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Abstract. Most of the existing explicit forms of cloaking devices concern spherical

regions which exhibit the following behavior. If the cloaking region comes from blowing

up a point we achieve perfect cloaking, but the conductivity tensor becomes singular and

therefore hard to realize. A nonsingular conductivity tensor can be achieved by blowing

up a small sphere, but then the cloaking is not perfect, since the interior field is controlled

by the square of the radius of the initial small sphere. This behavior reflects the highly

focusing effect of the spherical system where the 2-D manifold of a sphere degenerates to

the 0-D manifold of its center as the radius diminishes to zero. In the present work, we

demonstrate a cloaking region in the shape of an ellipsoid which achieves perfect interior

cloaking and at the same time preserves the regularity of the conductivity tensor. This is

possible since the confocal ellipsoidal system does not exhibit any loss of dimensionality

as the ellipsoid collapses down to its focal ellipse. This is another example where high

symmetry has a high price to pay. Furthermore, from the practical point of view, the

most “economical” cloaking structure, for three dimensional objects, is provided by the

ellipsoid which has three degrees of freedom and therefore can best fit any reasonable

geometrical object. Cloaks in the shape of a prolate or an oblate spheroid, an almost

disk, an almost needle, as well as a sphere are all cases of ellipsoidal degeneracies.

1. Introduction. The existence of hidden primary or secondary (such as scatterers)

sources goes back to Helmholtz [17], where he demonstrated that it is possible to have

currents within a conductive medium which generate a null field in its exterior. Elec-

troencephalography, magnetoencephalography and electric impedance tomography are

intimately related to this observation. Devaney and Wolf [8], Friedlander [9], Kerker [19]

and Bleistein an Cohen [1] have investigated further this idea of hidden primary sources.

Nevertheless, it is the last decay in which the idea of cloaking, as a technique of making

objects “invisible”, has gained a lot of attention [16], [14], [15], [10], [11], [12], [13], [6],

[5], [22], [20], [2], [4], [23], [21], [3]. There are actually two ways to prove the existence of

cloaked regions. One is based on spectral methods, where one proves that it is possible to
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choose the coefficients of an appropriate eigenfunction expansion in such a way that the

excitation field does not enter the region in which we want to hide [5]. The other one uti-

lizes the invariants of the governing equations with respect to coordinate transformations

in such a way that a single point singularity in the domain of the transformation blows

up to a three dimensional cloaked region in its range [11]. A fairly extended literature

on the subject is reported in [12].

The present work is focused on the construction of a particular three dimensional

cloak which can be adapted to almost any shape. In contrast to the isotropic behavior

of a spherical cloak, the cloak we propose here has complete anisotropy which can be

chosen at will. This report is organized as follows. In Section 2 we provide a short

introduction to the ellipsoidal coordinate system which makes the paper self-readable.

Then the transformation and its inverse is introduced and discussed in Section 3. Finally

the material tensor, which guides the field to avoid the cloaking region, is calculated in

Section 4.

2. The ellipsoidal system. We start with the essentials of the ellipsoidal system in

order to fix the notation [24], [18]. The definition of an ellipsoidal system demands the

determination of a reference ellipsoid

x2
1

a21
+

x2
2

a22
+

x2
3

a23
= 1, (1)

where 0 < a3 < a2 < a1 < +∞, which fixes the foci of the system and establishes the

standards of every spatial direction. The reference ellipsoid (1) plays the role of the unit

sphere in the case of the spherical system. The six foci’s of the ellipsoidal system are

located at the points (±h2, 0, 0), (±h3, 0, 0) and (0,±h1, 0), where

h2
1 = a22 − a23, (2)

h2
2 = a21 − a23, (3)

h2
3 = a21 − a22, (4)

and they are related by the equation

h2
1 − h2

2 + h2
3 = 0. (5)

The backbone of the ellipsoidal system is given by the focal ellipse

x2
1

h2
2

+
x2
2

h2
1

= 1, x3 = 0 (6)

and the focal hyperbola

x2
1

h2
3

− x2
3

h2
1

= 1, x2 = 0. (7)
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In the first octant, the ellipsoidal coordinates (ρ, μ, ν) are related to the Cartesian coor-

dinates by

x1 =
ρμν

h2h3

, (8)

x2 =

√
ρ2 − h2

3

√
μ2 − h2

3

√
h2
3 − ν2

h1h3

, (9)

x3 =

√
ρ2 − h2

2

√
h2
2 − μ2

√
h2
2 − ν2

h1h2

, (10)

where h2 < ρ < +∞, h3 < μ < h2, and 0 < ν < h3, while the other seven octants

are specified by considering the appropriate signs of the xi’s. The variable ρ = constant

specifies an ellipsoid, and therefore it corresponds to the radial variable of the spherical

system. In particular, the focal ellipse (6) corresponds to the value ρ = h2. The pair

(μ, ν) identifies a point on the ellipsoid ρ = constant and therefore it can be considered

as the angular part of the spherical system.

By varying the variable ρ we obtain a family of ellipsoids,

x2
1

ρ2
+

x2
2

ρ2 − h2
3

+
x2
3

ρ2 − h2
2

= 1, ρ2 ∈ (h2
2,+∞). (11)

Similarly, the variation of the variable μ defines the family of hyperboloids of one sheet,

x2
1

μ2
+

x2
2

μ2 − h2
3

+
x2
3

μ2 − h2
2

= 1, μ2 ∈ (h2
3, h

2
2), (12)

and the variation of the variable ν defines the family of hyperboloids of two sheets,

x2
1

ν2
+

x2
2

ν2 − h2
3

+
x2
3

ν2 − h2
2

= 1, ν2 ∈ (0, h2
3). (13)

For a detailed analysis of the ellipsoidal system we refer to [7].

3. The ellipsoidal transformation. Suppose we want to cloak an ellipsoidal region

which is bounded by (1) or, in view of (11), by ρ = a1. Then we choose an ellipsoidal

system (ρ, μ, ν) having (1) as a reference ellipsoid and define the transformation

f(ρ, μ, ν) = R(ρ)
μν

h2h3

x̂1 +
√
R2(ρ)− h2

3

√
μ2 − h2

3

√
h2
3 − ν2

h1h3

x̂2

+
√
R2(ρ)− h2

2

√
h2
2 − μ2

√
h2
2 − ν2

h1h2

x̂3, (14)

where

R(ρ) =

√
ρ21 − a21
ρ21 − h2

2

(ρ2 − h2
2) + a21 (15)

with ρ1 > a1 and 0 � ν2 � h2
3 � μ2 � h2

2 � ρ2. Transformation (14) maps the focal

ellipse ρ = h2 to the reference ellipsoid ρ = a1 and leaves the outer ellipsoid ρ = ρ1
invariant. Hence, f restricts to a one-to-one map from the interior of the ellipsoid ρ = ρ1
except the focal ellipse, to the ellipsoidal shell a1 < ρ < ρ1. Note that f is singular on

the focal ellipse. This mapping connects the two points ρ and R on the coordinate curve
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(μ, ν)= constant, and therefore it is completely determined by the scalar transformation

(15). Consequently,

ρ(R) =

√
ρ21 − h2

2

ρ21 − a21
(R2 − a21) + h2

2 (16)

and the inverse of f is given by

f−1(R, μ, ν) = ρ(R)
μν

h2h3

x̂1 +
√
ρ2(R)− h2

3

√
μ2 − h2

3

√
h2
3 − ν2

h1h3

x̂2

+
√
ρ2(R)− h2

2

√
h2
2 − μ2

√
h2
2 − ν2

h1h2

x̂3. (17)

The value of a1 determines the size and the shape of the cloaked region, the value of ρ1
determines the invariant exterior boundary and the ellipsoidal distance ρ1 − a1 controls

the thickness of the cloak.

4. The material tensor. The Dirichlet problem for the Laplace equation in a do-

main V refers to finding a harmonic function u in V which takes the preassigned values

h on the boundary ∂V . If the domain V is equipped with the Riemannian metric (gij ),

then

Δu(x1, x2, x3) =
1√
|g|

3∑
i=1

3∑
j=1

∂

∂xi

(√
|g|gij ∂

∂xj

)
u(x1, x2, x3), (18)

where (gij ) is the inverse of (gij ) and |g| denotes the determinant of the metric tensor.

The map

Λg(h) =
3∑

i=1

3∑
j=1

(√
|g|nig

ij ∂

∂xj

)
u, r ∈ ∂V, (19)

known as the Dirichlet-to-Neumann map, remains invariant under any diffeomorphic

transformation that reduces to the identity on the boundary [10]. This observation

allows one to interpret the effect of the transformation as a change of the material tensor

that characterizes the medium in V . In other words, the mathematical transformation is

absorbed by the physical characteristics of the medium. The material properties of the

medium are represented by the symmetric tensor

σij =
√
|g|gij . (20)

Therefore, we have to calculate the metric that corresponds to the inverted transforma-

tion mapping f−1. This will lead us to the metric g̃ij and to the material tensor

σ̃ijρ =
√
|g̃|g̃ij . (21)
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After long and tedious calculations with the inverted ellipsoidal transformation f−1, we

obtain the following expression for the inverted metric:

g̃RR =
R2

ρ2(R)

(
ρ21 − h2

2

ρ21 − a21

)2
(ρ2(R)− μ2)(ρ2(R)− ν2)

(ρ2(R)− h2
3)(ρ
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2)
, (22)
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2
2 − μ2)
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(h2
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2 − ν2)
, (24)

where, due to the orthogonality of the ellipsoidal system, every other component of the

metric tensor vanishes. Furthermore,√
|g̃| = ρ21 − h2

2
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2
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, (25)

which finally implies the material tensor

σ̃ =

⎛⎝ σ̃ρρ 0 0

0 σ̃μμ 0

0 0 σ̃νν

⎞⎠ , (26)

where
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2
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. (29)

It is of interest to note that the material tensor (26)-(29) above remains bounded away

from zero, as well as from infinity, on both boundaries of the cloak, i.e. on ρ = a1 and on

ρ = ρ1. The relative problem for the case of a spherical cloak leads to a material tensor

that vanishes on the inner boundary of the cloak [12]. It seems that the singular behavior

of the spherical case is due to the fact that the transformation map blows up the origin

to a full sphere, while in the ellipsoidal case a point on the focal ellipse is mapped just

to two symmetric points on the inner boundary of the cloak. In other words, the inverse

map exhibits a strong focusing effect in the spherical case, sending a two dimensional

manifold to a single point, while in the ellipsoidal case, the inverse map sends just two

points to one. On the other hand, in both the spherical and the ellipsoidal case, there
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are submanifolds in the interior of the cloak where the material tensor vanishes because

the determinant of the metric vanishes there, but this is due to the particular system.
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