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Optical conformal mapping has been used to construct several isotropic devices with novel 

functionalities. In particular, a conformal cloak could confer omnidirectional invisibility. 

However, the maximum values of the refractive indexes needed for current designs are too 

large to implement, even in microwave experiments. Furthermore, most devices designed so 

far have had imperfect impedance matching, and therefore incomplete invisibility 

functionalities. Here we describe a perfect conformal invisible device with full impedance 

matching everywhere – the first description of such a device, to the best of our knowledge. The 

maximum value of refractive index required by our device is just about five, which is feasible 

for microwave and THz experiments using current metamaterial techniques. To construct the 

device, we use a logarithmic conformal mapping and a Mikaelian lens. Our results should 

enable a conformal invisible device with almost perfect invisibility to be made soon. 

 

 

                               I. INTRODUCTION 
Transformation optics (TO) has shown great versatility for controlling light propagation since the 

two pioneering papers on invisibility were first published [1,2]. Numerous functions using TO 

have now been proposed, such as invisible cloaking [1-4], carpet cloaking [5,6], field 

concentration [7,8], and rotation [9,10]. Such developments have been described in several 

recent reviews [11-14]. Besides optical waves, this approach has been also extended to 

manipulation of other waves, such as acoustic waves [15-17].  

 

As a special method in two dimensions, conformal transformation optics (CTO) [1,18] gives us a 

simpler routine to control light or waves with only isotropic refractive index distributions, 

avoiding complicated electromagnetic tensor analysis. Many functionalities of conformal devices 

have been proposed, such as invisible cloaking [1,19,20], light bending [21,22] and imaging [23]. 

But as far as we know, only two conformal devices using isotropic materials have been reported 

experimentally. One [24] generates collimated light rays by Möbius mapping; the other [25] 

achieves one-dimensional cloaking by Zhukowski mapping. What hinders the development of 

CTO is the difficulty of optimizing the range of refractive-index variation, and especially reducing 
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the maximum values required. In an earlier design for conformal invisible device [1], the range of 

the designed refractive index is from 0 to about 36, which is a major challenge for 

electromagnetic waves. Following the same conformal mapping, two "kissing" mirrored 

Maxwell's fisheye lenses have been introduced to reduce the maximum of refractive index to 

about 13 [18]. Recently, it was reported that the maximum refractive index can be further 

reduced to 9.8 by using dual logarithm conformal mapping with a linear term [19]. However, 

these values are still hard to attain experimentally. Apart from these, other kinds of isotropic 

invisible devices also exist, such as invisible cylinders or invisible spheres [26,27]. However, there 

are infinitely large values of refractive indexes in such devices, hence nearly impossible to attain.  

 

Here we design a new conformal invisible device by applying a conformal logarithmic mapping 

with a linear term [19,21] to a Mikaelian lens [28,29] - the first time this optical device has been 

used in invisibility designs. Surprisingly we find that this design offers perfect invisibility, thanks to 

impedance matching everywhere, while requiring a maximum refractive index of just 5.21. 

Numerical simulation confirms our theoretical result. We also find that a perfect electric 

conductor (PEC) can be almost perfectly hidden by this device from any incident direction.  

 

                        II.Results 
               A. Conformal logarithmic mapping with a linear term.  

In mathematics, a conformal mapping [17, 30] in two dimensions is usually described by a 
complex analytic function (in the form of (z)w f= ), which only depends on z  but not its 

complex conjugate z∗ . In this letter, we focus on a special kind of conformal mapping: conformal 

logarithmic mapping with a linear term [19], which is written as  

                 ( ) [log( ) ( )]logw z z z zα β β= + − − + ,        (1) 

where α  and β  are two free real variables. This mapping has one linear term ( z ) and two dual 

logarithmic terms ( log(z )β−  and log(z )β+ ), and possesses two singularities ( 0*iβ− +  and 

0*iβ + ). It is not hard to see that w
 

approaches z  for z → ∞ .  

 

For some values of 
0w  in the domain of this mapping, there are two different corresponding 

values 
1z  and 

2z . The one-to-one mapping between the domain ( z -space, physical space) and 

range (w-space, virtual space ) is shown in Fig. 1: the physical space is a whole complex plane 
(denoted by z x yi= +  in Fig. 1(c)), while the corresponding virtual space is constructed as a 

Riemann surface [31] (described by w u vi= +  in Fig. 1(a)). The Riemann surface consists of two 

Riemann sheets: the lower sheet (black mesh on blue) is a whole complex plane, while the upper 

sheet (green mesh on green) is a ribbon-like complex plane, owing to the periodicity of 

logarithmic terms in the conformal mapping. Both sheets are connected with a branch cut 

(shown in yellow). Thick green lines at the boundaries along the u  direction indicate that the 

upper sheet is finite in the v  direction. If we roll the upper sheet along the u  direction and 

glue the two boundaries, we obtain a cylindrical surface. So we can intuitively re-plot this virtual 

space with the equivalent diagram shown in Fig. 1(b). The ends of cylindrical surface are mapped 

from two singularities of physical space. In Fig. 1(a), the width of the upper sheet is 2d απ= , and 



the length of the branch cut is no larger than d , which depends on the parameters α  and β . 

The middle point of the branch cut is the origin of both Riemann sheets. The whole structure in 

virtual space comes from physical space by the conformal mapping expressed in Eq. (1). The 

branch cut is mapped from circle-like curve (also in yellow). Every point of the branch cut  

corresponds to two points of this circle-like curve: in other words, one can imagine the branch 

cut being blown up to circle-like curve. In the equivalent diagram Fig. 1(b), the perimeter of the 

cylindrical surface is the same as the width of the upper sheet in Fig. 1(a). Here the branch cut 

changes into part of a circle.  

 

 

FIG. 1.  (a) Virtual space of conformal logarithmic mapping. (b) The equivalent diagram of virtual 

space of conformal logarithmic mapping. (c) Physical space of conformal logarithmic mapping. (d) 

Virtual space of conformal invisibility. (e) The equivalent diagram of virtual space of conformal 

invisibility. (f) Physical space of conformal invisibility. 

 

  In conformal transformation optics [17], once we know the structure of virtual space and 

physical space of the conformal mapping expressed in Eq. (1), it is easy to deduce the propagation 

of light in both spaces. Suppose that the refractive index distributions of virtual space and 

physical space are 
wn  and 

zn , respectively. The conformal mapping preserves the optical path 

between virtual space and physical space by [1] 

                              | dw/ dz |z wn n= ,                          (2) 

which implies that the materials are isotropic in physical space. Suppose for simplicity that 
wn =1 

at every point in virtual space, which means that light rays propagate along straight lines in both 

Riemann sheets. In Fig. 1(a) , one light ray (in red) propagates along a straight line in the lower 

sheet and hits the branch cut. Then it enters onto the upper sheet. Once it meets a boundary 

(one of the thick green lines) of the upper sheet, it will appear at another boundary (another 



thick green line) and gradually goes to infinity. As shown in the equivalent diagram Fig. 1(b), this 

light ray (in red) has a helical trajectory on the cylindrical surface. In physical space shown in Fig. 

1(c), this becomes a spiral curve (in red), which tends to one of singularities of the conformal 

mapping. As for the two parallel light rays shown in purple in Fig. 1(a), they will not meet the 

branch cut and will simply propagate in straight lines. The equivalent rays are shown in Fig. 1(b), 

and their trajectories under this conformal mapping are shown as purple curves in Fig. 1(c), 

which are geodesics of physical space. 

 

 

                            B. Mikaelian lens 
The conformal mapping determines the relationship between virtual space and physical space, so 

we can know how light rays travel in physical space by working out their behavior in virtual space. 

Virtual space is usually constructed as a Riemann surface, which is locally flat ( 1wn = ). Once we 

introduce a refractive index profile into this virtual space, we can manipulate light rays at will. 

Here we introduce a special refractive index profile: the Mikaelian lens [28,29].  

 

 

FIG. 2.  (a) Two dimensional truncated Mikaelian lens with a single period. For parallel light rays 

(in red) , they propagate along a sine-like curve and then leave the lens at the same height in the 

original direction. (b) When we roll truncated Mikaelian lens into a cylindrical surface, trajectories 

of corresponding light rays are all closed. 

 

The Mikaelian lens was first described as a self-focusing cylindrical medium with axial symmetry. 

In two dimensions, this medium has a refractive index that decreases from the center line to the 

edge as the inverse hyperbolic cosine, 

                             
1( ) Re( )cosh( )

n w w
α

= ,                         (3) 

where the parameter α  is the same as that in Eq. (1).  

 

In general, the Mikaelian lens occupies the whole w  plane. However, we can employ the fact 

that in this lens light rays are periodic in the v  direction with a period of 2D απ=  and truncate 

the lens at / 2v D= ± (see in Fig. 2(a)). When we identify the dashed lines / 2v D=  and / 2v D= −  



to make a virtual cylinder just as has been described above, light rays will form closed trajectories 

on this cylinder. The refractive index profile on this cylinder is shown in Fig. 2(b). When a ray 

enters the upper sheet via the branch cut, it makes a closed loop around the cylinder and leaves 

the upper sheet through the branch cut in the original direction; this way the upper sheet, and 

hence the whole device, becomes invisible. 

 

                         C. The conformal invisible device  
As we have shown above, the upper sheet of the virtual space described by Eq. (1) can be folded 

into a cylinder. We can therefore simply put the truncated Mikaelian lens into the upper sheet to 

guide light rays (in red) back to the lower sheet through the branch cut (Fig. 1d). In equivalent 

diagram Fig. 1(e), light ray (in red) has a closed curved trajectory on a cylindrical surface. After 

mapping to physical space (see in Fig. 1(f)), light ray changes into a curve (in red), which 

propagates to infinity in the original direction. Light rays that do not touch the branch cut (in 

purple), do not change their trajectories.  

 
To achieve invisibility, we must carefully choose the parameters α  and β  in Eq. (1) so that all 

light rays that meet the branch cut can return to it. First let us fix the parameter α , which means 

that the width of the upper sheet and the truncated Mikaelian lens will not change. In Fig. 1(d), 
the length of branch cut will change when β  varies. Any light ray starting from any point of the 

branch cut will return to itself, as long as the length of branch cut is no longer than half the width 

of the truncated Mikaelian lens, which gives, 

                               / 2d D≤ .                                   (4) 

Now we have designed a conformal invisible device for all angles. In physical space shown in Fig. 

1(f), the refractive index distribution of the designed device is calculated by Eqs. (1)-(3) as 
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In designing devices using conformal transformation optics, it is necessary to optimize the 

refractive index distribution so that the values are accessible to experimental fabrication. In our 
conformal invisible device, the refractive index distribution is determined by α  and β . 

According to Eq. (4), it is easy to show that the maximum value of refactive index distribution in 
our device is 5.127 when the ratio of α  and β  equals 3.06384 (see in Appendix). Moreover, we 

can tune α  and β  to achieve invisible devices of different sizes.  

  



 

FIG. 3. (a) Refractive index distribution. (b) Field pattern for an incident plane wave. (c) Field 

pattern for an incident Gaussian beam. The wavelengths of plane wave and Gaussian beam are 

8 / ( 1)l lλ π= +  with 10l =  and 20l = , respectively. 

 
In Fig. 3a we show the contour of refractive index distribution when α  and β  equal 4 and 

1.30555, respectively. The maximum value is located at the center line. In Fig. 1(f), red 

trajectories show how our invisible device bends light rays to make itself invisible in geometric 

optics. In the realm of electromagnetic waves, the phase of the wave must be taken into 

consideration. In Fig. 1(e), light rays entering into the upper sheet have an extra optical length 

compared to those that do not touch the branch cut. For a plane wave propagating in virtual 

space, the wave front will undergo an extra uniform phase shift on the upper sheet, which in 

general will disturb the plane wave front in the vicinity of the branch cut due to a jump of the 

phase. However, if this extra uniform phase shift is an integer multiple of 2π , then there is no 

phase jump and the plane wave will be recovered as it leaves the device. Intrinsically, this phase 

shift is due to the excitation of a cavity mode in the upper sheet [32,33]. If we think of the 

truncated Mikaelian lens as a cavity, its eigen wavelength satisfies the relation [29] 

            8 / ( 1)l lλ π= + .                       
 

(6) 

In Fig. 3(b) we plot electric field distribution of the invisible device of Fig. 3(a), where 5l = . In 

Fig. 3(c), we use a Gaussian beam to show the function of the designed device. In the previous 

conformal cloaking design [1,18,19], the impedance is slightly mismatched along the branch cut, 

which results in some scattering. In our present conformal invisible device, the impedance is 

unity on both sides of the branch cut. As far as we know, conformal invisible devices with 

impedance matched everywhere have not been proposed before. In Figs. 3(b) and 3(c) the 

numerical results show that the invisibility performance of the designed device is almost perfect, 

without any scattering. The refractive index distribution of this device ranges from 0 to 5.127, 

which makes the manufacture of such conformal invisible device practical. 

 

                         D. The conformal invisible cloak  
In addition, our device has a capability of making invisible a perfect electrical conductor (PEC). 

Suppose a linear PEC is inserted along the thick black line segment in physical space shown in Fig. 

4(c), light rays entering into the region inside the yellow curve will be reflected by the PEC twice 

and continue to infinity without changing their direction. In virtual space shown in Fig. 4(a), the 

PEC is shown as three thick black straight lines, which symmetrically divide the upper sheet into 



identical parts. In fact, the two boundary lines of the upper sheet can become one if we roll this 

sheet into a cylindrical surface. When light rays (in red) enter onto the upper sheet from the 

branch cut, they propagate along a sine-like curve and are reflected twice by the PEC. Then they 

return to the lower sheet with their direction and position conserved. The corresponding 

propagation of light rays is shown in Fig. 4(b). This cloaking device can also work in the realm of 

electromagnetic waves. In Figs. 4(e) and 4(f), the wavelength is the same as that in Figs. 3(b) and 

3(c). For comparison, the scattering field pattern of a PEC without the invisibility device is shown 

in Fig. 3(d). The simulation results show good performance for cloaking of a PEC.  

 

The ability of our invisibility device to hide a linear PEC can be employed for turning it into a 

regular invisibility cloak. To do this, we can use an additional geometric transformation, either 

the Zhukowski mapping or the transformation used in carpet cloaks [5,6], to expand the PEC and 

create an invisible region. Importantly, there is fundamental difference between the resulting 

invisible cloak and the carpet cloaks. In particular, the present cloak will work for light coming 

from any direction while the carpet cloak is really invisible only for light coming from one 

direction. 

 

 

FIG. 4.  (a) Virtual space of cloaking a PEC. (b) The equivalent diagram of virtual space of 

cloaking a PEC. (c) Physical space of cloaking a PEC. (d) The scattering field pattern of a PEC in air 

for an incident plane wave. (e) The field pattern of a PEC inside our invisible device for an incident 

plane wave and (f) for an incident Gaussian beam. The wavelengths of plane wave and Gaussian 

beam are 8 / ( 1)l lλ π= +  with 10l =  and 20l = , respectively. 

 

 

                         III.Conclusion 

We have designed a conformal invisible device via conformal transformation optics, which only 



needs an isotropic refractive index distribution. By tuning the parameters of conformal mapping 

and using a truncated Mikaelian lens with a suitable width, we dramatically deduce the maximum 

value of refractive index distribution to 5.127, which makes the device accessible to experimental 

fabrication. In virtual space, the refractive index is 1 on both sides of the branch cut, which means 

that the impedance is fully matched at the branch cut. So the invisibility is perfect: there is no 

scattering. Our design can also hide a linear PEC within it, and even a PEC object if a further 

coordinate transformation is applied. As far as we know, H-fractal metamaterials can be used to 

achieve refractive indexes from 0 to 1 for microwave frequencies [34]. In addition, by drilling 

holes on high dielectrics or using H shape metamaterials, one can obtain refractive indexes larger 

than 1 [35]. With these methods, we hope that our work will stimulate a proof-of-principle 

experiment.  
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APPENDIX: THE MAXIMUM VALUE OF REFRACTIVE INDEX DISTRIBUTION IN 
CONFORMAL INVISIBLE DEVICE 
 

In this appendix, we give a mathematical derivation of the maximum value of refactive index 

distribution in conformal invisible device. 

 

As mentioned in the main text, to achieve invisible property, the length of branch cut in virtual 

space should not be longer than half of width of the truncated Mikaelian lens, which gives Eq. (4). 

We will use this condition to obtain the maximum value of refractive index distribution. 

 

 

FIG. 5. (a) Virtual space of conformal logarithmic mapping. (b) Physical space of conformal 

logarithmic mapping. 

 

The details of conformal logarithmic mapping (Eq. (1)) is shown again in Fig. 5. Let A ( 0 0u v i+ ) and 

A' ( 0 0x y i+ ) be two corresponding points in virtual space and physical space of conformal 

mapping. In Fig. 5(a), the width of the upper sheet is 2D απ= , while the length of branch cut (in 

yellow) is d . Eq. (4) implies that 

    ( ) ( )( )0 0 0 0 0 0Re log log 0x y i x y i x y iα β α β+ + − + − + + = ,                       (7) 

and 

   ( ) ( )( )0 0 0 0 0 0Im log log
2

x y i x y i x y i απα β α β+ + − + − + + ≤ .                      (8) 

Eq. (7) can be re-expressed as 



     

( ) ( )( )0 0 0 0 0 0

2 2 2 0
0 0 0

0
0 0

2 2 2 0
0 0 0

0

2 2 2
0 0

0

Re log log

2 exp arctan
Re log

2 exp arctan

2log
2

x y i x y i x y i

yx y x i
x

x y i
yx y x i

x

x y xx

α β α β

β β
β

α
β β

β

α β

+ + − + − + +

⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟+ + −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠= + +⎜ ⎟⎜ ⎟⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟+ + + ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

+ + −= + 0
2 2 2
0 0 02

0
x y x

β
β β

⎛ ⎞
⎜ ⎟+ + +⎝ ⎠

=

, 

which means 

0 0
2 2 2
0 0 0

4 21 exp
2

x x
x y x

β
β β α

⎛ ⎞− = −⎜ ⎟+ + + ⎝ ⎠
. 

When 0 0x → , we obtain 

0 0
2 2 2
0 0 0

4 21 1
2

x x
x y x

β
β β α

− → −
+ + +

, 

Therefore with Eq. (7), we have 
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Eq. (8) can be re-expressed as 
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When 0 0x → , we obtain, 

                0
0 2arctan

2
yy απα π
β

⎛ ⎞⎛ ⎞+ − ≤⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

.                       (10) 

By combining Eqs. (9) and (10), we can eliminate the variable 0y  and obtain a transcendental 

inequation,  

                  ( ) ( ) ( )1 22 / / 2arctan 2 / 1
2
πα β α β α β− −− + ≤ − .                 (11) 
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FIG. 6.  The solution of the transcendental inequation (11).  

 

We plot graphs of functions on both sides of Eq. (11) in Fig. 6, where the x-axis presents variables 

/α β . The numerical solution of Eq. (11) is 3.0 4/ 638α β ≥ . The minimum value of ( )n z  in 

Eq. (5) is then 5.127, which corresponds to of physical space. It is worth to mention that the 

maximum value of refractive index distribution in conformal invisible device only depends on the 
ratio of  α  and β , while α  determinates the size of the designed device. 

 


