely related to the measured variables than do many of the older indirect techniques of estimating discharge. Most of these older methods use either drainage area, precipitation, and other basin characteristics as a means of evaluating discharge, or they rely on correlation methods of transferring data from gaged sites to ungaged sites in contiguous or nearby basins.

PURPOSE AND SCOPE

Most published channel-geometry equations relate discharge to width or to width and depth. This study was initiated with the recognition that width-discharge relations vary significantly with channelsediment properties (that is, the size characteristics of material forming the channel perimeter). Thus, numerical consideration of the sediment characteristics offers a means of refining the channel-geometry technique, as well as contributing to the understanding of fluvial processes. The purposes of the study were to: (1) evaluate which, if any, characteristics of channel sediment significantly affect channel morphology, (2) describe these effects quantitatively, thereby providing equations useful for discharge estimates, (3) gain further understanding of the processes that form and continually alter the shape of perennial stream channels, and (4) provide a basis for anticipating the results of natural or imposed upstream changes in the variables that determine channel size and shape.

The hydrologic, geometry, and sediment data (see "Supplemental Information," tables 8, 9) on which this paper is based were collected at or near 252 streamflow-gaging stations in the Missouri River basin. The various gaging sites and drainage basins are representative of the wide range of hydrologic, geologic, topographic, and climatic conditions found in the Missouri River basin. The data were collected primarily at perennial streams, but several of the small channels have intermittent streamflow. Most of the streams have unregulated discharge; many of the relatively large streams, however, are partly regulated by one or more upstream reservoirs.

PREVIOUS INVESTIGATIONS

Relative to the numerous alluvial stream channels of the United States and elsewhere, streamflow-gaging stations provide current and historical discharge information on a small part of those channels from which such information is desirable. The increasing demand for current, inexpensive hydrologic information led to the development of the various indirect methods for estimating discharge characteristics from ungaged basins. The earlier methods relied on precipitation records and comparisons of streamflow and basin-characteristic data from nearby basins and generally were applied to relatively humid regions. In those areas, variations in precipitation and runoff are less significant than in arid areas (Riggs, 1978). Because the channel-geometry method relies only on channel properties, its use is less restricted by climate and other basin variables than the earlier indirect methods.

Among the early papers dealing with the effect of discharge on channel shape were articles on regime theory (no net erosion or deposition) by Kennedy (1895) and Lacey (1930). Though not the first to apply the dynamic-equilibrium concept to rivers, Leopold and Maddock (1953) published the first widely accepted benchmark paper of the relations between perennial discharge and channel properties. They established power-function equations between mean discharge and stream width, mean water depth, and mean velocity. For practical purposes, a shortcoming of the study by Leopold and Maddock (1953), and of several subse-

quent papers, was that a relatively permanent, observable datum from which channel width and depth could be measured was not used. Instead, measurements were related to the level of the water surface at mean discharge. Hence, the technique was termed hydraulic geometry. A study of the Brandywine Creek drainage by Wolman (1955) reduced the problem by the use of measurements determined for bankfull stage (fig. 1), a readily observable feature in that drainage basin. Other hydrologists in England and Wales (Nixon, 1959), central Pennsylvania (Brush, 1961), Illinois (Stall and Fok, 1968), Alaska (Emmett, 1972), and elsewhere made similar measurements at bankfull stage. Other workers have used reference levels for channel measurements taken at the top of the "main channel" (Riggs, 1974; Lowham, 1976) or "whole channel" (Riggs and Harenberg, 1976); these levels were defined similarly to and are virtually coincident with the bankfull stage.

From 1953 to recent years, a variety of hydraulicgeometry studies resulted in numerous power functions relating width with variables of discharge for the "downstream" case (Leopold and Maddock, 1953). In 1966, at the suggestion of W. B. Langbein, attention within the U.S. Geological Survey was turned to in-

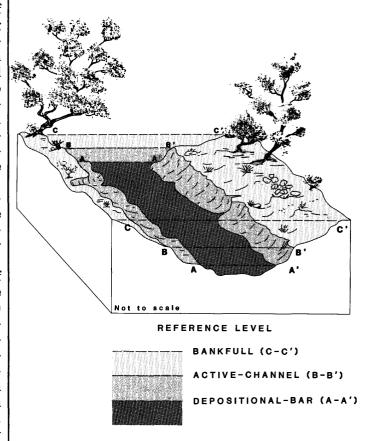


FIGURE 1.-Commonly used reference levels.

channel reference levels for discharge-geometry correlations. Langbein recognized that active, short-term geomorphic features might be identifiable in all alluvial stream channels and that they are indicative of recent (decades or less) rather than historic stream dynamics. The suggestion was advanced as a possible means of estimating flow characteristics of ungaged basins; the intent was to determine discharge from channel characteristics. The first paper using this suggestion was by Moore (1968), who estimated mean runoff from Nevada basins on the basis of channel width and mean depth measured from the top edge of inchannel, or depositional, bars (fig. 1, A-A'). The bars were regarded as the highest channel features shaped by annual bed-material movement and the lowest prominent bed forms. The same technique was used in California by Hedman (1970); in western Georgia, U.S.S.R., by Kopaliani and Romashein (1970); in Kansas by Hedman and Kastner (1972); in Colorado by Hedman, Moore, and Livingston (1972); in New England by DeWalle and Rango (1972); and throughout the Missouri River basin by Hedman and Kastner (1977).

Experience has shown, however, that measurements based on bar geometry are subject to the same problem as is the bankfull stage method of Wolman (1955) the lack of a universally recognizable datum. Many slowmoving streams, for example, that have a well-defined bankfull stage (flood plain) do not exhibit bar geometry. In addition, deposition of material forming inchannel bars occurs principally during recession of relatively large discharges. Thus, a spurious relation is possible between bar geometry and all discharge rates exceeding that required for movement of point-bar material. An alternative in-channel reference level, therefore, was proposed by Hedman, Kastner, and Hejl (1974), the active channel. This feature (fig. 1, B-B') is described by Osterkamp and Hedman (1977, p. 256) as

***a short-term geomorphic feature subject to change by prevailing discharges. The upper limit is defined by a break in the relatively steep bank slope of the active channel to a more gently sloping surface beyond the channel edge. The break in slope normally coincides with the lower limit of permanent vegetation so that the two features, individually or in combination, define the active channel reference level. The section beneath the reference level is that portion of the stream entrenchment in which the channel is actively, if not totally, sculptured by the normal process of water and sediment discharge.

Recent studies that used the active-channel reference level, or a similarly defined level, include those of Scott and Kunkler (1976), Hedman and Kastner (1977), and Osterkamp (1977, 1979a).

Except for a large number of papers concerning the hydraulics of sediment transport and the behavior of

various sediment types in laboratory flumes, literature relating sediment characteristics to properties of channel morphology is much less extensive than for that of streamflow characteristics. Among the papers that have considered the effect of sediment on channel morphology are those of Schumm (1960a, b, 1963, 1968). These papers related a weighted mean percentage of bed and bank silt-clay to width-depth ratios of alluvial channels, but the papers did not consider discharge directly. The final study of this sequence (Schumm, 1968) provided a basis of prediction of the changes in morphology that might occur as a result of a significant change in the regimen of sediment transport of a stream, whether natural or induced. Combining the channel-geometry techniques of Hedman, Kastner, and Hejl (1974) with the use of channel silt-clay content (Schumm, 1960b), Osterkamp (1977) developed simple and multiple power-function equations relating mean discharge to channel width and sediment characteristics of Kansas streams. The equations assumed that mean discharge exerts a fixed effect on channel width that is modified by other variables, particularly the particle sizes of channel material. The relations described herein evolved from techniques developed during the study of perennial stream of Kansas.

DATA COLLECTION AND ANALYSIS

Sites at or near streamflow-gaging stations where channel-geometry and channel-sediment data were collected for this study are shown in figure 2. The site numbers in figure 2 refer to lists of the discharge (table 8) and channel-properties (table 9) data from which the power-function equations were developed.

ONSITE PROCEDURES

Measurement and sampling procedures at channelgeometry sites were developed using several basic assumptions. Among these are that: (1) A channel section generally is narrowing toward a minimum width corresponding to the recent discharge characteristics of the stream; (2) a section below the active-channel reference level can be recognized at all sites and is indicative of those discharge characteristics; (3) the sediment load of a stream, both suspended and bed material, has a quantitative effect on geometry-discharge relations; and (4) the particle sizes of bank material are indicative of the suspended sediment, whereas the bed material is indicative of the traction-force load. Thus, the principal data collected at each gage were those of geometry and of the variables inferred to be most closely related to the geometry-characteristics of

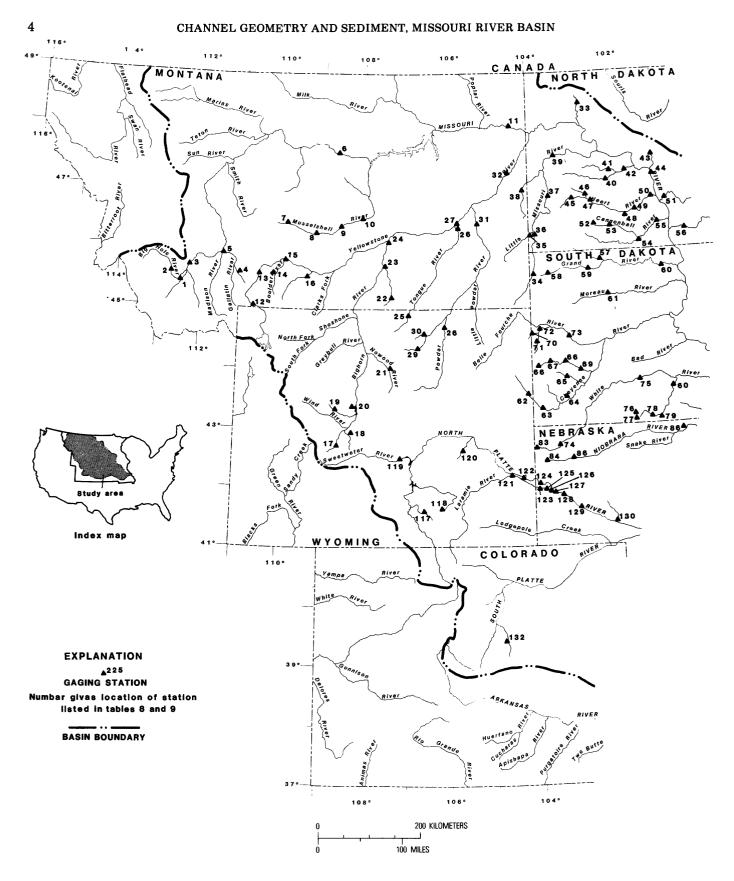
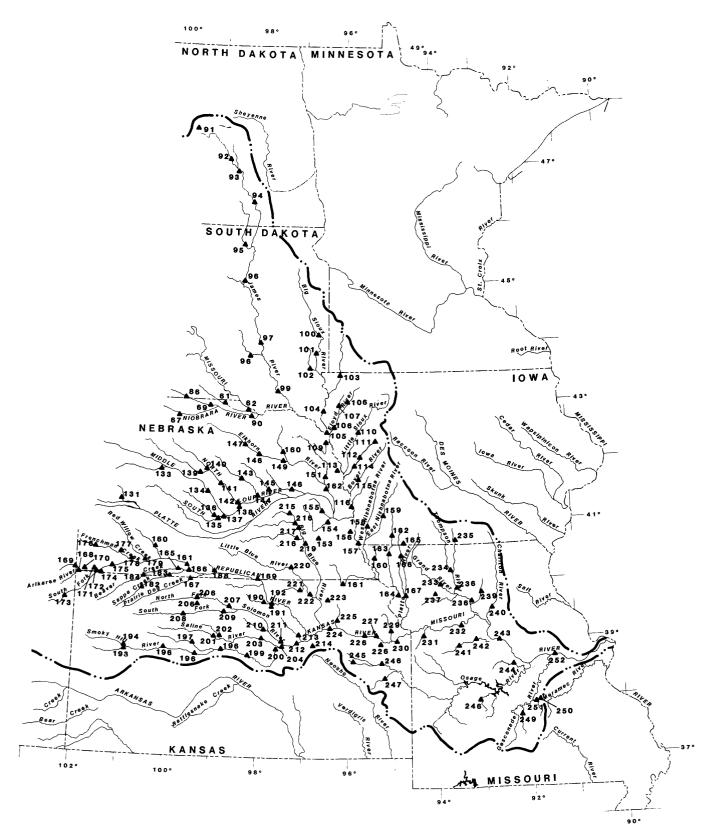



FIGURE 2 (above and facing pages).— Location of measurement and sampling sites.

or

water and sediment discharge. Other variables affecting the width-discharge relations that were not directly considered in this study include discharge variability (including the effects of streamflow regulation), climate and riparian vegetation, and other upstream channel or basin changes resulting from water-use and land-use activities.

In all instances, geometry and bed-and-bank data were collected at or near gage sites where discharge data were available. To the extent practical, measurements were made in a generally straight reach where flow velocities were relatively uniform across the channel width. If a stream had pool-riffle sequences, a site normally was selected a short distance upstream or downstream from a riffle. Sites were avoided if bedrock was apparent in the channel bed, if bank instability occurred in or directly above the active-channel section, or if there was local evidence of recent scour or deposition. Channel reaches altered by riprap or other types of natural or unnatural linings or obstructions were avoided, as were reaches where bank surfaces were erosional rather than depositional.

At each site, width and mean-depth measurements were made from the active-channel reference level (fig. 1, B-B). Integrated or composite sediment samples were obtained by collecting sediment at equally spaced intervals across the channel bed and up each bank. Thus, three separate composite samples, representing the bed and each bank, were collected at each measurement site. If the channel material was mostly gravel or coarser sizes, in situ pebble-count techniques or other suitable methods were used to describe the bed-andbank material (Wolman, 1954). For all sites, care was taken not to sample those parts of the channel transitional between bed and banks; thereby, contamination of samples by material from other parts of the channel section largely was avoided. In general, sites were selected to insure that the bed samples were typical of bed-material movement during periods of normal discharge rates and that the bank samples were representative of material taken from suspension. Specific procedures for channel measurement and sampling are given by Osterkamp (1979b).

LABORATORY TECHNIQUES AND DATA ANALYSIS

Discharge data (table 8) were compiled from the records of the various gage sites. All discharge data were computed using established techniques of the U.S. Geological Survey. Values for the discharge characteristics (table 8) are based on a minimum of 20 years of continuous steamflow records, although several exceptions were made in order to expand the ranges of stream size and geographic coverage.

A standard particle-size analysis (dry sieve, VA tube, and wet sieve) was made of each of the three sediment samples from each site (Guy, 1969). Summary results of the analyses are listed in table 9 as the median particle sizes and the silt-clay percentages of the bed-material samples and as the values of the silt-clay percentages for the two bank-material samples. Channel gradients (table 9) were computed from 7½-minute topographic maps. Except where significant tributary inflow or diversion was apparent near a gage, the gradient measurements were centered at or near the gaging stations. For large streams, the calculated gradient represents a reach of as much as 20 km (12 mi) in length, whereas reaches as short as 1.0 km (0.62 mi) were used to calculate the gradient of small streams.

Most equations given in this report are simple or multiple power functions of the form:

$$Q_{\rm v} = a {\rm W}^{\rm b}, \tag{1}$$

$$Q_{\rm v} = a W^{\rm b} G^{\rm c}, \tag{2}$$

where Q_v is a discharge characteristic (such as a flood discharge with a 2-year recurrence interval); a is a coefficient; W and G, respectively, are channel width and gradient; and b and c are exponents. The equations were developed by use of a stepwise regression program (BMD02R) from the Biomedical Computer Programs of the School of Medicine, University of California (Dixon, 1965). The program forms a sequence of linear regression equations in a stepwise manner. In the first step, a simple relation is defined with the independent variable that most effectively explains the site-to-site variation of a selected flow characteristic. In each subsequent step, one variable is added to the equation.

For those computer analyses yielding simple-regression (power-function) equations (one independent variable), the program was modified to convert the result to a structural analysis (Mark and Church, 1977; Osterkamp, McNellis, and Jordan, 1978). This statistical technique distributes error to both the dependent and independent variables. The closely related technique of least-squares regression differs by ascribing all error to the independent variable. Because errors must be assumed for all the variables considered in this study, structural analysis is considered the better method of developing simple power-function equations. The two techniques, however, when applied to groups of data presented here, provide results that do not differ markedly.

The standard errors of estimate (SE), the correlation coefficient (R), and the *F*-ratios are provided as output

of program BMD02R. The standard error of estimate of a regression or structural analysis is a measure of the deviation or scatter of the dependent variable about the linear relation; the correlation coefficient is an indicator of data scatter relative to the range of the data. The *F*-ratio is the ratio of the explained to unexplained variance in the dependent variable. The level of significance can be determined from the *F*-ratio and the numbers of cases and variables. The levels of significance provided in tables of this report are given as decimal fractions, expressing the likelihood that the observed *F*-ratio has occurred by chance. Thus, a significance level of 0.01 indicates that the probability of the observed relation occurring randomly is no greater than 1 percent.

RESULTS

Previous studies (Schumm, 1960a, b, 1968; Hedman and Kastner, 1977; Osterkamp and Hedman, 1977; Osterkamp, 1977, 1979a) provided evidence that channelsediment characteristics have a measureable effect on geometry-discharge relations. The initial computer analyses of this study, therefore, were designed to identify geometry and sediment variables that effectively provide a basis for defining stream-channel types from the entire data set (tables 8, 9). These preliminary analyses produced the following deductions:

- 1. Except for some braided streams, the size distribution of fluvial sediment generally has a greater effect on channel morphology than does sediment discharge.
- 2. Multiple power-function equations need to be used cautiously because the effects of complicating variables on width-discharge relations generally are not linear.
- 3. Because channel shape is partly the result of the sediment sizes transported by a stream, indiscriminate use of geometry and channel-material variables in multiple power-function equations results in redundency.
- 4. Variables other than channel sediment, such as discharge variability and riparian vegetation, have significant effects on geometry-discharge relations and, therefore, account for part of the observed standard errors of estimate.

The principal purpose of the relations given in this paper is to provide rapidly calculated estimates of discharge characteristics. Therefore, the stream classes or groups used here were defined to include the range of sediment conditions normally found in natural alluvial channels, and the equations developed for the groups require only data that are quickly and easily measured or estimated.

COMPUTER ANALYSES

The 252 sites in the Missouri River basin at which data were collected (fig. 2; tables 8, 9) were selected using criteria previously discussed. Criteria for site selection were not imposed rigidly, however, but were relaxed in some cases to extend the range of data. Accordingly, the data used for this paper include very small channels with less than 20 years of streamflow records and some large streams (particularly the Missouri River), which are partly regulated and may be affected by nearby channel modifications or stabilization structures. It is assumed that the use of these data, however, increases the confidence that can be placed in the resulting power functions, although they increase the standard errors of estimate.

Mean discharges (table 8) of the data used in the computer analyses range from 0.00402 to 2,260 m³/s (0.142-79,800 ft³/s), and measured active-channel widths range from 0.762 to 430 m (2.50-1,410 ft). These ranges comprise about 5.75 log cycles for mean discharges and 2.75 log cycles for active-channel widths. Similarly, the channel-material characteristics of streams sampled in the Missouri River basin range from those having as much as 92 percent silt and clay in the bed material to alpine streams with median particle sizes as great as 250 mm (9.8 in.). Measured gradients range from 0.000060 to 0.028 (nondimensional), or about 2.7 log cycles.

No attempt was made to quantify and consider the effects of riparian and channel vegetation as independent variables, although qualitative evidence indicates that changes in riparian vegetation, in particular, can have a pronounced effect on width-discharge relations. Discharge variability also is known to have substantial effects on channel morphology (Schumm and Lichty, 1963; Burkham, 1972; Osterkamp, 1978, p. 1267). Limited attention is given to discharge variability here, however, because normally it is a variable that cannot be measured or estimated well at ungaged sites.

Previous investigations and the preliminary computer analyses led to the classification of channels into seven groups according to channel-sediment properties for further analysis. The sediment properties on which the groups are based (silt-clay content and median particle size of the bed material, and silt-clay content of the bank material) led to simple power-function equaTABLE 1.—Descriptions of data groups based on channel material

[[]Channel types used for identification purposes are not intended to be descriptive of the stream types. SC_{bd} is silt-clay content of bed material in percent, SC_{bk} is the higher silt-clay content, in percent, of the two bank-material samples; and d_{so} is the diameter size of particles, in millimeters, for which equal parts of the sample are of greater or smaller weight]

Channel types	No. of sampling sites	••	nannel-sediment characteristics	
High silt-clay bed Medium silt-clay	15	$SC_{bd} = 61-100$		d ₅₀ <2.0
bed	17	$SC_{bd} = 31-60$		d ₅₀ <2.0
Low silt-clay bed Sand bed.	30	$SC_{bd}^{d} = 11-30$		d ₅₀ <2.0
silt banks	33	$SC_{bd} = 1-10$	$SC_{bk} = 70-100$	$d_{50} < 2.0$
sand banks	96	$SC_{bd} = 1 - 10$	$SC_{bk} = 1-69$	d ₅₀ <2.0
Gravel bed	42			$d_{50} = 2.0-64$
Cobble bed	19			d ₅₀ >64

tions relating width to discharge for the entire ranges of each group. The sediment properties are not expressed as independent variables of a multiple powerfunction equation because such a relation would necessarily be either too complex for general use or would be oversimplified and inaccurate.

Specifically, none of the three channel-sediment properties on which the channel types are defined (table 1) have a linear or even consistent effect on width-discharge relations. Relative to discharge, active-channel width increases with increasing sandiness (decreasing silt-clay content) because the cohesiveness afforded by the silt and clay produces relatively stable banks not easily eroded by floods. If a significant amount of fine material is present in the bed material, cohesive banks are virtually assured. If, however, the bed material is largely sand, the silt and clay (taken from suspension) in the banks can be correlated with width-discharge relations.

For streams of similar discharge characteristics, minimum channel widths generally occur if the median particle size of the bed material is very small (high siltclay content). Width tends to increase with increasing median particle size, reaching a maximum when the bed material is well-sorted, medium- to coarse-grained sand (Osterkamp, 1977). For median particle sizes increasingly greater than about 2 mm (0.08 in.), the course fraction of the bed material provides an armoring or stabilizing effect similar to that provided by the cohesiveness of silt and clay. The result is narrower, more stable channels than those that have sand beds. The effects of particle-size ranges are considered indirectly because the channel types (table 1) are defined

in terms of both silt-clay content and median particle size.

Equations relating discharge characteristics to active-channel width for the seven channel types (table 1) are listed in table 2. Casual inspection of the equations for mean discharge shows that, for channels of similar width, the greatest mean discharges occur in channels of fine-grained bed-and-bank material. As the sandiness of the channel material increases, the mean discharges decrease to the extent that the predicted mean discharge of a sand-bed, sand-banks channel 20 m (66 ft) in width is only 21 percent of the predicted discharge for a high silt-clay bed channel of similar width. As median particle sizes, and the resulting armored effect, increase from about 2 mm (0.08 in.), the trend is

TABLE 2.—Width-discharge relations for channels of specified sediment properties

 $[SC_{bd}]$ is silt-clay percentage of bed material; SC_{bd} is silt-clay percentage of bank material; and d_{so} is median particle size of bed material, in millimeters. \overline{Q} is mean discharge, in cubic meters per second; Q_2 through q_{so} are flood discharges, in cubic meters per second, of recurrence intervals 2 through 100 years; and W is active-channel width, in meters]

Channel type (table 1)	Equation	Standard error of estimate, SE (percent)	Coefficient of correla- tion, R	Level of significance (from <i>F</i> -ratio for width)
High silt-	$\overline{Q} = 0.031 W^{2.12}$	35	0.98	0.001
clay bed	$Q_2 = 2.0 W^{1.86}$	52	.94	.001
$(SC_{bd} =$	$Q_5 = 5.3 W^{1.77}$	54	.93	.001
61. ĬÕO;	$Q_{10} = 8.1 \mathrm{W}^{1.74}$	57	.92	.001
d₅₀<2.0)	$Q_{25} = 13 W^{1.71}$	62	.90	.001
	$Q_{\rm so} = 16 {\rm W}^{1.71}$	65	.89	.001
	$Q_{100} = 19 W^{1.74}$	69	.88	.001

Standard Level of Channel Coefficient significance error of Equation estimate, type of correla-(from (table 1) SE tion, R F-ratio for width) (percent) $\overline{Q} = 0.033 W^{1.76}$ 0.92 Med. silt-56 0.001 $Q_2 = 2.6 W^{1.27}$ clay bed 118 .63 .01 $Q_{\rm b} = 7.2 {
m W}^{1.16}$ $(SC_{bd} =$ 105 .63 .01 $Q_{10} = 18 \text{W}^{1.08}$ 31.60; 103 .61 .01 $Q_{25} = 22 \mathrm{W}^{1.05}$ d₅₀<2.0) 100 .025 .58 $Q_{50} = 31 W^{0.99}$ 99 .56 .025 $Q_{100} = 36 W^{1.02}$ 98 .54 .025 $\bar{Q} = 0.031 W^{1.73}$ 0.91 0.001 Low silt-83 $Q_2 = 2.8 W^{1.25}$ clay bed 107 .77 .001 $Q_{\rm b} = 9.0 \,{\rm W}^{1.11}$ $(SC_{bd} = 11.30;$.001 102 .74 $Q_{10} = 16 \mathrm{W}^{1.05}$ 99 .73 .001 $Q_{25} = 30 \mathrm{W}^{0.97}$ d₅₀<2.0) 98 .71 .001 $Q_{50} = 43 \mathrm{W}^{0.93}$ 97 .001 .69 $Q_{100} = 55 W^{0.93}$ 97 .67 .001 $\bar{Q} = 0.027 W^{1.69}$ 0.001 Sand bed, 57 0.95 silt $Q_2 = 3.3 W^{1.16}$ banks, 47 .93 .001 $(\mathrm{SC}_{\mathrm{bd}} \leq$ $Q_{\rm s} = 9.3 \, {\rm W}^{1.07}$ 10; 46 .92 .001 $SC_{bk} =$ $Q_{10} = 16 \mathrm{W}^{1.02}$.001 70.100; 45 .91 $Q_{25} = 29 \text{W}^{0.96}$ d₅₀<2.0) 46 .90 .001 $Q_{50} = 40 W^{0.93}$ 49 .87 .001 $Q_{100} = 51 \mathrm{W}^{0.92}$ 53 .85 .001 $\bar{Q} = 0.029 W^{1.62}$ Sand bed 73 0.94 0.001 sand $Q_2 = 0.96 W^{1.32}$ banks. 107 .85 .001 $(SC_{bd} \leq$ $Q_{5} = 2.4 \mathrm{W}^{1.26}$ 10: 124 .80 .001 SC_{bk}< $Q_{10} = 4.1 W^{1.21}$ 132 .78 .001 70; $Q_{25} = 7.5 \text{W}^{1.15}$ d₅₀<2.0) 140 .74 .001 $Q_{50} = 11 \mathrm{W}^{1.12}$.001 146 .72 $Q_{100} = 14 \mathrm{W}^{1.12}$.70 .001 152 $\overline{Q} = 0.023 W^{1.81}$ 0.001 Gravel bed 54 0.96 $Q_2 = 1.9 W^{1.15}$ 80 .82 .001 (d₅₀= $Q_{\rm s} = 6.6 {\rm W}^{0.95}$ 2.0.64) 81 .75 .001 $Q_{10} = 12 W^{0.84}$ 86 .69 .001 $Q_{25} = 25 W^{0.70}$ 93 .60 .001 $Q_{50} = 32 W^{0.67}$ 99 .54 .001 $Q_{100} = 54 \mathrm{W}^{0.60}$ 106 .47 .005 Cobble bed $\overline{Q} = 0.024 W^{1.84}$ 0.001 24 0.99 $Q_2 = 0.82 W^{1.43}$ 80 .90 .001 $(d_{50}>64)$ $Q_5 = 3.1 \mathrm{W}^{1.16}$ 74 .87 .001 $Q_{10} = 6.0 \mathrm{W}^{1.03}$ 72 .85 .001 $Q_{25} = 12 W^{0.89}$ 74 .001 .80 $Q_{50} = 20 W^{0.80}$ 81 .74 .001 $Q_{100} = 28 W^{0.75}$ 91 .005 .66

 TABLE 2.—Width-discharge relations for channels of specified sediment properties—Continued

reversed, and predicted mean discharges increase for channels of similar width. The predicted mean discharge of a 20-m (66-ft) wide channel armored with cobbles and boulders is 60 percent greater than that of the sand-bed, sand-banks channel.

In general, the results in table 2 for a given channel type show increasing coefficients and decreasing exponents as magnitudes and recurrence intervals of the floods increase. The causes of the decreasing exponents are (1) the tendency for increased attenuation of flood discharges in the downstream direction with increase in recurrence interval and (2) the tendency for decreased peak rates of precipitation and runoff, per unit area of a drainage basin, with increasing basin size. In other words, for most alluvial streams, the ratio of the 10-year flood to mean discharge (Q_{10}/Q) decreases as mean discharge, drainage area, and floodplain size increase in the downstream direction. For example, a greater rate of decrease generally occurs for the ratio Q_{50}/\overline{Q} than for Q_{10}/\overline{Q} . The result is a smaller exponent associated with Q_{50} than with Q_{10} . The relations for each stream type of table 2 are based on differing discharges (mean discharge or flood discharges of specified recurrence interval) but on the same activechannel widths. Thus, the relatively large exponents associated with mean discharges indicate that mean discharge commonly increases at a greater rate in the downstream direction than do, for example, the 50-year floods, which have relatively small associated exponents.

As comparisons to the various channel-type relations of table 2, structural analyses of the discharge characteristics with active-channel width were made for the entire file of 252 data sets (tables 8, 9). The results (table 3) demonstrate the differences that occur when the data are not separated into the sedimentcharacteristics groups (table 1). The standard errors of estimate for these relations indicate considerable data scatter, particularly for the large flood discharges, and the possibility of large errors if the equations were to be used for predictive purposes. As examples, if very silty bed channels and cobble-bed channels of 20-m (66-ft) width are considered, the discharges predicted by the equation for mean discharge of table 3 are 74 percent (silty bed) and 24 percent (cobble bed) less than those given by the corresponding equations in table 2.

As median particle sizes of bed material decrease from very course to very fine, associated channel gradients also decrease (Lane, 1957; Osterkamp, 1978). The relation is not uniform, however, particularly for sand channels. Therefore, gradient cannot be incorpo-

 $[\overline{Q}$ is mean discharge, in cubic meters per second; Q_i through Q_{100} are flood discharges, in cubic meters per second, of recurrence intervals 2 through 100 years; and W is active-channel width, in meters.]

Equation	Standard error of estimate, SE (percent)	Coefficient of correla- tion, R	Level of significance (from F-ratio for width)
$\overline{\bar{Q}} = 0.027 W_{ac}^{1.71}$	79	0.93	0.001
$Q_{2} = 1.9 W^{1.22}$	109	.81	.001
$Q_{\rm s} = 5.8 {\rm W}^{1.10}$	112	.77	.001
$Q_{10} = 9.9 W^{1.04}$	116	.74	.001
$Q_{\rm er} = 18 W^{0.97}$	120	.71	.001
$Q_{} = 25 W^{0.94}$	124	.68	.001
$Q_{100} = 32 W^{0.94}$	129	.66	.001

rated easily into width-discharge relations to yield multiple power-function equations. This problem largely is eliminated when the data are separated into groups of specified channel-sediment characteristics. The particle-size limits for each group can be selected to minimize the possibility of nonlinear effect on the width-discharge relation by gradient.

Equations that relate discharge characteristics to active-channel width and gradient for the several channel types (table 1) are presented in table 4. Comparison of tables 2 and 4 shows that (1) gradient is generally a statistically significant variable that gives improved results compared with the use of width only as the independent variable, (2) the significance of gradient is greatest for the relatively unstable (sandy) channels but provides little or no improvement for cohesive or armored channels, (3) the mean-discharge and smaller flood relations for the relatively sandy channels are improved more by considering gradient than are the relations for the infrequent flood discharges; and (4) negative exponents generally are associated with the gradient term, indicating an inverse relation with discharge. In some instances, the level of significance for gradient is too small to justify computation of a powerfunction equation, a situation indicated by blank (leaders) entries in table 4. The level of significance for gradient in all of the high and medium silt-clay bed relations is small, and these equations are not provided.

To illustrate again the effect that sediment properties have on discharge-geometry relations, width-gradient-discharge equations for the entire data set (tables 8, 9) are provided in table 5 as comparisons to those of table 4. Using the relations for mean discharge as an example, the standard errors of estimate for the channel-type equations (table 4) are from 34 to 92 per-

 TABLE 4.—Width-gradient-discharge relations for channels of specified sediment properties

 $|SC_{bd}|$ is silt-clay percentage of bed material; SC_{bk} is silt-clay percentage of bank material; and d_{so} is median particle size of bed material, in millimeters. \overline{Q} is mean discharge, in cubic meters per second; Q_2 through Q_{100} are flood discharges, in cubic meters per second, of recurrence intervals 2 through 100 years; W is active-channel width, in meters; and G is channel gradient (nondimensional). Too small level of significance for gradient to justify computation indicated by leaders ()]

	0 0 0 0				
Channel type (table 1)	Equation	Standard error of estimate, SE	Coeffi- cient of multiple corre-	Leve signifi (from 1 for w	icance F-ratio ridth,
		(percent)	lation, R	grad	ient)
Low silt-	$\overline{Q} = 0.0012 W^{1.36} G^{-0}$	^{.59} 67	0.94	0.001,	0.001
clay bed	$Q_2 = 0.065 W^{0.80} G^{-0.6}$	⁹ 87	.85	.001,	.005
(SC _{bd} =	$Q = 0.24 W^{0.68} G^{-0.66}$	84	.83	.001,	.005
11.30;	$Q = 0.57 W^{0.64} G^{-0.61}$	84	.81	.001,	.005
$d_{50} < 2.0$	$Q_{25} = 1.6 W_{0.60}^{0.60} G_{0.40}^{-0.54}$	86	.78	.001,	.000
$u_{50} < 2.0$	$Q_{25} = 1.6W$ G $Q_{50} = 3.3W^{0.58}$ G $^{-0.49}$	88	.75	.005,	.01
	$Q_{50} = 5.5 \text{W} \text{G}$ $Q_{100} = 6.6 \text{W}^{0.56} \text{G}^{-0.43}$	91	.75 .72		
	$Q_{100} = 0.0 W G$	91	.12	.005,	.05
Sand bed,	$\overline{Q} = 0.0018 W^{1.43} G^{-0}$	^{.49} 49	0.96	0.001,	0.005
Sanu beu,	Q = 0.0018W G , $Q_2 = 0.56W^{0.95}G^{-0.34}$	49 43	.94	.001,	
	$Q_{2} = 0.36 W G$ $Q_{5} = 1.6 W^{0.87} G^{-0.33}$	43 42	.94 .93	.001,	.025
$(SC_{bd} \leq 10)$	$Q_5 = 1.0 W$ G	42	.93	.001,	.025
$SC_{bk} =$	$Q_{10} = 2.9 W_{0.75}^{0.81} G_{0.33}^{-0.33}$	41	0.9	001	0.95
70.100;	$Q_{10} = 2.9 \text{ W}$ G $Q_{25} = 5.4 \text{ W}^{0.75} \text{ G}^{-0.32}$	41	.93	.001,	.025
d ₅₀ <2.0)	$Q_{25} = 5.4 \text{ W} \text{ G}$ $Q_{50} = 8.6 \text{ W}^{0.72} \text{ G}^{-0.30}$	42	.91	.001,	.025
	$Q_{50} = 8.6 \text{ W}^{-1} \text{ G}^{-0.31}$	46	.89	.001,	.05
	$Q_{100} = 12W^{0.68}G^{-0.31}$	50	.87	.001,	.05
Sand bed, sand	$\overline{Q} = 0.032 \mathrm{W}^{1.34} \mathrm{G}^{-0.4}$	⁴ 65	0.95	0.001,	0.001
banks,	$Q_2 = 0.13 W_{0.01}^{1.02} G_{0.012}^{-0.42}$	101	.86	.001,	.005
(SC _{bd} ≤10;	$Q_{\rm c} = 0.27 W^{0.94} G^{-0.46}$	117	.82	.001,	.005
SC_{bk}^{bd} <70;	$Q = 0.47 W^{0.88} G^{-0.46}$	125	.80	.001,	.005
$d_{50} < 2.0$	$O = 0.91 W^{0.03} G^{-0.44}$	134	.00	.001,	.000
450 (2.0)	$Q_{\rm c} = 1.4 W^{0.80} G^{-0.43}$	140	.74	.001,	.025
	$Q_{100} = 2.2 W^{0.77} G^{-0.42}$	146	.72	.001,	.025
	Q 100 2.211 C		.12	.001,	.020
Gravel bed $(d_{50} =$	$\overline{Q} = \dots $				
2.0.64)	$Q_{\rm r} = 1.9 W^{0.75} G^{-0.27}$	77	0.79	0.001,	0.05
2.0. 0 1)	$Q = 2.8W^{0.63}G^{-0.32}$	79	.74	.001,	.025
	$O = 4.6W^{0.50}G^{-0.35}$	85	.68	.001,	.025
	$0 - 6 \mathrm{GW}^{0.42} \mathrm{C}^{-0.36}$	91	.63	.001,	.025
	$Q_{100} = 9.3 W^{0.35} G^{-0.37}$	97	.57	.005,	.025,
	4100 V.OTT C		.01	.020	.020,
Cobble bed	$\overline{Q} = 0.024 W^{1.82} G^{-0.0}$	¹ 25	0.99	0.001,	
(d ₅₀ >64)	$Q_{1} = 0.14 W^{1.39} G^{-0.34}$	69	.93	.001,	.025
(450/03)	$Q = 0.40 W^{1.13} G^{-0.38}$	58	.93	.001,	.025
	$Q_{10} = 0.79 W^{0.99} G^{-0.38}$	55	.92	.001,	.005
	$Q_{10} = 0.79$ W G $Q_{25} = 1.8$ W ^{0.85} G ^{-0.36}	60	.91	.001,	.005
	$Q_{25} = 1.8 \text{ W}$ G $Q_{50} = 3.3 \text{ W}^{0.76} \text{ G}^{-0.34}$	60 70	.82		
	$Q_{50} = 3.3 \text{ W} \text{ G}$ $Q_{100} = 5.8 \text{ W}^{0.68} \text{ G}^{-0.31}$.001,	.025
	$Q_{100} = 0.8 \text{ W}$ G	83	.74	.001,	.10

cent of that for all data (table 5). A general improvement in precision, as indicated by the standard errors, is evident also for the flood relations, although it is less pronounced than that for mean discharge.

 TABLE 5.—Width-gradient-discharge relations resulting from analysis of all data

[Q is mean discharge, in cubic meters per second; Q, through Q₁₀₀ are flood discharges, in cubic meters per second, of recurrence intervals 2 through 100 years; W is active-channel width, in meters; and G is channel gradient (nondimensional)]

Equation	Standard error of estimate, SE (percent)	Coeffi- cient of multiple corre- lation, R	Level of significance (from F-ratio for width, gradient)	
$\overline{Q} = 0.0074 W^{1.54} G^{-0.26}$	73	0.94	0.001, 0.001	
$Q_2 = 0.24 W^{0.96} G^{-0.40}$	9 8	.84	.001, .001	
$Q_5 = 0.53 W^{0.82} G^{-0.45}$	9 8	.82	.001, .001	
$Q_{10} = 0.85 W^{0.75} G^{-0.47}$	101	.80	.001, .001	
$Q_{25} = 1.5 W^{0.69} G^{-0.48}$	105	.77	.001, .001	
$Q_{10} = 2.1 \mathrm{W}^{0.65} \mathrm{G}^{-0.48}$	110	.75	.001, .001	
$Q_{100} = 2.9 W^{0.61} G^{-0.48}$	114	.73	.001, .001	

The width-gradient discharge relations of tables 4 and 5 are difficult to compare directly with similar width-discharge relations of tables 2 and 3. Owing to weak intercorrelation of gradient with width and discharge, a width exponent from table 4 or 5 must differ from the corresponding exponent of table 2 or 3.

IMPLICATIONS OF THE COMPUTER ANALYSES

The practical result of this study is the presentation of sediment-dependent equations for the purpose of general (nonregionalized) estimates of discharge characteristics (tables 2, 4). Of perhaps greater consequence, however, is the demonstration that sediment variables of the channel perimeter have a quantitative, statistically significant correspondence with activechannel width. Previously cited studies have demonstrated that correspondence, but because the data were of limited number or of regional scope, the results have been subject to question. Owing to the extensive range of hydrologic, climatic, and geologic-topographic conditions represented by the data in tables 8 and 9, the differences among corresponding discharge equations of tables 2 and 4 principally appear to be the result of differences in fluvial-sediment conditions. Local or regional differences in variables, such as climate and geology, no doubt account for a part of the standard errors, but it appears unlikely that they are the major cause of the differences among the equations.

EFFECT OF SEDIMENT

Comparisons of the equations of tables 2 and 4 indicate several generalizations regarding the effect of

channel sediment on geometry-discharge relations of alluvial stream channels. The generalizations are advanced as observations only, with little attempt to relate them to theoretical considerations of hydraulics and sediment movement. It is noted, however, that the observations generally are consistent with established theory.

(1) Just as the widest streams, relative to discharge characteristics, occur in highly sandy channels, the smallest exponent for the width-mean-discharge relation is associated with highly sandy channel material. These trends are illustrated in figure 3, a graphical representation of the equations that relate active-channel width and mean discharge for the seven channel types (table 1). For channels of similar width, the largest discharges and exponents occur for the high siltclay bed channels; discharges and exponents steadily decrease for channels of increasing sandiness and increase again as increasing median particle sizes and armoring provide channel stability (table 2; fig. 3). The coefficients, of course, reflect the changes in width relative to discharge, but they are difficult to compare owing to the variable exponents.

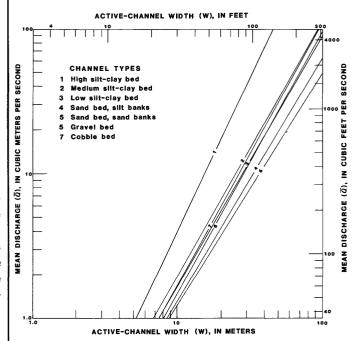


FIGURE 3.—Structural relations between active-channel width and mean discharge for stream channels of specified sediment characteristics.

- (2) The general instability of the sandiest channels is reflected by relatively large standard errors of estimate; whereas, the relations for the most stable channels (high silt-clay bed and cobblebed channels) tend to have the smallest standard errors (table 2). It is inferred that flood discharges generally have minimal effect on widths of the relatively stable channels but cause substantial erosion and widening of the sand channels. Depending on recent discharge histories, therefore, the widths of the sand channels show significant variation relative to discharge characteristics, causing large standard errors of estimate.
- (3) The exponents for the mean-discharge equations (table 2) show an apparent inverse relation with the sand content of the channel material. The results of this study and previous studies (Hedman and Kastner, 1977; Osterkamp, 1979a), however, indicate that variation in the exponents principally is the result of differences in the amount of bed-material load transported by the stream. This conclusion is supported also by a variety of laboratory (flume) studies, particularly an exhaustive study of channel morphology by Khan (1971). Streams that transport a small amount of sediment as bed load, such as the high silt-clay bed streams and well-armored (cobble-bed) streams, give relatively large exponents for the width-mean-discharge relation. Because sand sizes generally account for a large part of the bed-material movement (of those streams in which bed load is a significant part of the total sediment load), channels formed primarily of sand ordinarily have relatively small exponents for width-mean-discharge relations. Exceptions occur where stream flow on sand but are largely incapable of moving the sand. An example is many spring-effluent channels that have very steady discharges, a lack of erosive flood peaks, relatively narrow and stable geometries, and an exponent for the widthmean-discharge relation of about 2.0 (Osterkamp, 1979a).
- (4) For streams of specified discharge characteristics, the widths of stable channels in large part appear to be a function of the sediment that is moved by traction forces. Streams that discharge relatively large amounts of sand as bedmaterial load, therefore, require a large channel width to maintain sediment movement. As extreme examples of streams that convey a large part of the total sediment discharge as bed-material load, structural analyses were made for

two small groups of data from the Sand Hills area of Nebraska (table 6; fig. 4). The two groups of data both represent highly sandy (dune sand) basin conditions but are treated separately owing to differences in the content of silt sizes in the soils and, therefore, in the runoff characteristics. Consistent with the observations presented here, most of the Sand Hills channels are very wide relative to discharge, and the data have relatively small exponents for the width-meandischarge equations (table 6).

 TABLE 6.—Width-discharge relations for selected stream channels of the Sand Hills area, Nebraska

 $[\overline{Q}$ is mean discharge, in cubic meters per second; Q, through Q_{100} are flood discharges, in cubic meters per second, of recurrence intervals 2 through 100 years; and W is active-channel width, in meters]

Data source	Equation	Standard error of estimate, SE (percent)	Coefficient of correla- tion, R	Level of significance (from F-ratio for width)
North and Middle Loup Rivers.	$ \overline{Q} = 0.46 W^{0.90} Q_2 = 0.031 W^{1.86} Q_5 = 0.13 W^{2.18} Q_{10} = 0.0075 W^{2.37} Q_{2s} = 0.0040 W^{2.59} Q_{50} = 0.0025 W^{2.74} Q_{100} = 0.0016 W^{2.90} $	10 26 35 40 47 52 56	0.98 .97 .97 .96 .96 .95 .95	0.001 .001 .001 .001 .001 .001 .001
Calamus, Cedar, Elkhorn, North Fork Elkhorn, and South Loup Rivers.	\overline{Q} =0.27W ^{0.86}	16	.95	.001

(5) Owing to increases of basin size and attenuation of flood discharges in the downstream direction, exponents of width in table 2 for the various channel types of table 1 typically decrease as the recurrence interval increases. Thus, for a specified channel type, the percentage differences among the various flood magnitudes generally are greatest for floods with a small recurrence interval and progressively decrease as the flood magnitudes increase (table 2). These trends for the seven channel types (table 1) are represented in figures 5-11. Exceptions to these generalizations are provided by streams of the Sand Hills (table 6; fig. 4). Owing largely to the unique geology of the area, streams of the Sand Hills have (1) increasing discharge variability, (2) an increasing tendency for braided channel patterns, and (3) increasing exponents with flood magnitudes in the downstream direction (Osterkamp, 1978).

12

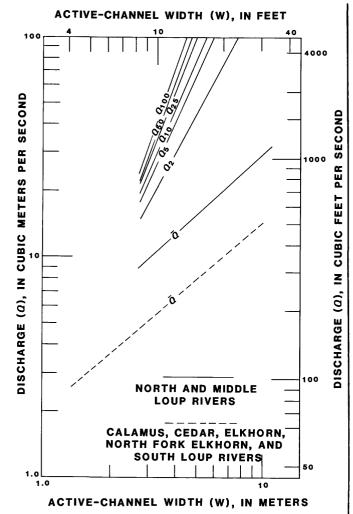


FIGURE 4.—Structural relations between active-channel width and discharge characteristics for selected streams of the Sand Hills area, Nebraska.

EFFECT OF GRADIENT AND OTHER VARIABLES ON WIDTH-DISCHARGE RELATIONS

In tables 4 and 5 channel gradients are treated as independent variables, although it is acknowledged that they are dependent chiefly on the water and sediment discharge of a channel. Previous studies (Lane, 1957; Osterkamp, 1978) have established gradient-discharge relations and the manner in which they vary according to differences in bed-material sizes. If channel-sediment characteristics were presented as power functions in the equations of this paper instead of as ranges or groups of width-discharge data, the insertion of a gradient expression would be redundant. Within each channel-type group (table 1), however, no sediment-size distinctions are made, and the use of a gradient term is valid. For each channel type, it is assumed that gradient has an approximately linear effect (after logarithmic transformations) on the width-discharge relations; although, as previously noted, this assumption is invalid when applied to the spectrum of sediment conditions (table 5).

It was established (Osterkamp, 1978) that:

$$G \approx a \overline{Q}^{-0.25}$$
, (3)

or, in terms of mean discharge (\overline{Q}) as the dependent variable,

$$\overline{Q} \approx a' G^{-4.0}, \qquad (4)$$

thereby indicating that with an increase of mean discharge in the downstream direction a general decrease in channel gradient (G) occurs. The coefficients, a and a', in large part vary with the characteristics of channel sediment (Osterkamp, 1978). When included in a multiple power-function equation, the gradient exponent is reduced, of course, in absolute value, but it must retain a negative value to provide a meaningful physical relation to discharge estimates. In general,

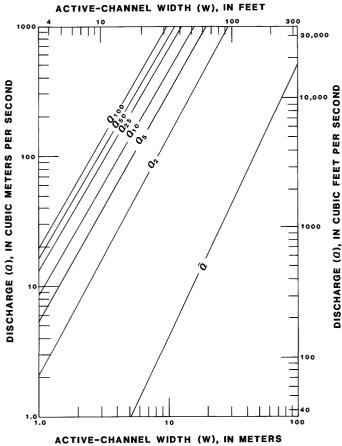


FIGURE 5.—Structural relations between active-channel width and discharge characteristics for high silt-clay bed channels.

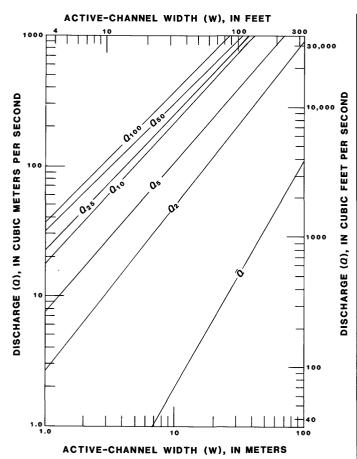


FIGURE 6.—Structural relations between active-channel width and discharge characteristics for medium silt-clay bed channels.

the gradient exponents (table 4) range from -0.3 to -0.7, regardless of flow frequency. These exponents result in as much as a three-fold variation for typical ranges in gradient within the several channel-type groups. As examples, width-discharge equations for sand-bed, sand-banks channels (table 4) are illustrated in figure 12 for mean discharges and floods of 25-year recurrence intervals using representative values of gradient for that channel type. These examples show about a two-fold difference in predicted discharges for the range of gradients selected (fig. 12).

Numerous studies of downstream hydraulic geometry and channel geometry demonstrate that mean depth (\overline{d}) , like width, has a general power-function relation with discharge characteristics:

$$Q \approx d^{\mathrm{f}},$$
 (5)

where f is a positive exponent.

For most channel types, mean depth increases with mean discharge but at a slower rate than does width. Mean depths were depths that were measured (or, in some instances, estimated) at all sites included in this study, and the depths are listed in table 9. Channel depth, however, can be variable within relatively short reaches, as well as through time at the same section. Hence, representative depths cannot be defined reliably; thus, depth shows little statistical significance (Schumm, 1961; Hedman, Kastner, and Hejl, 1974). Despite this difficulty, a number of computer analyses that included considerations of depth were made to determine whether mean depth could provide improvement to the width-discharge relations. The resulting relations are not shown because the exponent for depth was not statistically significant and was unrealistically negative.

Two variables that can have a large effect on widthdischarge relations but which receive limited attention here are climate, particularly as reflected by riparian vegetation, and stream flashiness. The amount, type, and maturity of riparian vegetation are known to have measurable effects on the sizes and shapes of alluvial channels (Schumm and Lickty, 1963; Burkham, 1972; Osterkamp, 1977). Because the stablizing effect that a

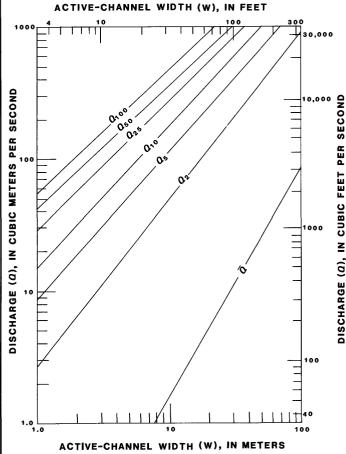


FIGURE 7.—Structural relations between active-channel width and discharge characteristics for low silt-clay bed channels.

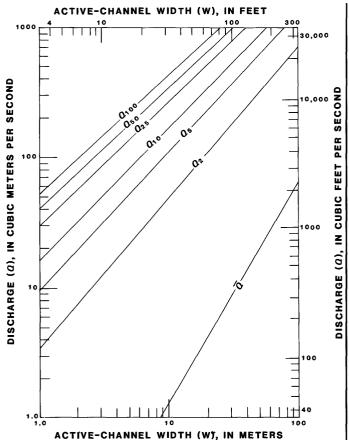


FIGURE 8.—Structural relations between active-channel width and discharge characteristics for sand-bed, silt-banks channels.

community of riparian vegetation has on channel banks is virtually the same regardless of channel size, the relative effect on width-discharge relations decreases as mean discharges increase. Quantative téchniques for measuring the effects of vegetation have not been developed yet, and therefore vegetation is not considered in the equations of this paper.

In general, unregulated stream channels are widened only during erosive discharge and have a tendency to narrow at all other times of discharge (Burkham, 1972; Osterkamp, 1977, 1979a). Relatively stable, narrow channels, therefore, are more likely to occur for streams of steady discharge than for those of highly variable and periodically erosive discharge. Natural examples of the two extremes are the channels of very steady spring effluent and the channels of highly ephemeral streamflow in an arid or semiarid region.

Because the discharge characteristics of most partly regulated streams do not differ greatly from many natural streams of discharge with small variability, data from some partly regulated streams are incorporated into this study. Except to provide examples, the relations presented here are not separated into groups based on discharge variability because: (1) additional grouping within most of the channel-type classes (table 1) would result in data sets too small to provide dependable results, (2) the use of discharge characteristics as a basis (independent variable) for estimating other discharge characteristics is a questionable practice, and (3) commonly, little is known of the discharge characteristics when the channel-geometry equations are used in practical manner.

The results of computer analyses for sand-bed, sandbanks channels when the data are divided into two groups according to discharge variability are given in table 7. Sand-channel streams are used to illustrate the effect of stream flashiness because sufficient data (96 sets) are available. They represent a wide range of geologic and hydrologic conditions. Results (tables 2, 4) show general instability and large standard errors of estimate, and the channels are easily widened by erosive discharges. The data were separated into two groups, those that have low variability of discharge and those that have highly variable discharge, which are defined as having ratios of the 10-year flood to

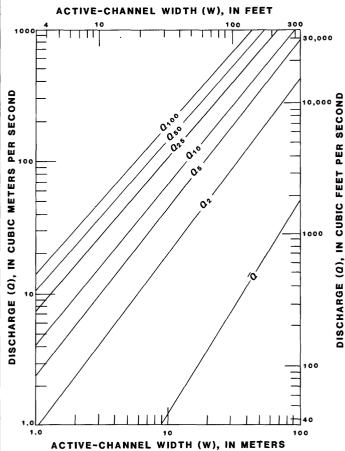


FIGURE 9.—Structural relations between active-channel width and discharge characteristics for sand-bed, sand-banks channels.

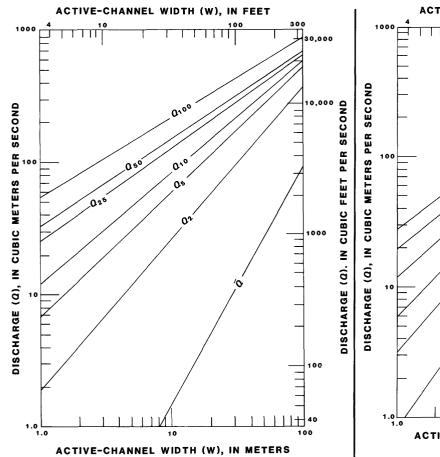


FIGURE 10.—Structural relations between active-channel width and discharge characteristics for gravel-bed channels.

mean discharge (Q_{10}/\overline{Q}) of less than or equal to 60, and more than 60, respectively.

Comparisons of the results in table 7 with the corresponding results of tables 2 and 4 show significant differences in both the equations and standard errors of estimate. Relative to the equations of tables 2 and 4, relations for the low-variability streams have larger width exponents and smaller coefficients, indicating slower transport rates of bed-material load, and the high-variability streams have smaller width exponents and larger coefficients, indicating faster transport rates of bed-material sizes. Thus, the equations confirm the expected result that little discharge variability favors relatively narrow channels, whereas increased variability and erosive flood discharges produce wider channels. It is inferred that the width exponents for the low-variability data would be even larger if the somewhat anomalous data from the Sand Hills area, Nebraska, were not disproportional in that group. Probably because of the unusual geologic condi-

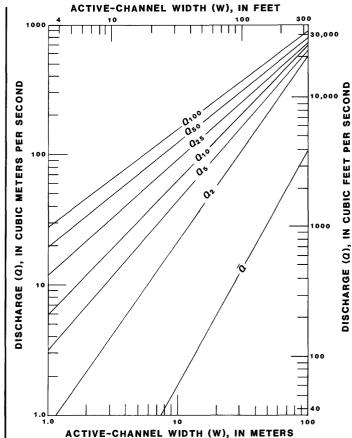


FIGURE 11.—Structural relations between active-channel width and discharge characteristics for cobble-bed channels.

tions of the Sand Hills, channels there convey very low-variability discharge yet tend to be relatively wide. For this reason, the standard errors of estimate for the low-variability streams (table 7) remain large, being only moderately smaller than those of the sand-bed, sand-banks' channels in general (tables 2, 4). The highly variable discharge streams, however, appear to yield a representative set of data and show standard errors substantially less (table 7) than those of the entire data set for sand-channel streams (tables 2, 4).

Width-discharge and width-gradient-discharge relations no doubt are affected by other variables that are not considered here. Among these complicating variables are land-use practices (for example, the effect of livestock), water salinity (and its potential for flocculation of clay particles), and particularly the elapsed time since the last erosive flood. Suitable methods presently are not available to evaluate quantitatively the effects of these or other potential effects of geometry-discharge relations.

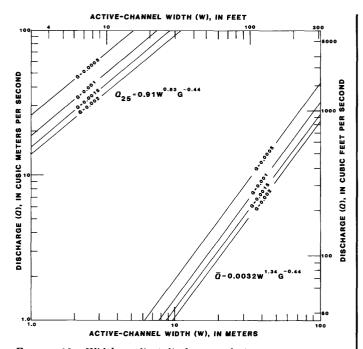


FIGURE 12.—Width-gradient-discharge relations for mean discharges (\overline{Q}) and the 25-year floods (Q_{25}) for sand-bed, sandbanks channels using representative values of gradient (G).

VARIABILITY AND ERROR ANALYSIS

Statistical summaries for the equations given in tables 2, 4, 6, and 7 show large ranges for the standard errors of estimate, correlation coefficients, and levels of significance. Numerous causes or sources of error appear to contribute to the standard-error values; these include: (1) inaccurate or misleading discharge data, (2) inconsistent geometry data resulting from improper site selection or differences in measuring technique between sites, (3) discharge variability and elapsed time since the previous erosive flood, (4) improper collection and analysis techniques for the channel-material samples, (5) grouping of channels by ranges of channel-sediment properties, and (6) other complicating variables, only some of which have been mentioned. Of these, the first three sources of error appear to be the most significant.

As previously mentioned, most measurement sites for this study were selected at streamflow-gaging stations that have at least 20 years of continuous discharge records. For this length of record, it is calculated for Kansas streams, as an example, that the standard errors of estimate for accuracy of mean discharge is about 0.10 log unit, or roughly 25 percent (average) (Jordan and Hedman, 1970, p. 16). Thus, a similar part of the standard error for each equation in tables 2, 4,

TABLE 7.—Width-discharge and width-gradient-discharge relations for sand-bed, sand-banks channels of differing discharge variability

[Q is mean discharge, in cubic meters per second; Q₂ through Q₁₀₀ are flood discharges, in cubic meters per second, of recurrence intervals 2 through 100 years; W is active-channel width, in meters; and G is channel gradient (nondimensional)]

Discharge variability	Equation	Standard error of esti- mate, SE (percent)	Percentage reduction of average SE from corre- sponding value in table 2 or 4
Low,	$\overline{Q} = 0.035 W^{1.62}$	71	2
$Q_{10}/\overline{Q} \leq 60$	$Q = 0.0044 W^{1.36} G^{-0.42}$	65	0
(55 data	$Q_{1} = 0.32 W^{1.51}$	94	13
sets)	$Q_2 = 0.029 \mathrm{W}^{1.18} \mathrm{G}^{-0.49}$	86	15
	$Q_{\rm c} = 0.60 {\rm W}^{1.50}$	101	23
	$Q_5 = 0.038 W^{1.13} G^{-0.56}$	91	26
	$Q_{1} = 0.92 W^{1.47}$	104	28
	$Q_{10} = 0.055 W^{1.09} G^{-0.58}$	94	31
	$Q = 1.5W^{1.40}$	110	30
	$Q_{\rm ss} = 0.088 {\rm W}^{1.05} {\rm G}^{-0.58}$	99	35
	$Q_{1} = 2.1 W^{1.41}$	115	31
	$Q_{10} = 0.12 W^{1.01} G^{-0.58}$	105	35
	$O = 2.6W^{1.40}$	121	31
	$Q_{100} = 0.17 W^{0.99} G^{-0.58}$	111	35
High,	$\overline{Q} = 0.047 W^{1.36}$	59	14
$(Q_{10}/\overline{Q}) > 60$	$\overline{Q} = 0.0042 W^{1.03} G^{-0.49}$	45	20
(41 data	$O = 3.9W^{1.04}$	57	50
sets)	$Q_{0} = 1.6 W^{0.81} G^{-0.23}$	55	46
	$Q_{1} = 15W^{0.89}$	50	74
	$Q_{s} = 7.3 W^{0.69} G^{-0.19}$	49	6 8
	$Q_{1} = 30W^{0.81}$	48	84
	$Q_{10} = 17 W^{0.62} G^{-0.16}$	47	78
	$Q = 64W^{0.71}$	47	93
	$Q_{\rm or} = 46 W^{0.55} G^{-0.12}$	47	87
	$Q_{1} = 100 W^{0.00}$	48	98
	$Q_{10} = 85 W^{0.30} G^{-0.09}$	48	92
	$0 - 140W^{0.04}$	50	102
	$Q_{100} = 140W$ $Q_{100} = 160W^{0.45}G^{-0.06}$	50	96

and 7 can be assumed to be the result of inaccurate values for mean discharge. (Owing to close similarities for discharge and channel data, the same generalization is not true for the relations in table 6.)

The data in tables 2 and 4 also show that, in general, the smallest standard errors of estimate and largest correlation coefficients are associated with the most stable channels, those formed of abundant fine-grained material and those that are well armored. Ostensibly because sand channels are the most vulnerable to widening by flood discharges, they have the poorest correlations between width (and gradient) and the various discharge characteristics. Hence, the sand-channel relations show relatively large standard errors of estimate. When discharge variability is considered, even in an approximate manner, substantial improvement in the standard errors results (table 7).

Similarities in the equations in table 5 and most of the equations in table 4 indicate that the exponent value for gradient ordinarily should be -0.4 to -0.5. When values differ significantly from this range, use of a gradient term in a width-discharge relation does not lead to reduction of standard error, and the levels of significance for gradient are very small (tables 2, 3, 4, 5, 7). For the high and medium silt-clay bed channels, the values and ranges of gradient probably are too small and the errors due to measurement too great to permit statistically significant results. For those two channel types, therefore, gradient exponents are anomalous (of positive value), lead to an increase in standard errors of estimate, and show little significance. For these reasons, width-gradient-discharge relations for the high and medium silt-clay bed channels have been omitted from table 4. The other width-gradient-discharge relations presented in this paper (table 4, 7) appear to be preferrable alternatives to the width-discharge equations if gradient information is available.

Comparisons of the standard errors of estimate for the relations presented here with those of analogous equations for regions of the Missouri River basin (Hedman and Kastner, 1977) are variable. For those equations that do not compare favorably, several possible causes can be cited:

- (1) The data sets, thus equations, of Hedman and Kastner (1977) were determined in part by regionalization of the Missouri River basin for mean discharge and flood characteristics, resulting in the smallest standard errors that could be achieved while maintaining reasonably consistent regional boundaries. The process of dividing the basin into regions serves to minimize the differences in discharge variability, topography, and climate within each region, as well as isolating data, such as those of the Sand Hills, that could appear anomalous in other data groupings.
- (2) The data of Hedman and Kastner (1977) were limited to gage sites on unregulated streams with a minimum of 20 years of continuous records. For reasons previously mentioned, the data of this report include those from some partly regulated streams and from several streams with fewer than 20 years of record. The standard errors for the flood equations, in particular, can be expected to be increased by the inclusion of data from partly regulated streams.

(3) The defined ranges of sediment characteristics for several of the channel types (table 1) in this analysis may be too broad to provide small standard errors. More importantly, when streams transport significant amounts of both the silt-clay and sand sizes, bed-and-bank samples can be variable through time as well as within short channel distances at the same time. Thus, it is difficult to obtain representative samples for these types of streams. This difficulty is inferred to be much of the cause for the relatively large standard errors of estimate for the relations of the medium and low silt-clay bed channels (tables 2, 4).

UTILITY AND CONCLUSIONS

The results of this study demonstrate that sediment characteristics have a quantitative effect on geometrydischarge relations of alluvial channels, but it has been shown that regionally defined relations sometimes provide better results than do the equations given here. For practical purposes, perhaps discharge characteristics for the Missouri River basin need to be estimated using both the equations in tables 2 and 4 and regionalized relations, such as those of Hedman and Kastner (1977). A benefit of the present study is that the equations probably are applicable to ungaged perennial, alluvial streams of other areas.

Similar to relations developed by channel-geometry techniques, the equations provided here yield estimates of discharge characteristics quickly and inexpensively. Unlike the equations of most other studies, they require knowledge, generally particle-size analyses, of the channel-sediment characteristics. For reconnaissance purposes, however, it is sometimes impractical to collect and analyze the necessary samples. By making qualitative evaluations of the sediment characteristics of a channel and by generalizing the equations in table 2, immediate onsite estimates of discharge are feasible. For example, onsite observations generally are adequate to identify sand-bed, silt-banks channels; sand-bed, sand-banks channels; and channels that are bedded by gravel or cobbles. The appropriate equations from table 2 (or table 7) then can be applied directly. Discharges for the remaining channels, with relatively muddy streams, can be generalized by

$$\bar{Q} = 0.03 W^{2.0};$$
 (6)

- (7)
- $Q = 0.03 W^{1.5};$ $Q_2 = 2W^{1.5};$ $Q_5 = 7W^{1.4};$ $Q_{10} = 14W^{1.3};$ $Q_{25} = 22W^{1.2};$ (8) (9)
- (10)

$$Q_{50} = 30 W^{1.1};$$

$$Q_{100} = 37 W^{1.1}$$
.

The above equations, which are composites modifying the high and medium silt-clay bed equations of table 2, express discharge (Q) in cubic meters per second and width (W) in meters; equivalent equations, in inchpound units, are given in table 10 (p. 36).

Besides the effect of channel-sediment properties on width-discharge relations, the results of this study demonstrate that discharge variability can have a measurable effect on channel geometry. Sand channels lacking sufficient fine or coarse material to form resistant banks are most susceptible to differing geometries due to discharge variability (table 7). Thus, as indicated earlier, channel size and shape are the integrated results of all water and sediment discharges conveyed by the channel, and when applied to the active-channel section, the concept of a specific channelforming discharge seems inappropriate. It follows from these results that at least qualitative predictions are feasible for the channel changes that might occur as a result of upstream alterations, such as dam and reservoir construction, changes in land-use practices, diversion of streamflow, or channelization. Furthermore, if the channel material and discharge characteristics of reservoir releases or a controlled drainage system can be anticipated, the results given here can be used for design purposes of the channel. As noted previously, regime studies (for the design of irrigation canals) date back many decades, but the present study includes much broader ranges of discharges and channel-sediment properties than do the canal studies.

REFERENCES CITED

- Brush, L. M., Jr., 1961, Drainage basins, channels, and flow characteristics of selected streams in central Pennsylvania: U.S. Geological Survey Professional Paper 282-F, p. 145-181.
- Burkham, D. E., 1972, Channel changes of the Gila River in Safford Valley, Arizona, 1846-1970: U.S. Geological Survey Professional Paper 655-G, 24 p.
- DeWalle, D. R., and Rango, Albert, 1972, Water resources applications of stream channel characteristics on small forested basins: Water Resources Bulletin, American Water Resources Association, v. 8, no. 4, August 1972, p. 697-703.
- Dixon, W. J., ed., 1965, BMD, Biomedical computer programs: Los Angeles, University of California School of Medicine, 620 p.
- Emmett, W. W., 1972, The hydraulic geometry of some Alaskan streams south of the Yukon River: U.S. Geological Survey Open-File Report, 44 p.
- Guy, H. P., 1969, Laboratory theory and methods for sediment analysis: U.S. Geological Survey Techniques of Water-Resources Investigations, book 5, chap. C-1, 58 p.

- (11) Hedman, E. R., 1970, Mean annual runoff as related to channel geometry in selected streams in California: U.S. Geological Survey Water-Supply Paper 1999-E, p. E1-E17.
 (12) Hedman, E. R., and Kastner, W. M., 1972, Kansas streamflow char-
 - Hedman, E. R., and Kastner, W. M., 1972, Kansas streamflow characteristics, part 9—Mean annual runoff as related to channel geometry of selected streams in Kansas: Kansas Water Resources Board Technical Report No. 9, 25 p.
 - ——1977, Streamflow characteristics related to channel geometry in the Missouri River basin: U.S. Geological Survey Journal of Research, v. 5, no. 3, May-June 1977, p. 285-350.
 - Hedman, E. R., Kastner, W. M., and Hejl, H. R., 1974, Kansas streamflow characteristics, part 10-Selected streamflow characteristics as related to active-channel geometry of streams in Kansas: Kansas Water Resources Board Technical Report No. 10, 21 p.
 - Hedman, E. R., Moore, D. O., and Livingston, R. K., 1972, Selected streamflow characteristics as related to channel geometry of perennail streams in Colorado: U.S. Geological Survey Open-File Report, 14 p.
 - Jordan, P. R., and Hedman, E. R., 1970, Evaluation of the surfacewater data program in Kansas: Kansas Water Resources Board Bulletin 12, 49 p.
 - Kennedy, R. C., 1895, Prevention of silting in irrigation canals: Institute of Civil Engineers Proceedings, v. 119, p. 281-290.
 - Khan, H. R., 1971, Laboratory study of alluvial river morphology; Fort Collins, Colorado State University, unpublished Ph. D. thesis, 189 p.
 - Kopaliani, F. D., and Romashin, V. V., 1970, Channel dynamics of mountain rivers in "Soviet Hydrology: Selected Papers": American Geophysical Union, v. 5, p. 441-452.
 - Lacey, Gerald, 1930, Stable channels in alluvium: Institute of Civil Engineers Proceedings, v. 229, p. 259-384.
 - Lane, E. W., 1957, A study of the shape of channels formed by natural streams flowing in erodible material: U.S. Army Engineer Division, Missouri River, M.R.D. Sediment Series 9, 106 p.
 - Leopold, L. B., and Maddock, Thomas, Jr., 1953, The hydraulic geometry of stream channels and some physiographic implications: U.S. Geological Survey Professional Paper 252, 57 p.
 - Lowham, H. W., 1976, Techniques for estimating flow characteristics of Wyoming streams: U.S. Geological Survey Water-Resources Investigations 76-112, 86 p.
 - Mark, D. M., and Church, Michael, 1977, On the misuse of regression in earth science: Mathematical Geology, v. 9, p. 63-75.
 - Moore, D. O., 1968, Estimating mean runoff in ungaged semiarid areas: International Association of Scientific Hydrology Buletin, v. 13, no. 1, February 1968, p. 29-39.
 - Nixon, M., 1959, A study of the bankfull discharges of rivers in England and Wales: Institute of Civil Engineers Proceedings (London), v. 12, p. 157-174.
 - Osterkamp, W. R., 1977, Effect of channel sediment on width-discharge relations, with emphasis on streams in Kansas: Kansas Water Resources Board Bulletin 21, 25 p.
 - ——1978, Gradient, discharge, and particle-size relations of alluvial channels in Kansas, with observations on braiding: American Journal of Science, v. 278, November 1978, p. 1253-1268.

 - 1979b, Bed- and bank-material sampling procedures at channel-geometry sites: Denver, Colo., Proceedings—National Conference on Quality Assurance of Environmental Measurements, p. 86–89.

- Osterkamp, W. R., and Hedman, E. R., 1977, Variation of width and discharge for natural high-gradient stream channels: Water Resources Research, v. 13, no. 2, April 1977, p. 256–258.
- Osterkamp, W. R., McNellis, J. M., and Jordan, P. R., 1978, Guidelines for the use of structural versus regression analysis in geomorphic studies: U.S. Geological Survey Water-Resources Investigations 78-135, 22 p.
- Pickup, G., and Rieger, W. A., 1979, A conceptual model of the relationship between channel characteristics and discharge: Earth Surface Processes, v. 4, p. 37-42.
- Riggs, H. C., 1974, Flash flood potential from channel measurements: Paris, France, Flash Floods Symposium, Publication No. 112, International Association of Hydrological Sciences, p. 52-56.
- Riggs, H. C., and Harenberg, W. A., 1976, Flood characteristics of streams in Owyhee County, Idaho: U.S. Geological Survey Water-Resources Investigations, Open-File Report 76-88, 14 p.
- Schumm, S. A., 1960a, The effect of sediment type on the shape and stratification of some modern fluvial deposits: American Journal of Science, v. 258, p. 177-184.

- ——1960b, The shape of alluvial channels in relation to sediment type: U.S. Geological Survey Professional Paper 352-B, p. 17-30.

- Schumm, S. A., and Lichty, R. W., 1963, Channel widening and flood-plain construction along Cimarron River in southwestern Kansas: U.S. Geological Survey Professional Paper 352-D, p. 71-88.
- Scott, A. G., and Kunkler, J. L., 1976, Flood discharges of streams in New Mexico as related to channel geometry: U.S. Geological Survey Open-File Report 76-414, 38 p.
- Stall, J. B., and Fok, Yu-si, 1968, Hydraulic geometry of Illinois streams: Illinois State Water Survey Research Report 15, 47 p.
- Wolman, M. G., 1954, A method of sampling coarse river bed material: American Geophysical Union Transactions, v. 35, no. 6, p. 951–956.
 - 1955, The natural channel of Brandywine Creek, Pennsylvania: U.S. Geological Survey Professional Paper 271, 56 p.

TABLE 8.-Discharge characteristics of selected streams in the Missouri River basin

[Q, mean discharge; Q₁, 2-year flood discharge; Q₅, 5-year flood discharge; Q₁₀, 10-year flood discharge; Q₁₀, 25-year flood discharge; Q₅₀, 50-year flood discharge; Q₁₀₀, 100-year flood discharge;

lap lo.	Station No.	Station Name	\overline{Q}	Q_2	Q_{s}	Q_{10}	Q_{25}	Q 50	Q_{100}
		Beaverhead River near Twin				<u></u>			
	06025500	Bridges, Mont Big Hole River near Melrose,	11.6	30.3	41.9	49.8	60.0	67.6	75.4
		Mont. Jefferson River at Silver Star,	32.5	207	309	374	456	518	578
		Mont. Hyalite Creek at Hyalite	55.9	183	342	383	424	448	468
	00050500	Ranger Station near Bozeman, Mont.	1.89	11.6	16.0	18.9	22.5	25.3	28.1
		Gallatin River at Logan, Mont.	29.6	141	188	217	251	275	299
		Missouri River near Landusky, Mont.	262	850	1389	1868	2647	3375	4250
		Musselshell River at Harlowton, Mont.	4.57	30.3	57.8	78.5	106	128	151
		Musselshell River near Ryegate, Mont.	5.01	38.8	81.3	118	175	225	280
		Musselshell River near Roundup, Mont.	5.61	50.7	95.8	132	185	229	278
)	06127500	Musselshell River at Musselshell, Mont	5.64	46.5	92.3	132	185	234	278
		Missouri River near Culbertson, Mont	297	683	1000	1320	1820	2320	2890
	06191500	Yellowstone River at Corwin Springs, Mont.	88.4	487	620	697	785	844	898
	06192500	Yellowstone River near Livingston, Mont.	107	584	720	802	892	958	1017
	06197500	Boulder River near Contact, Mont.	10.8	105	125	137	150	159	167
	06200000	Boulder River at Big Timber, Mont.	17.6	173	215	239	268	289	309
	06205000	Stillwater River near Absarokee, Mont.	27.6	192	245	200 277	314	343	368
	06233000	Little Popo Agie River near Lander, Wyo.	2.27	17.5	240	37.1	47.9	56.4	64.9
	06235500	Little Wind River near	17.0	139	20.9	272	47.5 345	402	460
	06244500	Riverton, Wyo Fivemile Creek above Wyoming Canal, near	17.0	139	217	212	545	402	400
	06258000	Pavillion, Wyo. Muddy Creek near Shoshoni,	.064	2.89	7.65	12.7	21.8	31.0	42.5
	00200000	Wyo.	.555	12.1	23.6	33.5	48.6	61.9	76.8
	06270000	Nowood River near Ten Sleep, Wyo	3.14	34.0	59.0	78.5	106	130	155
	06290500	Little Bighorn River below Pass Creek, near Wyola,	0.14	04.0	00.0	10.0	100	100	100
	06204000	Mont. Little Bighorn River near	6.03	38.2	58.6	73.4	92.4	107	123
		Hardin, Mont.	8.81	58.6	102	136	182	220	259
		Bighorn River at Bighorn, Mont.	112	407	577	683	809	898	983
		Goose Creek below Sheridan, Wyo.	5.21	46.4	75.4	97.2	127	151	177
		Tongue River at Miles City, Mont.	12.5	130	219	286	377	448	518
		Yellowstone River at Miles City, Mont.	326	1544	1952	2184	2439	2612	2768
		Powder River at Arvada, Wyo.	7.76	214	416	599	898	1176	1506
		Clear Creek near Buffalo, Wyo.	1.78	19.1	30.0	38.5	50.1	59.8	70.0
		Piney Creek at Ucross, Wyo.	2.48	28.6	45.3	56.9	79.3	99.2	109
		Powder River near Locate, Mont.	17.6	266	538	776	1020	1220	1420
		Burns Creek near Savage, Mont.	.094	6.83	37.4	88.7	218	385	637
		White Earth River at White Earth, N. Dak.	.816	17.1	39.1	59.0	90.7	118	149
		Little Missouri River at Camp Crook, S. Dak.	3.82	70.2	132	182	256	317	385
	06335000	Little Beaver Creek near Marmarth, N. Dak.	1.12	96.6	168	221	292	346	402

Map No.	Station No.	Station Name	\overline{Q}	<i>Q</i> ₂	Q.	Q10	Q25	Q.0	Q100
6	06335500	Little Missouri River at Marmarth, N. Dak.	9.63	268	516	711	991	1218	1459
7	06336000	Little Missouri River at Medora, N. Dak.	13.4	289	578	810	1144	1416	1705
3	06336500	Beaver Creek at Wibaux, Mont.	.632	25.5	98.3	1 93	39 1	606	898
9	06337000	Little Missouri River near Watford City, N. Dak.	17.0	428	793	1074	1462	1770	2093
)	06339500	Knife River near Golden Valley, N. Dak.	2.73	90.7	199	289	416	521	629
l 2 3	06340500	Spring Creek at Zap, N. Dak. Knife River at Hazen, N. Dak. Turtle Creek near Turtle Lake.	1.24 5.10	51.0 139	98.9 297	135 428	184 623	223 782	261 955
, I		N. Dak.	.0213	1.39	3.71	5.92	9.43	12.5	16.0
		Wilton, N. Dak.	.212	8.30	23.4	38.2	62.6	84.4	109
.		Heart River near South Heart, N. Dak.	.790	44.5	104	15 6	234	297	368
;		Green River near Gladstone, N. Dak.	1.01	42.5	100	149	223	283	351
,		Heart River near Richardton, N. Dak.	2.92	105	217	295	392	459	52 1
3		Antelope Creek near Carson, N. Dak.	.456	28.3	80.7	133	219	297	385
)		Heart River near Lark, N. Dak.	6.06	109	276	436	693	922	1183
)	06349000	Heart River near Mandan, N. Dak.	7.16	127	336	52 6	812	1049	1304
	06349500	Apple Creek near Menoken, N. Dak.	.960	16.9	47.6	77.6	127	171	221
	06350000	Cannonball River at Regent, N. Dak.	1.26	52.3	148	248	416	5 69	748
3	06351000	Cannonball River below Bentley, N. Dak.	2.47	77.6	228	382	637	872	1142
	06352000	Cedar Creek near Haynes, N. Dak.	.731	30.6	- - ©	170	300	428	583
i	06354000	Cannonball River at Breien, N. Dak.	6.82	141	337	504	742	935	1136
3	06354500	Beaver Creek at Linton, N. Dak.	1.15	30.6	81.6	130	208	276	351
7	06355500	North Fork Grand River near White Butte, S. Dak.	1.15	38.5	172	363	784	1269	1943
3	0635600	South Fork Grand River at Buffalo, S. Dak.	.233	18.1	41.3	63.2	98.6	131	168
)	06356500	South Fork Grand River near						397	
)	06357800	Cash, S. Dak. Grand River at Little Eagle,	1.56	48.4	117	183	295		516
	00050500	S. Dak.	6.51	143	258	334	426	488	546
l		Moreau River near Faith, S. Dak.	3.82	104	262	422	619	949	1258
2		Beaver Creek near Newcastle, Wyo.	.929	31.5	57.8	80.2	114	144	179
3		Cheyenne River at Edgemont, S. Dak.	2.86	83.8	185	289	476	668	915
l		Beaver Creek near Buffalo Gap, S. Dak.	.199	3.40	15.8	38.0	103	204	385
5		Battle Creek at Hermosa, S. Dak.	.270	9.06	29.7	52.1	90.9	127	169
3	06409000	Castle Creek above Deerfield Reservoir, near Hill City, S. Dak.	.286	1.78	4.11	6.43	10.6	14.7	19.8
7	06410500	Rapid Creek above Pactola Reservoir, at Silver City.							
3	06414000	S. Dak. Rapid Creek at Rapid City,	1.14	6.77	15.8	26.1	47.0	69.8	102
9	06421500	S. Dak Rapid Creek near	1.76	11.2	33.4	74.2	210	457	993
0	06430500	Farmingdale, S. Dak. Redwater Creek at Wyo	1.56	18.5	40.8	64.4	108	154	213
1	06431500	S. Dak.State line Spearfish Creek at Spearfish,	1.04	8.35	23.1	39.1	68.5	98.7	137
	-	S. Dak.	1.45	7.84	20.2	35.4	67.7	106	162

.

Map No.	Station No.	Station Name	$\overline{\mathcal{Q}}$	Q ₂	Q ₅	Q_{10}	Q28	Q.50	Q100
72		Redwater River above Belle Fourche, S. Dak.	3.82	23.4	55.5	87.8	144	19 8	265
73 74		Belle Fourche River near Sturgis, S. Dak.	7.73	105	214	307	450	573	712
74 75		White River at Crawford, Nebr. White River near Kadoka,	.572	10.2	23.8	38.5	66.8	97.2	138
76		S. Dak.	7.87	274	436	569	768	941	1130
77		Martin, S. Dak. Lake Creek above Refuge,	.541	5.15	12.1	20.0	35.7	53.2	77.3
 78		near Tuthill, S. Dak.	.549	2.26	3.03	3.60	4.36	5.01	5.69
79		S. Dak.	1.48	9.15	17.4	25.0	37.7	50.1	65.7
80		Rosebud, S. Dak.	3.12	20.9	45.6	72.2	123	177	250
		White River, S. Dak.	3.57	48.2	109	179	323	488	724
81 82 83	0 6453600	Ponca Creek at Anoka, Nebr. Ponca Creek at Verdel, Nebr. Niobrara River at WyoNebr.	1.40 2.19	48.1 53.2	94.9 122	140 197	218 337	295 487	391 688
84	06454100	State line Niobrara River at Agate,	.123	2.14	7.42	15.4	35.7	63.7	110
85	06454500	Nebr. Niobrara River above Box	.413	1.81	2.97	3.96	5.52	6.91	8.58
86	06461000	Butte Reservoir, Nebr Minnechaduza Creek at	.872	6.03	14.0	23.1	41.1	60.9	88.4
87	06462500	Valentine, Nebr.	.963	6.06	10.2	14.0	20.0	25.7	32.3
88	06464500	Nebr. Keya Paha River at Wewela,	3.03	11.7	20.4	28.3	41.4	53.5	68.3
89	06464900	S. Dak. Keya Paha River near Naper,	1.93	19.4	45.0	74.8	134	201	295 422
9 0	06466500	Nebr. Brazile Creek near Niobrara, Nebr.	3.77 2.47	58.6 134	111 433	161 759	244 1340	323 1898	422 2561
91	06467600	James River near Manfred,	2.47	154	400	159	1340	1050	2001
92		N. Dak. Pipestem Creek near Pingree,	.0818	2.92	8.78	14.9	25.1	34.6	45.6
93		James River at Jamestown,	.552	11.8	43.8	77 .7	133	179	228
94		N. Dak. James River at La Moure,	1.65	17.0	42.4	65.2	100	129	160
95		N. Dak. Elm River at Westport,	2.53	22.1	57. 9	92.7	150	201	260
96		S. Dak. James River at Ashton,	1.31	21.0	80.7	153	292	428	600
97		S. Dak. James River near Forestburg,	4.39	10.9	28.5	45.6	73.3	98.1	128
98		S. Dak. Firesteel Creek near Mount	7.87	32.1	94.8	172	331	512	764
99	06478500	Vernon, S. Dak	.654	11.3	42.2	83.0	168	265	397
100	06480000	S. Dak. Big Sioux River near	10.6	56.1	126	192	297	391	501
		Brookings, S. Dak.	4.33	60.9	172	282	462	623	804
L01		Big Sioux River near Dell Rapids, S. Dak.	7.16	87.5	234	377	603	804	1031
102		Skunk Creek at Sioux Falls, S. Dak.	1.31	41.1	118	198	331	456	600
103 104		Rock River near Rock Valley, Iowa	8.50	166	456	736	1190	1589	2040
104		Big Sioux River at Akron, Iowa	23.8	274	615	904	1323	1668	2034
106	06600100	Missouri River at Sioux City, Iowa Floyd River at Alton, Iowa	904 1.33	963 48.4	$\begin{array}{c} 1643 \\ 137 \end{array}$	1870 299	$\begin{array}{c} 2125 \\ 388 \end{array}$	2380 538	2550 717
107 108		West Branch Floyd River near Struble, Iowa Floyd River at James, Iowa	.864 5.07	51.8 97.1	124 224	188 348	283 561	365 765	453 1011

Map No.	Station No.	Station Name	Q	Q,	Q,	Q10	Q25	Q50	Q100
		Nebr.	1.02	166	227	314	436	533	635
110	06606600	Little Sioux River at Correctionville, Iowa	19.9	193	360	479	631	748	861
11	06607000	Odebolt Creek near Arthur, Iowa	.445	29.2	57.2	79.0	109	132	156
12	06607200	Maple River at Mapleton,							
13	06608000	Iowa Tekamah Creek at Tekamah,	6.60	182	320	416	538	629	719
14	06608500	Nebr Soldier River at Pisgah,	.188	52.1	113	163	237	297	362
15 16	06609500 06610000	Iowa Boyer River at Logan, Iowa Missouri River at Omaha,	$3.57 \\ 8.86$	258 354	419 510	530 603	666 711	768 785	869 853
17		Nebr. Pass Creek near Elk	830	1811	2341	2729	3265	3696	4157
18		Mountain, Wyo. Rock Creek above King	1.16	13.4	21.2	26.9	34.7	41.0	47.5
19	06639000	Canyon Canal near Arlington, Wyo	2.33	41.9	60.9	73.6	90.1	102	114
		Alcova, Wyo.	3.57	19.4	31.4	40.2	51.3	59.8	68.5
20	06649000	La Prele Creek near Douglas, Wyo.	1.14	16.1	36.9	58.5	97.6	138	189
21	06670500	Laramie River near Fort							
22	06671000	Laramie, Wyo. Rawhide Creek near Lingle,	4.08	24.5	54.6	81.9	125	162	205
23		Wyo. Horse Creek near Lyman,	.609	5.78	14.5	24.0	42.1	61.3	88.4
		Nebr	1.87	19.1	36.3	52.1	78.7	104	135
24		Sheep Creek near Morrill, Nebr.	1.55	5.49	7.65	9.12	11.1	12.5	13.9
25		Dry Spottedtail Creek at Mitchell, Nebr.	.963	9.72	20.3	31.4	51.5	72.8	100
26		Tub Springs near Scottsbluff, Nebr.	1.05	14.4	23.8	32.0	48.7	66.6	90. 4
27	06681000	Winters Creek near Scottsbluff, Nebr.	1.51	10.9	17.8	23.0	30.0	35.4	41.1
28	06684000	Red Willow Creek near Bayard, Nebr.	2.46	22.7	38.8	50.7	66.8	79.3	92.6
29	06685000	Pumpkin Creek near Bridgeport, Nebr.	.869	4.67	12.1	20.8	38.5	58.6	86.9
30	06687000	Blue Creek near Lewellen,		6.20	9.46	12.1			23.5
~ -	00000000	Nebr.	1.97	6.20	9.40	12.1	16.1	19.6	20.6
.31		Birdwood Creek near Hershey, Nebr.	4.33	11.7	17.1	21.3	27.5	32.9	38.5
32		Cherry Creek near Franktown, Colo.	.251	21.7	68.5	124	232	348	49 8
33		Dismal River at Dunning, Nebr.	9.09	14.6	17.0	18.6	20.6	22.1	23.7
34	06779000	Middle Loup River at Arcadia, Nebr.	18.2	79.3	126	166	227	283	348
35	06782500	South Loup River at Ravenna, Nebr.	5.44	102	230	374	651	2 00 955	1368
36	06783500	Mud Creek near Sweetwater,							
37	06784000	Nebr. South Loup River at St.	1.17	31.7	65.7	92.1	128	156	185
38	06785000	Michael, Nebr. Middle Loup River at St.	6.88	96.9	230	382	688	1031	1510
39	06786000	Paul, Nebr. North Loup River at Taylor,	34.0	235	402	555	799	1028	1310
40		Nebr. Calamus River near Burwell,	13.0	39.3	52.1	61.2	74.2	84.4	95.4
~ •		Nebr.	8.47	16.9	22.8	27.2	33.4	38.5	43.9
41	06788500	North Loup River at Ord, Nebr	24.4	75.1	115	147	196	238	286
42	06790500	Nebr. North Loup River near St. Boul Nebr			115	147			
43	06791500	Paul, Nebr. Cedar River near Spalding,	27.4	181	340	490	751	1008	1328
44	06792000	Nebr. Cedar River near Fullerton,	4.33	16.4	30.0	42.5	64.2	84.7	110
		Nebr.	6.82	83.8	179	279	467	666	926

Map No.	Station No.	Station Name	\overline{Q}	Q,	Q ₅	Q 10	Q25	Q 50	Q100
145 146	06794000 06795500	Beaver Creek at Genoa, Nebr. Shell Creek near Columbus,	3.57	62.3	142	231	402	592	850
147		Nebr. Elkhorn River at Ewing,	1.20	43.3	84.3	116	161	196	232
148		Nebr. Elkhorn River at Neligh,	4.90	32.3	84.1	148	283	442	674
149		Nebr. Elkhorn River near Norfolk,	7.99	45.6	103	193	357	544	813
150		Nebr. North Fork Elkhorn River	14.3	108	238	377	643	929	1314
150	00799100	near Pierce, Nebr.	2.51	49.6	119	182	278	360	450
151	06799500	Logan Creek near Uehling,	5 01	166	329	459	640	782	935
152	06800000	Nebr. Maple Creek near Nickerson,	5.21					351	419
153	06803000	Nebr. Salt Creek at Roca, Nebr.	$1.71 \\ 1.20$	70.0 75.3	143 194	201 300	283 459	58 6	419 725
154		Salt Creek at Greenwood, Nebr.	7.65	297	762	1176	1787	2292	2827
155		Wahoo Creek at Ithaca, Nebr.	2.17	111	233	338	456	555	654
156	06806500	Weeping Water Creek at Union, Nebr.	2.31	99.4	227	331	482	598	719
157	06807000	Missouri River at Nebraska City, Nebr.	990	2554	3377	3970	4776	5418	6097
158	06808500	West Nishnabotna River at Randolph, Iowa	15. 6	484	674	787	921	1011	1096
159	06809500	East Nishnabotna River at Red Oak, Iowa	10.6	275	484	637	836	989	1142
160	06813000	Tarkio River at Fairfax, Mo.	5.24	189	334	436	558	643	728
161	06814000	Turkey Creek near Seneca, Kans.	3.48	136	295	431	637	819	1014
162	06817000	Nodaway River at Clarinda,	9.09	278	470	598	753	864	969
163	06817500	Iowa Nodaway River near Burlington Junction Mo		382	685	895	1153	1337	1516
164	06818000	Burlington Junction, Mo Missouri River at St.	14.9			6790	8578	9447	10624
16 5	06819190	Joseph, Mo. East Fork One Hundred and	1100	2790	5635	0790	0010	3441	10024
100	00010700	Two River near Bedford, Iowa	1.43	57.7	163	206	265	299	338
166	06819500	One Hundred And Two River at Maryville, Mo.	5.83	209	334	422	535	620	705
167		Platte River near Agency, Mo.	24.5	409	688	904	1195	1428	1672
168	06821500	Arikaree River at Haigler, Nebr.	.697	69.4	186	331	649	1028	1589
169	06823000	North Fork Republican River at ColoNebr. State line	1.37	8.36	16.8	25.4	40.8	56.7	77.3
170	06823500	Buffalo Creek near Haigler, Nebr.	.221	.934	1.56	2.15	3.06	3.94	4.96
$\begin{array}{c} 171 \\ 172 \end{array}$		Rock Creek at Parks, Nebr. Republican River at	.402	1.25	2.29	3.31	5.01	6.66	8.72
173		Benkelman, Nebr Landsman Creek near Hale,	2.56	40.5	106	186	357	558	853
173		Colo. South Fork Republican River	.108	42.2	96.3	148	235	317	414
		near Benkelman, Nebr.	1.54	80.2	201	297	425	518	609
175		Nebr	3.91	104	235	357	55 0	725	926
176		Frenchman Creek near Imperial, Nebr.	1.93	7.59	16.3	25.5	42.8	61.2	85.5
177		Stinking Water Creek near Palisade, Nebr.	1.21	10.1	22.3	35.7	60.9	88.4	1 2 5
178		Blackwood Creek near Culbertson, Nebr	.188	12.1	28.9	48.2	86.7	130	191
179		Red Willow Creek near Red Willow, Nebr.	.892	11.5	23.2	34.8	55.5	76.2	102
180	06841000	Medicine Creek above Harry Strunk Lake, Nebr.	1.94	59.8	145	245	448	677	1000
181	06844500	Republican River near							
182		Orleans, Nebr. Sappa Creek near Oberlin,	9.29	110	195	26 3	360	442	53 0
		Kans.	.501	24.6	71.1	124	223	329	462

TABLE 8.-Discharge characteristics of selected streams in the Missouri River basin-Continued

Map No.	Station No.	Station Name	<u>Q</u>	Q,	Q,	Q10	Q25	Q 50	Q100
83		Sappa Creek near Beaver City, Nebr.	1.08	39.9	83.6	122	180	231	289
84		Beaver Creek at Cedar Bluffs, Kans.	.632	17.0	40.2	63.5	103	142	187
85	06847000	Beaver Creek near Beaver City, Nebr.	.770	16.1	41.6	66.3	111	153	203
86	06847500	Sappa Creek near Stamford, Nebr.	1.93	37.7	89.5	139	221	297	385
87	06848500	Prairie Dog Creek near							
88	06851000	Woodruff, Kans Center Creek at Franklin,	1.17	66.6	143	213	326	425	544
89	06853500	Nebr. Republican River near Hardy,	.200	7.79	30.3	60.3	124	195	292
90	06855800	Nebr. Buffalo Creek near	17.7	130	235	340	538	736	991
		Jamestown, Kans.	2.28	66.3	164	261	425	578	759
91	06855900	Wolf Creek near Concordia, Kans.	.357	30.3	57.5	79.3	111	137	166
92	06856000	Republican River at Concordia, Kans.	22.0	224	397	538	765	991	1246
93	06859500	Ladder Creek below Chalk Creek near Scott City,							
94	06860000	Kans. Smoky Hill River at Elkader,	.241	21.0	75.1	145	289	450	671
95	06861000	Kans. Smoky Hill River near	.974	55.0	203	397	802	1250	1870
96		Arnold, Kans.	2.04	144	368	558	821	1023	1227
97		Schoechen, Kans Big Creek near Hays, Kans	.977 1.19	$58.1 \\ 51.8$	170 102	287 15 0	490 227	682 300	911 391
98		Smoky Hill River near Bunker Hill, Kans.	5.81	193	397	538	765	963	1133
99	06864500	Smoky Hill River at Ellsworth, Kans.	5.01 7.42	238		623	765	906	1020
00	06866500	Smoky Hill River near			482				
		Mentor, Kans.	12.4	130	238	340	482	562	821
01		Saline River near Russell, Kans.	3.37	107	249	380	578	753	952
02	06867500	Paradise Creek near Paradise, Kans.	.549	26.0	88.9	167	326	499	725
03	06869500	Saline River at Tescott, Kans.	6.26	88.7	197	297	459	606	776
04	06870200	Smoky Hill River at New Cambria, Kans.	18.2	167	410	722	1520	2630	4390
05	06871000	North Fork Solomon River at Glade, Kans.	.957	65.1	185	317	561	810	1125
06	06871500	Bow Creek near Stockton,							
07	06872500	Kans. North Fork Solomon River	.436	38.2	93.5	148	240	329	433
08	06873000	at Portis, Kans. South Fork Solomon River above Webster Reservoir,	4.11	113	255	368	567	736	906
09	06874000	Kans. South Fork Solomon River	2.04	126	354	598	1031	1456	1977
10		at Osborne, Kans.	3.80	51.0	155	272	482	680	906
10		Salt Creek near Ada, Kans	1.58	35.7	127	235	439	646	90
11	06876900	Solomon River at Niles, Kans	15.9	192	397	589	912	1218	158
12	06877600	Smoky Hill River at Enterprise, Kans.	45.7	281	544	790	1200	1600	208
13	06878000	Chapman Creek near	2.40	107	204				
14	06878500	Chapman, Kans. Lyon Creek near Woodbine,				281	394	487	58
15	06879900	Kans. Big Blue River at Surprise,	3.06	183	510	853	1450	2030	272
16	06880000	Nebr. Lincoln Creek near Seward,	.830	48.1	123	191	295	380	47
17	06880500	Nebr Big Blue River at Seward,	1.28	34.6	75.1	108	154	191	22
18		Nebr. West Fork Big Blue River	3.17	81.3	194	291	433	550	674
		near Dorchester, Nebr.	5.01	89.2	162	214	281	331	382

/lap lo	Station No.	Station Name	$\overline{\mathbf{Q}}$	Q_2	Q,	Q 10	Q25	Q 50	Q 100
219	06881000	Big Blue River near Crete, Nebr.	9.94	195	408	578	813	1000	1187
20	06883575	Little Blue River near Alexandria, Nebr.	6.74	182	343	459	612	728	841
21	06884200	Mill Creek at Washington, Kans	2.82	1 32	258	363	516	643	782
22	06884400	Little Blue River near Barnes, Kans.	18.6	346	660	923	1314	1652	2028
23	06885500	Black Vermillion River near Frankfort, Kans.	3.88	210	487	739	1142	1496	1898
24	06887500	Kansas River at Wamego, Kans.	138	1080	2080	2920	4109	5300	6520
25	06888000	Vermillion Creek near Wamego, Kans.	2.57	141	297	425	612	768	935
26	06889000	Kansas River at Topeka, Kans.	155	1312	2465	3399	4787	5977	7252
27	06891000	Kansas River at Lecompton, Kans.	200	1561	2889	3881	5326	6459	7677
28	06891500	Wakarusa River near Lawrence, Kans.	5.61	184	360	496	688	841	1002
29	06892000	Stranger Creek near Tonganoxie, Kans	6.17	164	312	430	598	734	875
30	06892350	Kansas River at DeSoto, Kans	0.17 196	164	2830	3680	4530	5670	6800
1	06894000	Little Blue River near Lake							
2	06895500	City, Mo	3.82	113	180	226	286	329	371
3		Mo. Grand River near Gallatin,	1370	3200	6955	8389	10458	11484	12773
4		Mo. Thompson River at Mount	32.3	700	1105	1380	1720	1969	22 12
5		Moriah, Mo. Weldon River near Leon,	15.6	419	623	753	915	1028	1139
6		Iowa Thompson River at Trenton,	2.07	109	360	471	623	724	833
7		Mo. Shoal Creek near Braymer,	26.3	640	1074	1371	1739	2011	2272
8		Mo Grand River near Sumner,	7.39	199	300	368	450	507	567
9		Mo	108	1513	2340	2889	3626	4136	4674
0		Brookfield, Mo. Chariton River near Prairie	3.09	87.8	144	184	234	271	309
	00000000	Hill, Mo.	32.4	394	561	663	785	870	949
1		Blackwater River at Valley City, Mo.	12.8	683	1263	1702	2297	2759	3229
2		Blackwater River near Blue Lick, Mo.	20.5	283	499	666	901	1096	1306
13	06909000	Missouri River at Booneville, Mo.	1 640	2 1 4 8	8167	1 0521	12748	16477	19328
4		Moreau River near Jefferson City, Mo.	10.3	385	521	603	697	762	824
15	06911900	Dragoon Creek near Burlingame, Kans	1.95	153	245	309	394	456	521
16	06913500	Marais Des Cygnes River near Ottawa, Kans.	18.4	314	711	1110	1810	2501	3371
17	06914000	Pottawatomie Creek near Garnett, Kans.	6.54	303	561	779	1105	1388	1705
18	06925200	Starks Creek at Preston, Mo.	.101	21.9	34.3	42.8	53.0	60.6	68.
49		Big Piney River near Big Piney, Mo.	15.5	342	581	751	969	1133	1300
50	06931500	Little Beaver Creek near Rolla, Mo.	.154	38.8	66.0	85.5	111	131	151
51	06932000	Little Piney Creek at	4.00	165	057	504	700	000	1100
52	06934500	Newburg, Mo Missouri River at Hermann,	4.30	177	357	504	722	906	1108
		Мо	2260	494 1	111716	14452	18413	20570	23193

2 060 3 060 4 060 5 060 6 061 7 061 8 061 9 061	025500 027200 050000 052500 0152500 0120500 0120500 0126500	Beaverhead River near Twin Bridges, Mont. Big Hole River near Melrose, Mont. Jefferson River at Silver Star, Mont. Hyalite Creek at Hyalite Ranger Station near Bozeman, Mont. Gallatin River at Logan, Mont. Missouri River near Landusky, Mont. Musselshell River at Harlowton, Mont. Musselshell River near Ryegate, Mont.	16.2 51.8 64.0 10.7 44.2 190	1.07 1.73 1.68 1.07 1.46	2 1 1	6.0 150 38 250	51 50 50 70	51 50 50	0.0016 .0028 .00080
3 060 4 060 5 060 6 063 7 063 8 063 9 063	027200 050000 052500 0120500 0123500 0126500	Mont. Jefferson River at Silver Star, Mont. Hyalite Creek at Hyalite Ranger Station near Bozeman, Mont. Gallatin River at Logan, Mont. Missouri River near Landusky, Mont. Musselshell River at Harlowton, Mont. Musselshell River near Ryegate, Mont.	64.0 10.7 44.2	1.68 1.07 1.46	1 1	38	50	50	
 4 066 5 066 6 065 7 065 8 065 9 065 	6050000 6052500 6115200 6120500 6123500 6126500	Jefferson River at Silver Star, Mont. Hyalite Creek at Hyalite Ranger Station near Bozeman, Mont. Gallatin River at Logan, Mont. Missouri River near Landusky, Mont. Musselshell River at Harlowton, Mont. Musselshell River near Ryegate, Mont.	64.0 10.7 44.2	1.68 1.07 1.46	1 1	38	50	50	
5 066 6 06 7 06 8 06 9 06	052500 115200 120500 123500 126500	Hyalite Creek at Hyalite Ranger Station near Bozeman, Mont. Gallatin River at Logan, Mont. Missouri River near Landusky, Mont. Musselshell River at Harlowton, Mont. Musselshell River near Ryegate, Mont.	10.7 44.2	1.07 1.46	1				.00060
6 06 7 06 8 06 9 06	115200 120500 123500 126500	Gallatin River at Logan, Mont. Landusky, Mont. Musselshell River at Harlowton, Mont. Musselshell River near Ryegate, Mont.	44.2	1.46		250	70		
6 06 7 06 8 06 9 06	115200 120500 123500 126500	Mont. Missouri River near Landusky, Mont. Musselshell River at Harlowton, Mont. Musselshell River near Ryegate, Mont.						70	.028
7 06 8 06 9 06	3120500 3123500 3126500	Landusky, Mont. Musselshell River at Harlowton, Mont. Musselshell River near Ryegate, Mont.	190		1	25	5	5	.0018
8 06 9 06	123500 126500	Harlowton, Mont. Musselshell River near Ryegate, Mont.		6.33	15	.18	40	40	.00049
9 06	126500	Ryegate, Mont.	18.3	.74	1	130	40	19	.0029
			22.9	.64	1	14	33	25	.0020
10 06	127500	Musselshell River near Roundup, Mont.	20.4	.98	1	10	34	34	.0018
	121000	Musselshell River at Musselshell, Mont.							
			30.5	.91	12	8.6	29	13	.00097
		Missouri River near Culbertson, Mont.	320	10. 7	10	.19	55	55	.00016
12 06:	191500	Yellowstone River at Corwin Springs, Mont.	82.3	3.05	1	130	70	70	.0023
13 061	192500	Yellowstone River near							
14 061	197500	Livingston, Mont Boulder River near Contact,	88.4	3.66	1	100	60	60	.0027
15 062	200000	Mont. Boulder River at big Timber,	31.4	.61	1	150	36	30	.0018
		Mont. Stillwater River near	36.6	1.46	1	130	50	50	.0110
		Absarokee, Mont. Little Popo Agie River near	33.5	1.37	1	230	60	60	.0062
		Lander, Wyo.	14.0	.88	1	51	30	30	.0054
		Little Wind River near Riverton, Wyo Fivemile Creek above	46.6	1.37	1	120	66	44	.00096
90 00	050000	Wyoming Canal, near Pavillion, Wyo.	2.99	.27	1	11	35	17	.0052
20 062	208000	Muddy Creek near Shoshoni, Wyo.	6.86	.74	1	6.8	33	33	.0039
21 062	270000	Nowood River near Ten							
		Sleep, Wyo. Little Bighorn River below Pass Creek, near Wyola,	11.3	1.98	43	.074	51	51	.0016
0.2 0.00	004000	Mont	22.6	1.74	1	38	40	40	.0028
		Little Bighorn River near Hardin, Mont.	42.7	1.42	1	19	50	. 50	.0020
24 062	294700	Bighorn River at Bighorn, Mont.	82.3	3.2	1	10	77	22	.00045
25 063	305500	Goose Creek below Sheridan, Wyo.	22.6	1.28	1	25	60	60	.0027
26 063	308500	Tongue River at Miles City							
27 063	309000	Mont. Yellowstone River at Miles	47.2	1.10	2	4.2	47	47	.00066
28 063	917000	City, Mont Powder River at Arvada,	219	7.30	5	10	33	33	.00068
		Wyo	45.7	1.92	12	.16	54	25	.00087
		Clear Creek near Buffalo, Wyo.	10.7	.54	1	20	31	31	.024
30 063	323500	Piney Creek at Ucross, Wyo.	16.3	.62	1	50	34	34	.0043
		Powder River near Locate, Mont.	62.5	1.79	3	.35	30	30	.00095
		Burns Creek near Savage, Mont.	3.32	.63	13	8.3	38	14	.0032
	332000	White Earth River at White Earth, N. Dak.	5.18	.88	4	3.0	41	34	.00069
34 063	334500	Little Missouri River at Camp Crook, S. Dak.	17.7	.68	3	1.4	57	25	.00080

TABLE 9.—Geometry measurements and sediment characteristics of selected streams in the Missouri River basin [ACW, active-channel width, in meters; DEP, average depth, in meters, BUS, silt-clay content of the bed, in percent, dss, median particle size of the bed, in millimeters; BSH, bank silt-clay content, in percent (high); BSL, low bank silt-clay content, in percent; GRA, channel gradient, dimensionless]

-

Map No.	Station No.	Station Name	ACW	DEP	BDS	d 50	BSH	BSL	GRA
35	06335000	Little Beaver Creek near				<u> </u>		. <u> </u>	
36		Marmarth, N. Dak.	9.30	1. 02	3	1 2	2 8	9	.00090
37		Marmarth, N. Dak.	57.9	1.28	3	.62	32	32	.0007
3 8		Medora, N. Dak Beaver Creek at Wibaux,	61.0	1.43	1	.60	29	25	.00063
39		Mont. Little Missouri River near	.6.40	.65	7	4.8	12	11	.0018
40		Watford City, N. Dak.	70.1	1.73	3	.17	65	65	.00078
40	00333900	Knife River near Golden Valley, N. Dak.	13.7	1.22	2	.50	41	17	.00040
41 42 43	06340500	Spring Creek at Zap, N. Dak. Knife River at Hazen, N. Dak. Turtle Creek near Turtle Lake,	6.71 16.2	.79 1.36	11 2	.26 .46	33 32	29 26	.00090 .00050
44		N. Dak. Painted Woods Creek near	.762	.049	76	.02	95	58	. 001 1
44 45		Wilton, N. Dak.	3.05	.19	1	100	27	16	.0014
		Heart River near South Heart, N. Dak.	2.59	.58	12	.47	55	39	.00050
46 47		Green River near Gladstone, N. Dak.	6.10	.38	1	15	24	23	.0010
47		Heart River near Richardton, N. Dak.	10.4	.90	1	50	40	25	.0005
18		Antelope Creek near Carson, N. Dak.	5. 79	1.28	3	5.6	46	40	.0014
19		Heart River near Lark, N. Dak.	29.0	1.09	1	.42	41	34	.0009
0	06349000	Heart River near Mandan, N. Dak.	30,5	1.38	5	.22	40	33	.0004
1	06349500	Apple Creek near Menoken,			-				
2		N. Dak. Cannonball River at Regent,	6.40	.79	23	.18	42	26	.0002
-		N. Dak. Cannonball River below	6.40	.50	15	.40	48	24	.0005
4		Bentley, N. Dak Cedar Creek near Haynes,	14.9	1.40	5	.29	22	22	.0004
5		N. Dak. Cannonball River at Breien,	7.32	.8 2	5	1.4	49	46	.0014
		N. Dak.	30.5	1.58	11	.14	42	36	.0005
6		Beaver Creek at Linton, N. Dak.	8.53	.79	5	1.5	78	59	.0016
7		North Fork Grand River near White Butte, S. Dak.	1 0 .1	.85	1	8.1	8	8	.0010
8	0635600	South Fork Grand River at Buffalo, S. Dak.	5.18	.87	9	.51	16	16	.0014
9		South Fork Grand River near Cash, S. Dak.	7.92	.70	20	1.7	41	41	.0012
0	06357800	Grand River at Little Eagle, S. Dak.	42.7	.38	4	.24	18	2	.0004
1	06359500	Moreau River near Faith,						_	
2		S. Dak. Beaver Creek near Newcastle,	18. 6	.69	5	.35	27	18	.0004
3		Wyo. Cheyenne River at Edgemont,	7.62	1.09	10	25	6 8	64	.0006
í		S. Dak. Beaver Creek near Buffalo	21.3	.48	1	.65	2 8	24	.0014
r j		Gap, S. Dak	3.20	.46	6	17	55	47	.0054
6		S. Dak. Castle Creek above Deerfield Reservoir, near Hill City,	3.51	.22	1	180	10	1	.0022
,	06410500	S. Dak. Rapid Creek above Pactola Reservoir, at Silver City,	3.66	.40	5	1.8	61	57	.0082
3	06414000	S. Dak. Rapid Creek at Rapid City,	7.92	.37	1	100	73	66	.0052
)		S. Dak. Rapid Creek near	10.7	.54	2	130	53	28	.0072
		Farmingdale, S. Dak.	7.92	.44	1	60	50	50	.0031
)	06430500	Redwater Creek at Wyo S. Dak. State line	6.40	.92	8	3.4	44	39	.0022

		<u> </u>							
Map No.	Station No.	Station Name	ACW	DEP	BDS	<i>ds</i> 0	BSH	BSL	GRA
71	06431500	Spearfish Creek at Spearfish,			_		_	_	
72	06433000	S. Dak. Redwater River above Belle	10.4	.44	1	110	5	5	.014
73	06437000	Fourche, S. Dak Belle Fourche River near	13.4	.53	1	40	64	53	.0029
74		Sturgis, S. Dak. White River at Crawford,	25.9	.55	1	50	70	58	.0011
75		Nebr. White River near Kadoka,	4.57	.84	3	.28	70	44	.0043
76		S. Dak.	47.2	.56	9	.32	81	81	.00093
77		Martin, S. Dak Lake Creek above Refuge,	4.88	.61	11	.21	69	63	.0018
78		near Tuthill, S. Dak.	3.66	.38	1	.30	24	10	.0017
79		S. Dak.	11.6	.52	1	.31	50	22	.0013
		Little White River near Rosebud, S. Dak.	15.2	.73	1	.28	36	23	.0021
80	06490900	Little White River below White River, S. Dak.	16.8	.24	1	.44	66	52	.0010
81	06453500		13.7	.63	1	.58	43	17	.0018
82 83	06453600 06454000	Ponca Creek at Verdel, Nebr. Niobrara River at WyoNebr.	21.6	.68	1	.51	42	40	.0014
84	06454100	State line Niobrara River at Agate,	3.66	.66	17	.16	31	28	.0055
85	06454500	Nebr	4.57	.70	9	.25	27	27	.0024
86	06461000	Butte Reservoir, Nebr Minnechaduza Creek at	5.79	.60	1	.35	41	40	.0013
87	06462500	Valentine, Nebr	10.7	.70	18	.25	22	13	.0038
88		Nebr. Keya Paha River at Wewela,	25.3	1.22	4	.31	39	36	.0018
89		S. Dak. Keya Paha River near Naper,	15.8	.79	1	.33	35	32	.0012
90		Nebr. Brazile Creek near Niobrara,	35.7	.89	1	.29	36	24	.0012
•••		Nebr.	36.3	1.06	1	.41	49	25	.0015
91	06467600	James River near Manfred, N. Dak.	1.83	.20	40	100	30	24	.00047
92	06469500	Pipestem Creek near Pingree,							
93	06470000	N. Dak James River at Jamestown,	3.96	.36	1	2.9	39	32	.00042
94	06470500	N. Dak James River at La Moure,	12.5	1.03	5	1.8	28	28	.00044
95	06471500	N. Dak Elm River at Westport,	21.3	1.52	3	8.0	48	48	.000094
96	06473000	S. Dak James River at Ashton,	10.7	.29	1	2.1	5	4	.00035
97	06477000	S. Dak. James River near Forestburg,	18.3	.53	55	.059	61	40	.000072
98	06477500	S. Dak. Firesteel Creek near Mount	31.1	1.58	5	.26	57	16	.000060
99	06478500	Vernon, S. Dak James River near Scotland,	8.53	.95	2	.99	32	21	.0 0060
100		S. Dak Big Sioux River near	33.5	1.92	47	.055	39	39	.000082
		Brookings, S. Dak.	22.0	1.27	5	1.6	54	10	.00028
101	06481000	Big Sioux River near Dell Rapids, S. Dak	22.9	1.86	1	.40	82	62	.00058
102	06481500	Skunk Creek at Sioux Falls, S. Dak.	14.0	1.50	5	.40	82 22	22	.00058
103	06483500	Rock River near Rock Valley, Iowa			5 1		38		
104	06485500	Big Sioux River at Akron,	34.4	1.52		.89		14	.00049
105	06486000	Iowa Missouri River at Sioux City,	54.9	2.70	31	.17	63 60	48	.00025
106		Iowa Floyd River at Alton, Iowa	$\begin{array}{c} 350\\ 20.1 \end{array}$	17 .52	1 19	.34 .27	60 57	60 47	.00021 .00066
107		West Branch Floyd River near Struble, Iowa	9.75	.50	6	.44	58	37	.0012
108	06600500	Floyd River at James, Iowa	24.7	1.10	3	.52	86	67	.00032

CHANNEL GEOMETRY AND SEDIMENT, MISSOURI RIVER BASIN

Map No.	Station No.	Station Name	ACW	DEP	BDS	<i>d</i> ₅₀	BSH	BSL	GRA
109	06601000	Omaha Creek at Homer,	0 50	1.01	40	067	82	70	0019
110	06606600	Nebr	8.53	1.01	49	.067	82	70	.0012
		Correctionville, Iowa	33.8	2.44	20	.18	75	44	.00023
111	06607000	Odebolt Creek near Arthur,	7.00	05	0.0	00	77	60	0014
112	06607200	Iowa Maple River at Mapleton,	7.32	.35	32	.29	77	60	.0014
113		Iowa Tekamah Creek at Tekamah,	35.0	1.01	5	.35	79	55	.00083
		Nebr	5.73	.51	24	.68	79	75	.0012
114 115		Soldier River at Pisgah, Iowa	29.3	$1.46 \\ 2.29$	$\frac{2}{1}$.37 .42	82 90	76 86	.00074 .00058
116		Boyer River at Logan, Iowa Missouri River at Omaha,	32.9	2.29	1	.42	90	00	.00036
		Nebr	290	11.6	1	.18	65	65	.00016
117	06628900	Pass Creek near Elk Mountain, Wyo.	8.69	.98	1	150	23	20	.0092
118	06632400	Rock Creek above King Canyon Canal near			-				
119	06639000	Arlington, Wyo	11.9	.79	1	230	50	50	.017
		Alcova, Wyo.	24.4	.80	1	1.7	33	25	.0010
120	06649000	La Prele Creek near Douglas, Wyo.	9.30	.53	1	180	60	60	.0030
101	00050500		0.00	.00	•	200			
121	06670500	Laramie River near Fort Laramie, Wyo.	19.2	1.02	10	.41	28	14	.0018
122	06671000	Rawhide Creek near Lingle,	3.93	.82	3	.17	50	49	.0026
123	06677500	Wyo. Horse Creek near Lyman,							
24	06678000	Nebr	17.1	1.01	7	.11	45	39	.0017
25	06679000	Nebr. Dry Spottedtail Creek at	5.64	.92	1	.25	43	24	.00079
26		Mitchell, Nebr Tub Springs near Scottsbluff,	7.01	.64	1	.32	42	37	.0043
127		Nebr	5.94	.65	3	6.6	50	29	.0041
128		Scottsbluff, Nebr.	5.33	.86	1	9.2	42	23	.0015
		Red Willow Creek near Bayard, Nebr	14.0	.59	1	7.3	60	51	.00093
129		Pumpkin Creek near Bridgeport, Nebr.	5.49	.24	10	.16	44	17	.0013
130	06687000	Blue Creek near Lewellen, Nebr.	11.7	.57	1	.38	46	40	.0039
31	06692000	Birdwood Creek near							
132	06712000	Hershey, Nebr. Cherry Creek near Franktown,	15.2	.80	1	.29	42	28	.0024
		Colo,	3.96	.22	8	1.0	44	44	.025
33	06776500	Dismal River at Dunning, Nebr.	26.2	.91	1	.26	61	50	.0010
34	06779000	Middle Loup River at Arcadia, Nebr.	62.5	1.22	1	.20	53	39	.0015
35	06782500	South Loup River at							
.36	06783500	Ravenna, Nebr. Mud Creek near Sweetwater,	38.4	1.25	1	.19	54	42	.0010
.37		Nebr South Loup River at St.	10.4	1.52	38	.16	86	61	.00051
38		Michael, Nebr Middle Loup River at St.	45.1	1.19	1	.18	76	67	.0008
39		Paul, Nebr	134	1.07	1	.32	58	51	.0010
		Nebr	47.2	1.19	1	.27	46	45	.0013
40	06787500	Calamus River near Burwell, Nebr.	70.7	.25	1	.28	38	24	.0010
41	06788500	North Loup River at Ord,						_	
42	06790500	Nebr	75.6	.98	1	.38	63	36	.0013
43		Paul, Nebr. Cedar River near Spalding,	85.3	1.52	1	.27	70	43	.0011
		Nebr	24.7	.26	1	.27	21	15	.00083
44	06792000	Cedar River near Fullerton,		1.37	2	.26	63		.00085

lap lo.	Station No.	Station Name	ACW	DEP	BDS	d 50	BSH	BSL	GRA
45 46	06794000	Beaver Creek at Genoa, Nebr. Shell Creek near Columbus,	16.0	1.28	1	.28	84	84	.0014
47		Nebr. Elkhorn River at Ewing.	6.86	1.00	25	.30	66	65	.00054
		Nebr.	32.0	.97	1	.34	22	13	.00073
.48		Elkhorn River at Neligh, Nebr.	54.9	.92	1	.28	15	7	.00094
49		Elkhorn River near Norfolk, Nebr.	80.8	1.01	2	.24	24	15	.00069
.50	06799100	North Fork Elkhorn River near Pierce, Nebr.	12.8	.90	11	.25	63	17	.00052
51	06799500	Logan Creek near Uehling,		1.01				40	00000
52	06800000	Nebr. Maple Creek near Nickerson,	23.2	1.31	1	.24	79	48	.00039
53	0 6 803000	Nebr. Salt Creek at Roca, Nebr.	15.7 7.01	.68 1.30	2 77	.31 .03	64 77	50 68	.0014 .00066
54	06803555	Salt Creek at Greenwood, Nebr.	51.8	1.56	1	.59	66	64	.00051
55	06804000	Wahoo Creek at Ithaca, Nebr.				.38	73	70	.00063
56	06806500	Weeping Water Creek at	10.2	1.06	1				
57	06807000	Union, Nebr	8.23	1.58	29	.50	79	75	.00086
58	06808500	City, Nebr	270	10	1	.43	65	59	.00024
59	06809500	Randolph, Iowa East Nishnabotna River at	62.5	1.07	13	.34	75	72	.00051
60		Red Oak, Iowa Tarkio River at Fairfax, Mo	41.2 29.3	$1.52 \\ 1.49$	$\frac{1}{2}$.42 .41	80 77	61 71	.00040 .00090
61		Turkey Creek near Seneca,	20.0	1.10	-				
62		Kans.	9.14	1.83	14	.42	82	81	.00073
04		Nodaway River at Clarinda, Iowa	43.3	1.43	1	.46	6 8	54	.00056
63	06817500	Nodaway River near Burlington Junction, Mo.	60.4	1.37	3	.35	70	66	.00072
64	06818000	Missouri River at St. Joseph, Mo.	270	10	1	.30	83	76	.00021
65	06819190	East Fork One Hundred and Two River near Bedford,	210	10	1	.40	00	10	.00021
66	06819500	Iowa One Hundred and Two River	14.3	.87	22	.40	69	35	.00080
67		at Maryville, Mo Platte River near Agency,	24.7	1.04	2	.50	66	5 9	.00049
		Mo. Arikaree River at Haigler,	41.2	2.35	6	.33	51	30	.00036
6 8		Nebr.	5.94	.61	1	.36	33	25	.0015
69		North Fork Republican River at ColoNebr. State line	5.79	.55	1	.48	47	37	.0011
70	06823500	Buffalo Creek near Haigler, Nebr.	1.92	.47	4	.34	29	13	.0025
71 72		Rock Creek at Parks, Nebr Republican River at	2.74	.37	2	.30	41	25	.0025
73		Benkelman, Nebr Landsman Creek near Hale,	36.8	.30	1	.30	22	22	.0018
		Colo	3.81	.71	24	.34	37	14	.0027
7 4		South Fork Republican River near Benkelman, Nebr.	35.1	.30	1	.34	30	30	.0020
75		Republican River at Stratton, Nebr.	38.1	.30	1	.30	30	30	.0020
76	06831500	Frenchman Creek near Imperial, Nebr	11.0	.50	11	2.4	45	39	.0014
77	06835000	Stinking Water Creek near Palisade, Nebr.	8.23	.70	19	.47	88	71	.0023
78	06836000	Blackwood Creek near Culbertson, Nebr.							
79	06838000	Red Willow Creek near Red	3.84	1.08	40	.090	79 55	50	.0013
80	06841000	Willow, Nebr. Medicine Creek above Harry	5.49	1.04	51	.058	55	37	.0013
		Strunk Lake, Nebr.	12.3	.65	17	.72	68	64	.0011
81	06844500	Republican River near Orleans, Nebr.	43.9	1.71	1	.59	58	56	.00066

Map No.	Station No.	Station Name	ACW	DEP	BDS	$d_{\mathfrak{s}\mathfrak{o}}$	BSH	BSL	GRA
182	06845000	A.*	4.00	60	0	90	90	90	.0013
183	06845200	Kans Sappa Creek near Beaver	4.88	.62	2	.80	89	89	
.84	06846500	Ĉity, Nebr. Beaver Creek at Cedar Bluffs,	7.92	.65	5	.45	94	94	.00080
.85	06847000	Kans Beaver Creek near Beaver	4.11	.64	92	.02	98	98	.0010
186		City, Nebr. Sappa Creek near Stamford,	4.27	.43	34	.56	58	26	.0013
187		Nebr. Prairie Dog Creek near	8.08	.38	8	.56	46	35	.00067
.88		Woodruff, Kans Center Creek at Franklin,	4.88	.40	62	.030	80	67	.00064
189		Nebr	6.00	.75	1	.28	30	29	.0048
		Republican River near Hardy, Nebr.	42.7	.86	1	.71	43	43	.00072
90	06855800	Buffalo Creek near Jamestown, Kans.	7.32	.47	82	.03	94	94	.00028
191	06855900	Wolf Creek near Concordia,							
192	06856000	Kans Republican River at	3.35	.29	88	.02	96	96	.00061
193	06859500	Čoncordia, Kans Ladder Creek below Chalk	57.9	2.9	1	.46	62	13	.00066
		Creek near Scott City, Kans.	2.74	.17	4	1.7	63	33	.0026
94	06860000	Smoky Hill River at Elkader, Kans.	6.86	.40	19	.74	34	32	.0028
95	06861000	Smoky Hill River near Arnold, Kans.	37.2	.40	10	.80	30	30	.0012
96	06862700	Smoky Hill River near			_				
.97		Schoechen, Kans. Big Creek near Hays, Kans.	6.71 7.01	.18 1.01	$1 \\ 29$	$\begin{array}{c} 1.2\\.41\end{array}$	30 66	8 54	.0010 .0008
98		Smoky Hill River near Bunker Hill, Kans.	33.5	.47	1	.78	69	66	.00074
99	06864500	Smoky Hill River at Ellsworth, Kans.	30.5	.65	1	.77	55	52	.00058
200	06866500	Smoky Hill River near Mentor, Kans.	33.2	1.27	10	.33	90	52	.00021
01	06867000	Saline River near Russell,							
202		Kans. Paradise Creek near Paradise,	13.7	.63	4	.64	62	58	.00058
203		Kans. Saline River at Tescott,	6.10	.50	27	.51	78	59	.0013
		Kans	13.0	1.29	37	1.7	52	52	.00038
204		Smoky Hill River at New Cambria, Kans.	24.4	2.44	5	.20	77	70	.00027
205	06871000	North Fork Solomon River at Glade, Kans.	7.01	.14	7	.47	86	73	.0013
206	06871500	Bow Creek near Stockton, Kans.	7.01	.16	1	.72	33	33	.0019
07	06872500	North Fork Solomon River at Portis, Kans.	15.5	.38	1	.57	85	45	.00054
208	06873000	South Fork Solomon River above Webster Reservoir,	10.0	100	-				
:09	06874000	Kans.	11.0	.25	2	.59	28	9	.0015
		South Fork Solomon River at Osborne, Kans.	11.6	.28	9	.88	18	11	.0010
10		Salt Creek near Ada, Kans.	7.01	.45	51	.04	87	59	.00038
11		Solomon River at Niles, Kans.	23.5	1.74	13	.58	57	36	.00016
12	06877600	Smoky Hill River at Enterprise, Kans.	59.4	2.29	2	.43	94	57	.00031
13	06878000	Chapman Creek near Chapman, Kans.	9.75	1.98	52	.05	97	83	.00054
14	06878500	Lyon Creek near Woodbine, Kans.	7.92	.61	90	.02	92	46	.00079
15	06879900	Big Blue River at Surprise, Nebr.		.59	50 44	1.2	76	40	.00044
16	06880000	Lincoln Creek near Seward,	6.10 7.69						
17	06880500	Nebr. Big Blue River at Seward,	7.62	1.12	74	.03	74	63 75	.00046
		Nebr	11.0	1.01	42	.22	82	75	.00039

lap o.	Station No.	Station Name	ACW	DEP	BDS	$d_{_{60}}$	B SH	BSL	GRA
18	06880800								
19	06881000	near Dorchester, Nebr. Big Blue River near Crete,	16.5	1.28	2	.27	74	73	.0002
20		Nebr. Little Blue River near	26.8	1.37	1	.35	84	23	.00028
		Alexandria, Nebr.	39.6	2.00	1	.62	70	65	.0012
21		Mill Creek at Washington, Kans.	11.1	.84	9	.42	73	58	.00062
22	06884400	Little Blue River near Barnes, Kans.	52.4	1.22	10	.66	91	81	.00052
23	06885500	Black Vermillion River near Frankfort, Kans.	12.8	.92	78	.03	84	60	.00049
4	06887500	Kansas River at Wamego, Kans.	223	11.0	1	.65	12	12	.0002
5	06888000	Vermillion Creek near Wamego, Kans.	7.47	.75	64	.04	79	63	.0002
6	06889000	Kansas River at Topeka, Kans.							
7	06891000	Kansas River at Lecompton,	159	8.0	1	.80	90	64	.0002'
8	06891500	Kans. Wakarusa River near	171	8.5	1	.86	93	75	.0002
9	06892000	Lawrence, Kans. Stranger Creek near	12.8	1.54	84	.03	95	95	.0003
0	06892350	Tonganoxie, Kans. Kansas River at DeSoto,	12.8	1.22	87	.03	76	76	.0001
		Kans	165	8.5	1	.55	83	82	.0003
1		Little Blue River near Lake City, Mo.	8.84	1.16	65	.03	73	52	.0003
2	06895500	Missouri River at Waverly, Mo.	320	13	1	.38	61	60	.0001
3	06897500	Grand River near Gallatin, Mo.	51.8	2.6	1	.27	62	40	.0003
4	06898100	Thompson River at Mount	43.9						
5	06898400	Moriah, Mo. Weldon River near Leon,		2.01	1	.43	61 70	38	.0007
6	06899500	Iowa Thompson River at Trenton,	21.0	.58	9	.35	70	65	.0007
7	06899700	Mo. Shoal Creek near Braymer,	82.3	2.13	1	.32	42	21	.0007
3	06902000	Mo. Grand River near Sumner,	11.9	2.01	28	.43	45	39	.0008
)	06902200	Mo. West Yellow Creek near	70.1	3.96	26	.36	62	12	.0001
0	06905500	Brookfield, Mo. Chariton River near Prairie	11.4	1.37	10	.48	47	41	.0005
		Hill, Mo	53.3	2.17	1	.41	57	50	.0003
1	06907700	Blackwater River at Valley City, Mo.	18.0	2.44	38	.50	61	57	.0002
2	06908000	Blackwater River near Blue Lick, Mo.	18.3	3.66	80	.00	97	65	.0002
3	06909000	Missouri River at Booneville,							
4	06910500	Mo. Moreau River near Jefferson	430	17.2	1	.35	58	58	.0001
5	06911900	City, Mo. Dragoon Creek near	33.5	2.23	44	1.0	56	52	.0002
6	06919500	Burlingame, Kans. Marais Des Cygnes River near	9.14	.70	1	80	81	81	.0006
o 7		Ottawa, Kans.	33.5	1.74	19	.19	70	70	.0003
		Pottawatomie Creek near Garnett, Kans.	9.75	1.16	83	.03	93	93	.0002
8 9		Starks Creek at Preston, Mo. Big Piney River near Big	2.29	.18	2	8.6	32	30	.0056
0	06931500	Piney, Mo. Little Beaver Creek near	44.2	1.77	1	17	37	17	.0011
		Rolla, Mo.	4.27	.28	1	18	9	2	.0056
1	06932000	Little Piney Creek at Newburg, Mo.	15.2	.85	1	15	9	6	.0014
2	06934500	Missouri River at Hermann, Mo.	424	.85 1 7.0	1	.48	3 44	44	.0014

 TABLE 10.—Width-discharge and width-gradient-discharge relations expressed in inch-pound units

 $[SC_{bd}$ is silt-clay percentage of bed material; SC_{bk} is silt-clay percentage of bank material; and d_{so} is median particle size of bed material, in milli-

 TABLE 10.—Width-discharge and width-gradient-discharge relations expressed in inch-pound units—Continued

π.

	ian particle size of bed material, in milli- in cubic feet per second; Q_2 through Q_{100}	Channel type Equation	Channel type Equation
are flood discharges, in cubic feet per second, of recurrence intervals 2 through 100 years; and W is active-channel width, in feet]		Table 4	
unrough 100 years; and w is a	acuve-channel width, in feetj	Low silt- $\bar{Q} = 0.0084 W^{1.36} G^{-0.59}$ clay	eand
Channel type Equation	Channel type Equation	bed $Q_2 = 0.89 W^{0.80} G^{-0.69}$	banks $Q_2 = 1.4 W^{1.02} G^{-0.42}$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$SC_{bd} = Q_5 = 3.8W^{0.68}G^{-0.66}$ $11-30; Q_{10} = 9.4W^{0.64}G^{-0.61}$ $d_{50} < 2.0). Q_{25} = 28W^{0.60}G^{-0.54}$ $Q_{50} = 58W^{0.58}G^{-0.49}$ $Q_{100} = 120W^{0.56}G^{-0.43}$	$ \begin{array}{ c c c c c c } & (SC_{bd} \leqslant & & & & \\ 10; & & Q_5 = 3.1 W^{0.94} G^{-0.46} \\ SC_{bk} < & & & \\ 70; & & Q_{10} = 5.8 W^{0.88} G^{-0.46} \\ d_{50} < 2.0). & & Q_{25} = 12 W^{0.83} G^{-0.44} \\ & & & Q_{50} = 19 W^{0.80} G^{-0.43} \\ & & & Q_{100} = 31 W^{0.77} G^{-0.42} \end{array} $
$Q_{100} = 85W^{1.74}$	$\frac{Q_{100} = 130W^{1.12}}{Q_{100} = 130W^{1.12}}$	Sand bed, $\bar{Q} = 0.012 W^{1.43} G^{-0.49}$	Gravel bed $Q_5 = 28W^{0.75}G^{-0.27}$
Med. silt- $\bar{Q} = 0.14 W^{1.76}$ clay bed $Q_2 = 20W^{1.27}$ (SC _{bd} = $Q_5 = 64W^{1.16}$	Gravel bed $\overline{Q} = 0.095 W^{1.81}$ $(d_{s_0} = Q_2 = 17 W^{1.15}$ $2.0-64). Q_5 = 75 W^{0.95}$	silt banks $Q_2 = 6.4 W^{0.95} G^{-0.34}$ (SC _{bd} \leq 0.87 0.22	$(d_{50} = Q_{10} = 47W^{0.63}G^{-0.32}$
$\begin{array}{c} (3) C_{bd} & Q_5 = 0.4 \\ 31 - 60; & Q_{10} = 180 \\ d_{50} < 2.0). & Q_{25} = 220 \\ W^{1.05} \end{array}$	$\begin{array}{c} 2.0 & 0.2, \\ Q_{10} = 160 W^{0.84} \\ Q_{25} = 380 W^{0.70} \end{array}$	$\begin{array}{ccc} 10; & Q_5 = 20 W^{0.87} G^{-0.33} \\ SC_{1.1} = \end{array}$	2.0-64). $Q_{25} = 90 W^{0.50} G^{-0.35}$
$Q_{50} = 340 W^{0.99}$ $Q_{100} = 380 W^{1.02}$	$Q_{50} = 510 W^{0.67}$ $Q_{100} = 930 W^{0.60}$	$\begin{array}{ccc} 70 - 100; \ Q_{10} = 39 W^{0.81} G^{-0.33} \\ d_{50} < 2.0). \ Q_{25} = 78 W^{0.75} G^{-0.32} \\ Q_{-130} W^{0.72} G^{-0.30} \end{array}$	$Q_{50} = 140 W^{0.42} G^{-0.36}$ $Q_{100} = 220 W^{0.35} G^{-0.37}$
Low silt- clay bed $\overline{Q} = 0.14W^{1.73}$ $Q_2 = 22W^{1.25}$ $(SC_{bd} = Q_5 = 85W^{1.11}$ $11-30; Q_{10} = 160W^{1.05}$ $d_{50} < 2.0). Q_{25} = 330W^{0.97}$ $Q_{50} = 500W^{0.93}$ $Q_{100} = 640W^{0.93}$	Cobble bed $\overline{Q} = 0.095 W^{1.84}$ (d ₅₀ >64). $Q_2 = 5.3 W^{1.43}$ $Q_5 = 28 W^{1.16}$ $Q_{10} = 62 W^{1.03}$ $Q_{25} = 150 W^{0.89}$ $Q_{50} = 270 W^{0.80}$ $Q_{100} = 410 W^{0.75}$	$\begin{array}{c} \overline{Q_{50} = 150 \text{ W}} & 6 \text{ G} = 0.31 \\ \hline Q_{100} = 190 \text{W}^{0.68} \text{G}^{-0.31} \\ \hline \\ $	
Sand bed $\overline{Q} = 0.13 W^{1.69}$ silt banks $Q_2 = 29 W^{1.16}$		$\frac{Q_{50} - 47W}{Q_{100} = 91W^{0.68}G^{-0.31}}$	Equation
$(SC_{bd} \le 10; Q_s = 92W^{1.07})$ $SC_{bk} = 1.02$		$\begin{array}{c c} \hline Table 5 \\ \hline \\ All data & \overline{Q} = 0.042 W^{1.54} G^{-0.26} \\ & Q_2 = 2.7 W^{0.96} G^{-0.40} \\ & Q_5 = 7.1 W^{0.82} G^{-0.45} \\ & Q_2 = 12 W^{0.75} G^{-0.47} \end{array}$	
$\begin{array}{ll} & \mathcal{D}_{bk} = & & \\ & 70 - 100; & Q_{10} = 170 W^{1.02} \\ & d_{50} > 2.0). & Q_{25} = 330 W^{0.96} \\ & Q_{50} = 470 W^{0.93} \\ & Q_{100} = 600 W^{0.92} \end{array}$			
Channel type Equation		$Q_{10} = 12 W 0.69 G^{-0.48}$ $Q_{25} = 23W^{0.69}G^{-0.48}$ $Q_{50} = 34W^{0.65}G^{-0.48}$	
Table 3		$Q_{100} = 50W^{0.61}G^{-0.48}$	
All data	$\overline{Q} = 0.13 W^{1.71}$ $Q_2 = 16 W^{1.22}$	Data source Equation	Data source Equation
$Q_{5} = 55 W^{1.10}$ $Q_{10} = 100 W^{1.04}$ $Q_{25} = 200 W^{0.97}$ $Q_{50} = 290 W^{0.94}$ $Q_{100} = 370 W^{0.94}$		Table 6	
		North and $\overline{Q} = 5.6 W^{0.90}$ Middle $Q_2 = 0.12 W^{1.86}$	Calamus, Cedar, $\overline{Q} = 3.4 W^{0.86}$ Elkhorn, North
		Loup $Q_5 = 0.34W^{2.18}$ Rivers. $Q_{10} = 0.016W^{2.37}$ $Q_{25} = 0.0065W^{2.59}$ $Q_{50} = 0.0034W^{2.74}$ $Q_{100} = 0.0018W^{2.90}$	Fork Elkhorn, and South Loup Rivers.

Ξ

Discharge variability	Equation	Discharge variability	Equation		
Table 7					
<i>O</i> ,,/ <i>Q</i> ≤60	$\begin{split} & \bar{Q} = 0.18 W^{1.62} \\ & \bar{Q} = 0.031 W^{1.36} G^{-0.42} \\ & Q_2 = 1.9 W^{1.51} \\ & Q_2 = 0.25 W^{1.18} G^{-0.49} \\ & Q_5 = 3.6 W^{1.50} \\ & Q_5 = 0.35 W^{1.13} G^{-0.56} \\ & Q_{10} = 5.7 W^{1.47} \\ & Q_{10} = 0.53 W^{1.09} G^{-0.58} \\ & Q_{25} = 9.7 W^{1.43} \\ & Q_{25} = 0.89 W^{1.05} G^{-0.58} \\ & Q_{50} = 14 W^{1.41} \\ & Q_{50} = 1.3 W^{1.01} G^{-0.58} \\ & Q_{100} = 1.9 W^{0.99} G^{-0.58} \end{split}$	<i>Q</i> 1√ <i>Q</i> >60 (41 data sets).	$\begin{split} & \overline{Q} = 0.33 W^{1.36} \\ & \overline{Q} = 0.044 W^{1.03} G^{-0.49} \\ & Q_2 = 40 W^{1.04} \\ & Q_2 = 22 W^{0.81} G^{-0.23} \\ & Q_5 = 180 W^{0.89} \\ & Q_5 = 110 W^{0.69} G^{-0.19} \\ & Q_{10} = 290 W^{0.62} G^{-0.16} \\ & Q_{25} = 970 W^{0.71} \\ & Q_{25} = 840 W^{0.55} G^{-0.12} \\ & Q_{50} = 1,600 W^{0.66} \\ & Q_{50} = 1,700 W^{0.56} G^{-0.09} \\ & Q_{100} = 2,300 W^{0.64} G^{-0.06} \end{split}$		
	Equation No.	Equation			
Equations for Muddy Stream Channels					
$\overline{Q} = 0.098 W^{2.0}$					
	7 $Q_2 = 12W^{1.5}$				
	8 $Q_5 = 47 W^{1.4}$				
	9	$Q_{10} = 110 \mathrm{W}^{1.3}$			
$10 Q_{25} = 190$					
	11	$Q_{50} = 290 \mathrm{W}^{1.1}$			
$12 Q_{100} = 350 W^{1.1}$					

TABLE 10.—Width-discharge and width-gradient-discharge relations expressed in inch-pound units—Continued

. .

37

.

. . .

. .

-

.