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We are familiar to study rings S with identity if we are interested in homo-
logical method on the ring theory. On the other hand, it seems for us that the
theory of categories is some kind of generalization of the structure of S-modules.
Especially, Grothendieck categories 2 with generating sets of small projective are
exactly generalizations of the category Mg of S-modules.

Recentely, the author has pointed out in [13], by making use of [6] and
Freyd’s theorem (see [16]) that U is equivalent to a full subcategory Mz* of M,
where R is the induced ring from 2 (see the definition in §1). In general, R
does not contain the identity element, but R contains a set of mutually orthogonal
idempotents {e,} such that R=>P e, R=>1P Re,,.

It is natural from the reason of birth of R that M ;" has very similar pro-
perties to those in M. However, there are slightly different properties between
them. For instance, let A be a division ring and T the ring of column finite
matrices over A with degree a. Let {¢;;} be the set of matrix units. Put R’
(resp. R')zg@eij A (resp. ;jEBe,.j A). If |a] is finite, then R’, R” have the

same properties. If |a| is R, then R/ and R” do not have identities and R’ is
semi-artinian and hereditary and R” is perfect and hereditary., (see Theorem 3
in §5).

In this paper, we shall generalize above properties in a semi-perfect Groth-
endieck category and give types of hereditary and perfect or hereditary and semi-
artinian categories in Theorems 3, 4, 5 and 6. 'They are generalizations of [3],
Theorem 4.1, [14], Theorem 5 and [8], Theorem 5 in semi-primary hereditary
rings. Finally, we shall show in Theorem 7 that a semi-perect Grothendieck
category with bounded connected sequences (see §4) is a special type of sub-
category of perfect and hereditary (or semi-artinian and hereditary) category and
vice versa.

In this paper we do not assume that a ring R contains the identity element.
We use the categorical terminology in [16]. By I, we denote the category of
right R-modules and by Ab we denote the category of the abelian groups.
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1. Preliminary results

Let 2 be a Grothendieck category with a generating set of small projective,
then 2 is equivalent, by Freyd’s theorem (see [16], Theorem 5.3) to a contrava-
riant functor category (€°, Ab) of an additive small category €. On the other
hand, in this case P. Gabriel showed in [6] that (€°, Ab) is equivalent to the
full subcategory of modules over a ring R as follows:

Put RZOZ,;‘@GB[C,,, Cg] as modules and we make R a ring by compoitions

of morphisms. We denote the identity morphism of [C, C] by I.. Then
{Ic}ces is a set of mutually orthogonal idempotents and R=3>PI.R. By
¢

Mz" we donte the full subcategory in the category My of right R-modules,
whose objects consist of all R-modules 4 such that AR=A. Then we note that
A=23PAI; and every R-submodule of 4 is in M*. Similarly, we can define
M. We know from [6], Proposition 2 in p. 347 that (€, Ab) (resp. (€°, Ab))is
equivalent to xI* (resp. Me").

Conversely, let S be a ring, which is not necessarily to have the identity.
We assume that .S contains a set of mutually orthogonal idempotents {e,} such
that S=> P e,S=>1P Se,. Itis easily to check that {¢,S} is a generating set
of small projective in Ms*. Hence, WM™ is equivaient to (€’°, Ab), where € is
the pre-additive category {e;S} in Mg*. Further S~> P[e,S, 5]. Therefore,
we call such a ring S an induced ring from a category and {e,} is called a set of
generating idempotents.

We shall use frequently some homological method over S in this paper.
Hence, we shall give here some notes concerning with this method.

Let S be as above. We consider every things in Mg+

N.0. Ewvery sub or factor modules of A is in M.

N.1. P is projective if and only if P is a retract of a free S-module F. So-
metimes we use a fact F' :z“]@uS:’geB ue,S, where {u} is a base.

N.2. For any elements x, y of A in Ms*, there exist idempotents e,, e, and e
in S such that xe,—=x, ye,—y and e;—ee;—=e.e.
N.3. AQRS=~A4, (use N.2). However, Homg(S, A)~T1Ae,.
s
N.3". AQA/I~A|Al for any left ideal | in S.
8
N.4. Tors(, ) commuts with direct limit, (cf. [2]).
Let A be an object in A. By S, we denote [4, A] and J( ) meanes the
Jacobson radical.

2. Perfect categories

Recentely, we have defined perfect (resp. semi-perfect) categories in [13].
We shall reproduce perfect categories as a form of induced ring from %A.
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Following to Mares [15], a projective object P is called semi-perfect if every
factor object of P has a projective cover. If any coproduct of copies of P is
semi-perfect, P is called perfect. A Grothendieck category 2 is called perfect
(resp semi-perfect) if every (resp. finitely generated) object has a projective cover.
If a ring .S has the identity, then the fact that .S is semi-perfect is equivalent to a
fact that M is semi-perfect. However, if S does not contain the identity then
the above statement is false (seeTheorem 1 below).

Let e be an idempotent in S. Following to [17] we call e local if eSe is a Jocal
ring or equivalently if Se (or eS) is completely indecomposable.

We have immediately from [11] and [15]

Theorem 1. Let R be an induced ring from a category. Then the following
are equivalent.

1) R is semi-perfect as an R-module in M z*.

2) R=3\®f,R, where {f,} is a set of mutually orthogonal local idempotents
and {f,R} is right semi-T-nilpotent with respect to J(R).

3) R/J(R) is semi-simple as an R-module in M z™ and idempotents can be lifted
modulo J(R) and J(R) is small in R.

Proof. We note that P=£J(P? for every non-zero projective module P by
[13], Proposition 2 or [1], Proposition 2.7. Hence, 1) < 3) is obtained from [15],
Theorem 4.3 and 5.1. 1) —»2). Let R=3>)Pe,R. Since ¢,R is also semi-

perfect, e,,,R:Zw]@ faR by [15], Corollary 4.4, where {f,} is a set of mutually

orthogonal and local idempotents. Furthermore, {f, R}, is right semi-T-
nilpotent by [11], Theorem 7. 2) — 1) is clear from [11], Theorem 7.

On the other hand, for M * we have immediately from [13], Proposition 5
and its corollary

Theorem 2. Let R be an induced ring from a category. Then the following
are equivalent.

1) IMM*g is semi-perfect.

1) g M* is semi-perfect.

2) R=31®f.R

2"y R=> D Rf,/, where {f,} and {f,’} are sets of mutually orthogonal and
local indempotents (cf. [1], Theorem 2.1).

Let S be the ring of upper tri-angular matrices with infinite degree over a
division ring and {e;;},<, be the complete set of matrix units. Put R=31De,;S.
Then R is semi-perfect as a right R-module but not as a left R-module. On the
other hand, " is semi-perfect.

We have already noted in [13], Remark that Theorem P in [1] are valid for an
induced ring R. If we use N.O~N.4 and the idea given in [13], we can show that
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Theorem P is true for R.  We state here only its some parts, which we shall use
later.

Theorem 2’ (Theorem P in [1]). Let R be as above. The following are equi-
valent.

1) WMg* is perfect.

2y R=Pf,R, where {f,} is a set of mutually orthogonal and local idem-
potents and {f,R} is a right T-nilpotent system with respect to J(R), (the last con-
dition is equivalent to J(R) being T-nilpotent).

3) Every right R-module in IRp* has the same weak as projective dimension.

3 Categories of commutative diagrams

We recall, in this section, the concept of categories of (generalized) commu-
tative diagrams in [9] and give relations between it and rings of (generalized)
tri-angular matix rings in [8§].

Let I be a linearly ordered set (1, 2, -+, n) and {2,},c; be a set of abelian
categories. We assume that there exist functors T;;: % -2, for i<j such that
1) T, is cokernel preserving, 2) there exist natural transformations v, ;2 1,7
— T such that v, Th (Vr jr)) =i, for i<<j<<k<<l. We define a category
A=[7, A}’ of commutative diagrams as follows: The objects A4 in A consist of
all n-tuple (4,, 4,, -+, 4,.); A;€¥U,; with arrows d’;,=d, T, such that d; , T;.(d ;1)
=dr; ;1 for i<<j<<k. 'The morphisms [4, Bly consist of all #n-tuple (£, f,, -, f4);
f:€[4;, By, such that f,d; AT; =d; BT, (f,) for i<j, (see [9], p. 245). isan
abelian category from [9], Proposition 1.1. We assume that 2(; has a projective
class &; (see [16], p. 136). We define adjoint functors S;, T; betweem A, and A
as follows: Sy (A,)=(T.(4.), -+, Ti-;{4,), 4;,0, -+, 0) with arrow dp,=1Ir,.cap
for h<<i and d, =+, ; for e<f<i, and T;(A)=A4;, where A=(4,, 4,, -+, 4,).
Thus, A has a projective class N T;7'(€;) whose projectives are of the form >P
Si(P;) and their retracts, where P, is &;-projective by [9], Proposition 1.2". We
note that if we take &; as the class of all epimorphisms in 2, then NT;7'(§;) is
also the class of all epimorphisms in % by [9], Proposition 1.1. Therefore, in
this case £-projective means usual projective.

We shall generalize the above category. Let I be a well orded setand {2},
a family of Grothendieck categories. We assume that functois T';; for i<(j (resp.
T., for i>j) are coproduct and cokernel preserving. We shall define A=[7, A,)!
as above, namely objects of % are of forms (4,, -+, 4,, -+-) with arrows d; T, ; for
i<j,i,je 1. Similarly, we define A=[I, A" with T ;+ For any ordinal number
a in I, we put A°=[77 A}, where I°=(1, ---, ). Now we assume that all %,
have generating sets of completely indecomposable and small projective {P,,}.
Then Si(P;o)=(T{(Pa), s Ti_1{(Pis), Piay 0, -+-, 0)=P, is a member of gene-
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rating set of small projective in U by [16], p. 121, Proposition 1.5. Similarly,
SiP;)=(0, -+, Py Ti11i(P;a), ---):f’m is one in 2. We have natural imbedding
functors yr, : A—> A, (F,: A*—>A) such that Yy (AP)=(4,, -+, 4,0, ---, 0), where
A®=(4,, -, 4,), A;€U,;. Making use of +,, we may sassume that U is the
colimit of A%. We note that 4 (P®) is projective in ¥ if so is P in A, however
Po(P™) is not projective. It is clear that % and % are Grothendieck categories
by [9], Proposition 1.1.

Let R and R® be induced rings from 2 and !, respectively. Put P{P=
SiP;,)- Since [PP, P§]=0 if n>m, R™= 31 >1 P[P, P§] is a ring of

X7 B
generalized lower tri-angular matrices over rings R,-:MESEB [P, PiP1=> D

[P;4 Pis]. The natural immbedding +»; induces the natural imbedding: R%
SR=33"P [P, P’]. Similarly, the induced ring R from U is the ring of
s<t @, 8

upper tri-angular matrices over R,.
Conversely, let S=>1 ¢,S be the induced ring with generating idempo-
I

tents. We assume S is lower tri-angular, namely {e,} is ranged as {¢”} such
that e’ Seg” =0 if n<<m. Put S,=> P 5" Seg” and M,,,=>1D e’Sey™ for
@,B @B

n>m. Let A=[I, My *]* with functor T, (—)=(—)Q@M,;. Then Ms" is
Sy

equivalent to % and S and S; are induced rings from A and W5 *, respectively.
From the above, we have

Lemma 1. Let A and A" be as above and R, R™ be the induced rings from
W and N*, respectively. Then A=lm A” and R=lim R™.

Let % be a Grothendieck category. We call U semi-simple if every object
is a coproduct of minimal objects. 2 is called hereditary (resp. semi-hereditary)
if every sub-(resp. finitely generated) object of projective is also projective.
Finally, U is called semi-artinian if every non-zero object has the non-zero socle.
It is clear that U has a generating set and is semi-simple if and only if the
induced ring R from U is a directsum of minimal right ideals.

Therefore, we have nothing to study for semi-simple categories.

Proposition 1. Let I be a well ordered set and {N,} ;c; a set of semi-simple
categories with generating sets. Then W=[1, W, is semi-artinian and semi-perfect

and N=[I, W;]" is perfect.

Proof. Let {P;,} be a generating set of minimal projective in ;. Since
[S{Piw)s S{P: )= [Piw Piulyir» P’ =8Si{P;,) is small projective by [13], Co-
rollary 1 to Lemma 2. Furthermore, [P;”, Pg”]=0 for i>j and [P, P{"]=
[P, J(Pg”)] for i<<j. Hence, {P:"} is a left T-nilpotent system with respect
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to J(). Therefore, A is semi-artinian and semi-prefect by [13], Proposition 3
and Corollary to Theorem 4. Similarly, we know by [13], Corollary to Theorem
4 that U is perfect.

Lemma 2 ([19]). Let S be an induced ring from a category and e an idem-
potent. If SeS is projective in Ms*, then Se is projective in M .

Proof. Homg(eS, S)=Se by N.3 and the trace ideal 7¢(eS)=SeS. We
quote here Silver’s proof in [19], Theorem 2.5. Let 0K — Se® eS N SeS —0
T
be exact, where T=Homg(eS, eS)=eSe. A diagram;

T®1
Se(?eS@Se —> SeS Q Se
1 1Qu Vo

Se <«  SeSe

is commutative, where p is the multiplication. Since Se is S-projective by N.1,

p is isomorphic by N.3. On the other hand, Se=SeSe. Hence, T® 1 is iso-

morphic. Therefore, K® Se=0, which implies K@ SeS=0 by 7. Since
8 S

(eS)SeS=eS, eS @ SeS=eS. Hence, Se@QeS~Se®eSR SeS~SeSRQ SeS is
T T S 8

S-projective by the assumption, (which is obtained from the first exact sequence
by taking ® SeS). Noting Se® SeaeSe, we can prove from the proof of [19],
s 8

Lemma 2.8 that Se is projective in I, g,.

Corollary ([18], [8]). Let S and e as above. If S is hereditary in Ms*, then
eSe is hereditary in M g,.

Proof. Let r be a right ideal in eSe. Since t.S is S-projective, t=1eSe is
a coretract of copies of Se. Hence, 1 is eSe-projective by the lemma.

4. J-nilpotent and connected sequence

In the structure theorems of semi-primary and hereditary rings the nilpo-
tency of the radical is very important. (cf. [4], [8] and [14]). We define the nilpo-
tency of projective object in a catrgory.

Let A be a semi-perfect Grothendieck category with a generating set of
(completely indecomposable and) small projective {P,}. For an object 4 in 2
we put J(A)=]J(J""(4)). If J"(A)=0 for some m, we call A J-niplotent. 1f
J*(A4)=0, J*(A)=0, n is called the index of A. Next, we generalize the notion
of a connected sequence of idempotents in [14]. A scquence (P, P,-+-, P,) is
called a left connected sequence if [P, J(P,)]%0 for i=1, .-, n—1 and = is
called the length of the sequence. Similarly, a sequence (P,, P,, ---, P,) is called
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a right comnected sequence, if [P;, J(P;,,)]#0 for =1, ---,;n—1. By IC(P,) (resp.
rC(P,)) we denote all left (resp. right) connected sequences such thar P,=P,,.
A sequence in IC(P,) with maximal lenght is called a maximal sequence. By
IL(P,) (resp. rL{P,)) we denote the lenght of maximal sequences of P, (if IC(P,)
has non maximal sequences, IL{P,)=0o0).

We note that if P,’s are completey indecomposable and projective, [P,, Pg]=
[P,, J(Pg)] if P,AxPg by [13]., Corollary to LLemma 2. From now on when we
consider connected sequences, we take completely indecomposable projective
objects, unless otherwise stated.

Proposition 2. Let A be a J-nilpotent object of index n. Take {A;}7%}
(4,=4) and f;c[A;, J(A;-)). Then f,--- f,=0. Especially, if A is projective,
then J(S4)"=0.

Proof. We assume f;---f,(4,.)C]" " (4;). Then f,_, fi fo(4,:)C
7 fio AN T (J(A-))=]""%(A4,-,). Hence, f,--- f,=0. If A4 is pro-
jective, [4, J(A)]DJ(Sa) by [20], Lemma. Therefore, J(S4)"=0.

Corollary. Let 2 be a semi-perfect Grothendieck category with a generating
set of small projective P,. If all P, are J-nilpotent, U is semi-artinian. Moreover,
if the indeces are bounded, U is perfect.

Proof. We may assume that P,’s are completely indecomposable by [13],
Corollary 1 to Theorem 4. Hence, % is semi-artinian by Proposition 2 and [13],
Proposition 3. If the indeces are bounded, 2 is perfect by [13], Lemma 6.

Proposition 3. Let A be a Grothendieck category with a generating set of
samll objects. We assume that U is semi-hereditary. Then for amy completely
indecomposable projective, P;,

1) Any non-zero element in [P,, P,] ts monomorphic.

2) If P;is J-nilpotent of index n,, then [P,, P,|=0 if n,>n, or n,=n,, P,a
P, and moreover [P,, J(P;)]=0.

3) If P, is J-nilpotent, IL(P,)< the index of P, If U is hereditaty and
perfect, then [P,, Pg]l==0 implies [Pg, P,]=0 for any non-isomorphic completely
indecomposable projecitves P, Pg and [P,, J(P,)]=0.

Proof. 1). P; is finitely generated by [13}, Corollary to Lemma 2. Hence
Im f is projective by the assumption for f&[P,, P,]. Therefore, f=0 or fis
monomorphic, since P, is indecomposable. 2). Since J(P)DJ(Q) for PDQ,
[P, J(P)]=0. Similarly. [P,, P,]=0 if n,>n, or P,”&P,, since J(P,) is unique
maximal in P,. 3). It is clear from 1) and Proposition 2. The last statement
is clear from Proposition 2 and [13], Lemma 6.
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For the connected sequences we obtain similarly from the definition

Proposition 4. Let A and P; be as above. We assume IL(P;)=n; (resp.
rL(P)=m,). If n,>mn, (resp. m,<<m,) or n,=n, (resp. m=m,) P,A<P, then
[Py, P.]=0 and [P,, ](P,)]=0.

5. Perfect and hereditary categories

Let R be a ring with identity. We showed in [3], [8] and [14] that every
hereditary semi-primary ring is a ring of lower triangular matrices over semi-
simple artinian rings. We also studied hereditary categories of commutative
diagrams in [9] (cf. Lemma 2). On the other hand, we defined perfect categories
in the pervious section. Using them, we shall study, in this section, perfect
categories with some assumptions, which is a generalization of [8].

First, we give an example. Let A be a division ring and S the ring of column
finite matrices with countably infinite degree over A. Let {e,;} be the completely
set of matrix units. Put R:;j@e"jsz,-; Pe; R, (resp. R:'Z‘, De;;S). Then

b2

R=UR, (resp. R=U R,), where R,=3)®e¢, ;R (resp. R,=>"Pe; R). R,and
i<# i<n

R, are hereditary by [5] or [8], Theorem 1. Moreover, e, ;R is J-nilpotent of
index . We shall show from Theorem 3 below that R and R are hereditary in
Me* and WM™, respectively.  We note that 1L(e;;R)=1, but rL(e;;R)= oo, (resp.
rL(e;;R)=i, but 1L(e;; )= o).

Lemma 3 ([18], Proposition 1). Let {A;}, be a set of division rings and R
the induced ring from [I, M)’ If the radical N of R is projective in Mz™, then
R is hereditary.

Proof. Let R=3>'@Pe,R. Then N=3 Pe,Re; and 1,=> Pe,Reg is
T a>B i<l

projective by the assumption and [13], Lemma 7. It is clear that every minimal
object in Mz"* is isomorphic to some e, R/t,=A,. From the assumption hd.
e R[t,<1. We shall show by the standard argument that R is hereditary. Let
M be an object in Mg+ and 0—->M -0, —0,— 0 exact with Q, injective. Then
0=Ext*(A;, M)=Ext' (A;, Q,). We shall show that O, is injective in Mz ". Let

0 — B

1
4 >
\ f
0,

be an exact sequence. We take a maximal extension f;: 4, 04—-Q,. If 4,%B,
there exists b in B such that (hbR+-4,)/A4, is minimal, since R is semi-artinian by
Proposition 1. Hence, 1={r| =R, br& 4,} is a maximal right ideal. We define
g:1—0, by g(r)=f,(br). Since Ext' (R/x, Q,)=0, 0<[t, O,] < [R, Q] is exact
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and we have g’c[R, Q,] such that g'|r=g. Since B&IMy", there exists an
idempotent e in R such that be=>b. Put ¢,=¢’(e) and f,(a,+br)=f(a,)+qr. If
bre A, f,(br)=f(ber)=g(er)=g'(er)==q,r. Hence, we have an extension of A,
Therefore, A;=B and Q, is injective. Thus, R is hereditary.

The above proof suggests us

Corollary. Let R be aninduced ring from a category and M an object in M ™.
Then M fis injective if and only if any element in [, M] is extended to [R, M] for any
right ideal t of R.

In the first step, we shall generalize the conditions in [9], Theorem 3.12.
For [1, A,] with functors T,

() 1) Arapy: ToupTey—> Ty is monomorphic for all a>B>1y,

2) For any given numbers a=o,<<a,<<--<a,=f
Toa(Pa) = TourTaz0(Pa)D Toa K (Pa)) D+ D Ta, (K* (L)) DKL) ,
where P, is any object in U, and K;(P,) are defined inductively from the above
equality and this equality is given through \r,g,.

(resp. () replacing o>B> and a,<a,<-<a, in (*)" by a<lB< v and
o0, > >,

Theorem 3. ([9]). Let I be a well ordered set and Iro=(1,2, -+, n, ---) the
set of natural numbers. Let {2}, be a set of semi-simple Grothendieck categories

with generating sets. If A=[I, AT (resp. [I, U,)’) is hereditary, then functors
T, satisfy (x)7 (resp. (*)?). Conversely, A=[I, A}’ (resp. A=[IRo; A,]’)" satisfies
the condition (), then N and U are hereditary.

Proof. Let {P;,} be a generating set of minimal objects in %, and R—=
2B [P, P§"] be the induced ring from A with functors T, where P“=
i<j
Si{P;,). We assume that % and hence, R are hereditary. Since %, is semi-
simple with generating set, 9; is a coproduct of simple categories ,,. We may
assume that P;, is a generator in %,,.. Furthermore, A=[I, A,]"~[1", A;, ]
with functors T”;, s such that T”;, ;6. =0, T g s0,=PmBmLmsina, for n<m
and T; ;=21 T";,, ;s,» where 7 is the inclusion U, to U, and p is the projection
of Ay, toW,,e . Let n,<m,<---<n,, be given numbers of I and A"=[(n,, --'n,),
AY. Pute(n,, a,-):ft‘_, 1p, .., in R for any finite number of P, ,. Let R™ be

= % i%;
the induced subring of R from A™ Then R(n; a,)=e(n;, a;)Re(n;, a;)=
e(n;, a;)R™e(n;, a;). Furthermore, R™= Ue(n,, a;)Re(n;, at;), where (n;, ;)
runs over all (n;, @;) and n; may be overlaped, and M= U Me(n,, a;) for M
Met and Me(n;, a;) Mg (n,, ;). On the other hand, R(n;, ;) is hereditary

1) IflI|>No or |I|=R¢ and I contains the last element, [, %]’ is, in general, not
hereditary by Lemma 8 in the forth comming paper of the same title III,
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by Corollary to Lemma 2. Hence, w.gl.dim R(n;, a;)<1. Therefore, w.gl.dim
R™<1 by [7], Proposition 1. It is clear that %" is perfect. Thus, ™ is hereditary
by Theorem 2’. Therefore, the condition (*) is obtained from [9], Theorem 3.12.
Similarly, we obtain (%) for hereditary categories [1, ¥;}. Conversely, we assume
A=[I, A,]" satisfies (*)’. 'Then from the above R=U R(n,;), where R(n;)=
[(ny -, ny), A;]” for any finite subset (n,, -+, n;) of I. R(n;) is hereditary by [9],
Theorem 3.12. Therefore, A is hereditary from the above arguments and a fact
that 9 is perfect. Next, we consider . Let R=3"P €0, R be the induced ring
and R,,=§G9e,~miR. Then ](R):,,ZQ.EB Cpy Rems, a0d T,= 3 De,, Rey, is

projective, in My * by [9], Theorem 2.13 and hence, projective in Mg* by the
structure of 0. Therefore, J(R)=31P1, is projective. Thus, A is hereditary
by Lemma 3.

Theorem 4. Let N be a semi-perfect Grothendieck category with a generating
set of small projectives. If N is perfect and hereditary, then U is equivalent to
[Z, %] with functors T, ,;, which satisfy the condition (x)". If N is semi-artinian
and hereditary, then W is equivalent to [I, W, with functors T, ;, which satisfy the
condition ()’, where I is a well ordered set and N,'s are semi-simple categories with
generating sets.

Proof. We assume that 2 is perfect and hereditary. Let {P,} be a generating
set of indecomposable projective objects in . Since A is perfect, there exists
P, such that [P,, Ps]=0 for all P,a P, and [P,, J(P,)]=0 for all P, by Proposition
3. We denote all of such a type P, by P, If we take out all of {P$’} from
{P,}, we can find projectives P, such that [P,, P,]=0 if P;A&<P, and P, {P,} —
{P§°}. We denote such Pg by P§®. We can define P inductively. Then the
induced ring R from ¥ is a ring of tri-angular matrices: R=§_€B [PS”, P§P].

Hence, ¥ is equivalent to A=[I, Ms*]” with functors T; (—)=(—) (? [R5,

P§”], where S, =31 [P§®, P§"] is semi-simple. On the other hand T;; is
coproduct and cokernel preserving. Hence, T,’s satisfy (*)” by Theorem 3.
The remaining part is proved similarly to the above.

The above proof suggests us

Proposition 5. Let A be a Grothendieck category with a generating set of
completely indecomposable and samll projective {P,} ;. Then1L(P,) (resp. rL(P,))
is bounded for any a = I if and only if N is equivalent to [T, W, (resp. [I*o, AT,
where W’s are semi-simple categories with generating sets. Therefore, if 1L(P,)
(resp. tL(P,) is bounded for any o, then U is semi-artinian (resp. perfect) and P, is
J-nilpotent for all o

Theorem 5. Let N be a semi-perfect Grothendieck category with a generating
set of projective and samll objects P,. Then A is semi—hereditary and all P, are |-
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nilpotent if and only if U is equivalent to [I*, U, ) with functors T, which satisfy
the condition (%)l in Theorem 3, where W,’s are semi-simple categories with generating
sets.

Proof. It is clear from the defintion of [I®, U,])’, Proposition 3,3, The-
orem 4 and Proposition 5.

Theorem 6. Let U and {P,} be as in Theorem 5. If W is semi-hereditary,
then the following are equivalent.

1) All P, are J-nilpotent.

2) IL(P,)<<oo for any a, (P, may not be indecomposable).
Furthermore the following are equivalent.

1) All P, are J-nilpotent and U is perfect.

2) IL(P,) and rL(P,) are bounded for any o, (P, may not be indecomposable).

Proof. It is clear from Theorems 4 annd 5, and Konig Graph theorem
and Krull-Remak-Schmidt’s theorem, since P,’s are small.

Theorem 7. Let U be a semi-perfect Grothendieck category with a generating
set of completely indecomposable projective and small objects P,. Then the following
are equivalent.

1) W is equivalent to a category of commutative diagrams [I%, W)l (resp.
[I®o, A1) over semi-simple categories N, with generating sets.

2) IL(P,)y<oo (resp. rL(P,)<<o) for all c.

3) There exists a fully imbedding functor @ of U to a hereditary category of
commutative diagrams B=[I*, W'} with functors T,; over semi-simple categories
A such that [P,[J(P,), PulJ(P)la=~[o(Pa)lp(J(Py), p(Pa)lp(J(Pu)le=[(P./
WP,), P,JJ(P,)]s, (resp. changing [ YV by [ 1), where P, is a projective cover of
@(P,) in B and {P,} is a generatinga set.

Proof. 1) — 2)is clear from the observation in §3. 2) —1). It is proved
by Proposition 5. 1) —3). Let A=[I*, A)’ with functor T, (<j). Let A,
be a minimal object in A;. Then P,=8,(A4,)=(T(4;), Tu(4.), -, Ti-1{(4;)
A;,0--+) is a member of a generating set in . Let B=[I%o, A,], with functor
T./= 2} ©TuTs ., Ti, DT, changing arrows for d;,(33;,..;, i Ts;

§<dg. <4<
G1T;,), where ¢;,..,;, are natural transformations T, - T, ,—T;;. We have a
faithful functor @: A—-B from [9], p 197. Put P,=S/(B;) in B. Since J(P;)
=(T,(4), - T;-1 (4,), 0, y=p(J(P;)) except arrows and J(P;)=(T,,(4),-*,
T';-1(A42), 0, ), [PfJ(P2), Pi/I(P)o=~[4s, Ay, ~[Pi[J(P;), Pi[J(Py)lg. 1f we
take the natural morphism f: P,—>@(P;), which is induced from 1,,, fis epi-
morphic amd P; is a projective cover of @(P;), since J(¢(P,)) is unique
maximal in @(P;). Fruthermore, B is hereditary from Theorem 4 and [10],
Corollar_y to ‘Theorem 10. 3) — 2). We assume that there exists @ as in 3). If
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[P,, Pgla=0 for P,AxP,, then [P,, Ps]40 and P, Pg, since P,’s are projective
covers of @(P,)’s. Further, [P,, J(P,)]g is isomorphic to a submodule of
[P(P.), p(P)C [P(Py), NP since @(J(P)%p(P,), P, is a projetive
cover of @(P,) and P, is indecomposable. On the other hand, [@(P,), J(¢(FP,))]
is induced from [P, J(P,)]=0 since 1L{P,)<<co. Hence, 1L(P,)<11(P,)<oo.
We have similar results for [I*0, 9,]".

Finally, if we restruct ourselves to a ring with identity, we have immediately
from Proposition 5.

Proposition 6. Let R be semi-perfect ring with identity. and {e;}3., be a
complete set of mutually orthogonal and local idempotents. Then the following are
equivalent.

1) rL(e;R) (or rL(Re,))<<co for any i.

2) IL(e;R) (or IL(Re;))<<co for any 1.

3) R s generalized tri-angular matrix ring over semi-smiple artinan rings.

In such a case, R is semi-primary. Especially, if R is right (left) perfect and hereditary
R is a semi-primary ring.

Remark. It is clear that Theorems 3,6 and 7 are generalizations of [3],
Theorem 4.1, [14], Theorem 5 and [§8], Theorem 5. However, we drop the
assertion gl.dim R/N?<C oo, because it seems to us that it does not contain a special
categorical meaning. If we want this result, we may consider the ring induced
from a category.

Let A be a divsion ring and T, the ring of lower tri-angular matrices over
A with degree #. Then U=n M, is a hereditary and perfect category and
generators are J-nilpotent, whose indeces are not bounded. Let S be the ring
of lower tri-angular matrices over A with countable infinite degree and {e;;} the
set of matrix units. We condider a subset ¢/ as follows: if /'=1j'=1, if i'=2,
/=2 and if =3, j'=1,2,3. We assume ¢’<<3. If ¢’=n(n4-1)/2 for any =,
j’'=t". If i’=n(n+1)/2 for some n, j* are {(n—1)(n—2)/2}+3 nearest numbers
from 7, except n(n—1)/2, (n—1)(n—2)/2, ---, (for instance, if ’=15, j’=15, 14,
o+, 11,799, ... 7,%5).  Put R=3" Dey; A. Then we can easily check that M+
is heredetary, perfect and all P, are J-nilpotent without boundary and further,
M " can not be expressed as a coproduct of two full subcategories.
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