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Nonuniform metasurfaces (electrically thin composite layers) can be used for shaping refracted and reflected

electromagnetic waves. However, known design approaches based on the generalized refraction and reflection

laws do not allow realization of perfectly performing devices: there are always some parasitic reflections into

undesired directions. In this paper we introduce and discuss a general approach to the synthesis of metasurfaces

for full control of transmitted and reflected plane waves and show that perfect performance can be realized.

The method is based on the use of an equivalent impedance matrix model which connects the tangential field

components at the two sides on the metasurface. With this approach we are able to understand what physical

properties of the metasurface are needed in order to perfectly realize the desired response. Furthermore, we

determine the required polarizabilities of the metasurface unit cells and discuss suitable cell structures. It appears

that only spatially dispersive metasurfaces allow realization of perfect refraction and reflection of incident plane

waves into arbitrary directions. In particular, ideal refraction is possible only if the metasurface is bianisotropic

(weak spatial dispersion), and ideal reflection without polarization transformation requires spatial dispersion with

a specific, strongly nonlocal response to the fields.

DOI: 10.1103/PhysRevB.94.075142

I. INTRODUCTION

A metasurface is a composite material layer, designed and

optimized in order to control and transform electromagnetic

fields. The layer thickness is negligible as compared to the

wavelength in the surrounding space. Conventional devices

for wave transformations are either bulky and heavy (e.g.,

reflector antennas or lenses) or complicated and require active

elements (transmitarray antennas, also called array lenses

[1,2]). Therefore, it is quite tempting to become able to

realize desired transformations (for example, focus or refract

wave beams) using extremely thin passive layers. Recently,

there has been considerable interest and progress in creating

metasurfaces for controlling reflected and transmitted waves;

see recent reviews in [3–7]. Some limited manipulations

of waves transmitted through a thin metasurface can be

accomplished due to a specifically designed phase gradient

over the metasurface plane [8–11]. The required phase

gradient is achieved by precise adjustment of the phases of

transmitted waves from each metasurface inclusion. Although

this approach has enabled realizations of transmitarrays even

at optical frequencies, it suffers from very low efficiency (less

than 25% of transmitted power) and cannot provide control of

polarization of the transmitted waves (in fact, it suffers from

uncontrollable polarization rotation by 90◦). Subsequently,

another approach based on generalized boundary conditions

and the use of symmetric metasurfaces was proposed by

several researchers [12–15]. It provided more efficient opera-

tion (more than 80% of transmitted power) and manipulation

of polarization [16]. However, even this approach cannot

ensure ideal performance [7,17], because these symmetric

layers cannot be matched to impedances of two propagating

waves (incident and transmitted) in different directions, and,

therefore, they inevitably produce some reflections. Most

recently, in Refs. [18,19] it has been shown that the use of

metasurfaces with asymmetric response can open a possibility

to realize metasurfaces for perfect refraction.

Known structures for manipulating reflection (both reflec-

tarrays and metasurfaces) are able to control the reflection

phase at each point of the reflector surface and nearly

fully reflect the incident power. Representative examples

can be found in papers [20–27]. It has been believed that

these properties can allow full control over reflected waves.

However, it is not the case. As is shown in [28] and in this paper,

lossless fully reflecting metasurfaces designed to reflect a plane

wave into another plane wave always produce parasitic beams

in undesired directions. Without proper understanding of the

physical properties of metasurfaces responsible for refraction

and reflection phenomena it is not possible to create 100%

efficient metasurfaces with desired properties.

Here we address this problem by introducing a general

approach to the design of metasurfaces for arbitrary manipu-

lations of plane waves, both in transmission and reflection. We

explain the main ideas of the proposed analytical approach to

the synthesis of general functional metasurfaces using simple

but enough general examples of metasurfaces for refraction

or reflection of plane waves into arbitrary directions. In the

first example, a metasurface between two isotropic half spaces

(generally different) is designed so that a plane wave incident

from one space (the incidence angle θi) is fully refracted

into a plane wave propagating in the second space (the

refraction angle θt), without polarization change. We derive

general conditions on the equivalent circuit parameters of the

metasurface to ensure perfect refraction while the reflection

coefficient is exactly zero (see Sec. II A). Subsequently, we

consider three different metasurface scenarios to satisfy these

conditions (Secs. II B, II C, and II E). The latter scenario was

independently considered in [18]. In the second example, we

show how to design metasurfaces which fully reflect plane

waves into an arbitrary direction (the reflection angle θr).

In this example, there are two plane waves coexisting in

the space in front of the reflecting metasurface. This issue

complicates the study, but the solution allows us to approach
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the problem of synthesis of metasurfaces for the most general

field transformations, where the main challenge is to account

for interference between multiple plane waves. Indeed, any

arbitrary field distribution can be represented as a series of

plane waves that interfere on both sides of the metasurface.

In Sec. III A, we examine conditions on the metasurface

parameters for the perfect reflection regime. Similar conditions

were obtained independently in [28]. Next, in Secs. III B,

III C, and IV, we consider different scenarios for metasurface

realizations.

We show that perfect control over both refraction and reflec-

tion using lossless metasurfaces requires careful engineering of

spatial dispersion in the structure. To realize perfect refraction,

we need only weak spatial dispersion in the form of the

artificial magnetism and bianisotropic omega coupling [29].

This effect is described by local relations between the exciting

electric and magnetic fields and the induced polarizations in

the unit cells. Perfect control over reflection using lossless

metasurfaces appears to be possible only using strongly

nonlocal metasurfaces: part of the power received in one area of

the surface should be “channeled” and reradiated at a different

part of the surface. Lossless local-response metasurfaces (that

is, conventional reflectarrays and earlier studied metamirrors)

cannot create a perfect reflected plane wave in any direction

except the specular and retro directions.

The results clarify the necessary physical properties of

metasurfaces for ideal wave refraction and reflection and ex-

plain the limitations of earlier used design methods and earlier

studied realizations in the form of electric and magnetic sheets,

inhomogeneous high-impedance surfaces, and reflectarrays.

Possible routes towards realization of ideal and full control

over refraction and reflection are identified and discussed.

II. CONTROL OF TRANSMISSION: PERFECTLY

REFRACTING METASURFACE

As a first step we consider the problem of synthesis of

metasurfaces for control of transmitted waves. We require

that a given plane wave is fully refracted into another plane

wave, without reflections or energy loss. The geometry of the

problem is illustrated in Fig. 1. The metasurface is located

in the yz plane between two isotropic half spaces with the

characteristic impedances η1 and η2. We assume, without loss

FIG. 1. Illustration of the desired performance of an ideally

refracting metasurface.

of generality of the approach, a transverse electric (TE, with

respect to the normal to the surface) incident plane wave. Our

approach can be used for waves of arbitrary polarizations,

including arbitrary polarization transformations, by using the

dyadic parameters instead of the scalar ones.

Let us assume that the metasurface is illuminated from

medium 1 by a plane wave (with the wave number k1 and

the electric field vector Ei) at an angle θi. Requiring zero

reflections, the tangential field components Et1 and Ht1 on the

illuminated side of the metasurface (at x = 0) read

Et1 = Eie
−jk1 sin θiz, n × Ht1 = Ei

1

η1

cos θie
−jk1 sin θiz, (1)

where z is the coordinate along the tangential component of

the incident wave vector and the unit vector n is orthogonal

to the metasurface plane, pointing towards the source. The

time-harmonic dependency in the form ejωt is assumed. We

want to synthesize a metasurface which will transform this

incident wave into a refracted wave propagating in medium 2

(characterized by parameters k2,η2) in some other direction,

specified by the angle θt, without any loss of power. Therefore,

the required tangential fields behind the metasurface read

Et2 = Ete
−jk2 sin θtz+jφt , n×Ht2 = Et

1

η2

cos θte
−jk2 sin θtz+jφt .

(2)

For generality, we assume that the refracted wave is phase-

shifted by an arbitrary angle φt with respect to the incident

plane wave. With these notations, we can choose the origin of

the z axis so that both Ei and Et will be real-valued vectors.

Obviously, the phase of the transmission coefficient

�t(z) = ∠(Et2/Et1) = −k2 sin θtz + φt + k1 sin θiz (3)

is not uniform over the surface, as long as k2 sin θt �= k1 sin θi.

Differentiating the above equation, one can find the relation

between the incidence and refraction angles in terms of the

transmission coefficient phase gradient:

k1 sin θi − k2 sin θt =
d�t(z)

dz
. (4)

This result suggests the simplest approach to the realization

of refractive surfaces: designing a locally periodical surface

whose transmission coefficient is unity in the absolute value

(lossless Huygens’ sheet) and the phase of the transmission

coefficient linearly changes in accordance with (4). This

method was used for a long time in antenna engineering (e.g.,

[30]) and more recently in designs of metasurfaces, both in

microwaves (e.g., [31]) and optics (e.g., [8]). However, this

approach does not lead to the desired perfect refraction [17],

and next we will explain how the desired performance can be

realized exactly.

A. Conditions on the equivalent circuit parameters

First, let us find the amplitude of the transmitted wave

Et which corresponds to full power transmission through the

metasurface. Looking for possible realizations as metasurfaces

with local response, we equate the normal (to the metasurface)

components of the Poynting vector at each point of the

075142-2



PERFECT CONTROL OF REFLECTION AND REFRACTION . . . PHYSICAL REVIEW B 94, 075142 (2016)

FIG. 2. Equivalent T circuit of a reciprocal metasurface for the

considered case of one linear polarization (TE).

metasurfaces, in the two media:

1
2
Re(Et1 × H∗

t1) = 1
2
Re(Et2 × H∗

t2), (5)

and substitute the field values from (1) and (2). As a result, for

metasurfaces with locally full power transmission we obtain

Et = Ei

√
cos θi

cos θt

√
η2

η1

. (6)

Note that the amplitude of the transmitted wave can be larger

or smaller than the amplitude of the incident plane wave,

although the metasurface is lossless and the power is conserved

in transmission. This result already tells about a limitation of

the mentioned above simple design approach based only on

engineering the transmission phase according to (4).

Let us write the linear relations between the tangential fields

at the two sides of the metasurface in the form of an impedance

matrix:

Et1 = Z11n × Ht1 + Z12(−n × Ht2), (7)

Et2 = Z21n × Ht1 + Z22(−n × Ht2), (8)

and find such values of the Z parameters which correspond to

this particular field transformation. Knowing the Z parameters

of a metasurface, we will be able to determine suitable

topologies of constitutive elements (the unit-cell structures)

which will realize the desired functionality. Furthermore, the

use of the equivalent T circuit (Fig. 2) helps in understanding

what physical properties the metasurface should have in order

to provide the desired response.

Substituting the field values from (1), (2), and (6), we get

the following equations for the Z parameters:

e−jk1 sin θiz = Z11

1

η1

cos θi e
−jk1 sin θiz

−Z12

1
√

η1η2

√
cos θi cos θte

−jk2 sin θtz+jφt , (9)

e−jk2 sin θtz+jφt = Z21

1
√

η1η2

√
cos θi cos θt e

−jk1 sin θiz

−Z22

cos θt

η2

e−jk2 sin θtz+jφt . (10)

Obviously, there are infinitely many solutions for the unknown

Z parameters, because we have only two conditions imposed

on four complex parameters. Note that solutions with complex

values of impedance parameters mean that some of the

components forming the metasurface are either lossy or active,

but all these solutions still correspond to the overall lossless

response of the metasurface, because the fields on the two sides

of the metasurface form plane waves carrying the same power

in both upper and lower half spaces.

This observation suggests that we can impose some

restrictions on the values of the equivalent parameters of the

metasurface for a specific transformation and achieve different

realizations of metasurfaces which all perform the same

operation on incident plane waves. The possibility of multiple

realizations of arbitrary metasurfaces using the susceptibility

model was discussed in Ref. [15].

B. Teleportation metasurface

Considering Eqs. (9) and (10), we observe that while the

left-hand sides are single-exponential functions (correspond-

ing to either incident or transmitted wave), the right-hand sides

are sums of two different exponential functions. This property

indicates that in general the Z parameters of the metasurface

will depend on the coordinate z; that is, the metasurface is,

in general, not uniform. However, there is an interesting and

conceptually simple solution corresponding to a homogeneous

metasurface. If we assume that Z12 = Z21 = 0, then both

equations are satisfied with

Z11 =
η1

cos θi

, Z22 = −
η2

cos θt

. (11)

In this scenario, the metasurface is formed by a matched

absorbing layer (the input resistance Z11), a perfect electric

conductor (PEC) sheet, and an active layer (an “antiabsorber”

[32,33]) on the other side. The incident plane wave is totally

absorbed in the matched absorber. The negative-resistance

sheet (resistance Z22) together with the wave impedance

of medium 2 forms a self-oscillating system whose stable-

generation regime corresponds to generation of a plane wave

in the desired direction (the refraction angle θt). Indeed, the

sum of the wave impedance of plane waves propagating at

the angle θt and the input impedance of the active layer is

zero, and this is the necessary condition for stable generation.

This structure is similar to the “teleportation metasurface”

introduced in [32,33] for teleporting waves without changing

the propagation direction. As shown in [33], in that case if

the reflector separating the resistive and active layers is made

at least slightly imperfect (parameters Z12 = Z21 are very

small but not exactly zero), the amplitude and phase of the

transmitted wave is synchronized with the incident field.

The teleportation metasurface is a theoretically perfect

realization of the desired transformation of plane waves in

transmission. In particular, when the incidence angle equals

θi, the reflection coefficient is exactly zero. However, because

the input resistance of the metasurface seen from medium 2 is

negative, reflections of waves coming from this medium are

very strong. Therefore, within the linear model of the negative

resistance, the reflection coefficient tends to infinity for waves

coming from the direction θt. Moreover, the amplitude of the

field in medium 2 is established due to nonlinear saturation

of the negative resistance device. Therefore, it is probably

practically impossible to ensure that the negative resistance

saturates at exactly the desired amplitude of the generated

wave. Next, we consider an alternative realization, requiring

perfect matching of the metasurface for waves coming from

medium 2.
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FIG. 3. Equivalent T circuit of a nonreciprocal transmitarray

realization of refractive metasurfaces.

C. Transmitarray

Let us consider alternative realizations demanding that the

input impedance of the metasurface seen from medium 2 is

matched to the wave impedance in medium 2, so that waves

coming from the direction θt will not produce any reflections.

This requirement can be satisfied if we demand that

Z22 =
η2

cos θt

. (12)

Now we can find a realization of the metasurface as a

nonreciprocal system where the ideal voltage source in the

output branch is defined by

Z21 =
2
√

η1η2√
cos θi cos θt

e−j (k2 sin θt−k1 sin θi)z+jφt , (13)

as follows from (10). If the desired response for illumination

from medium 1 is the only requirement, we can set Z12 = 0

and Z11 = η1

cos θi
, so that for illuminations from medium 1 at

the incidence angle θi the metasurface is acting as a matched

absorber (matched receiving antenna array). This realization

can be modeled by the corresponding nonreciprocal equivalent

circuit, shown in Fig. 3.

This realization reminds one of conventional transmitarrays

[1]. The incident plane wave is received by a matched antenna

array on one side of the surface and the wave is launched into

medium 2 with a transmitting phase array antenna. In the ideal

situation the transmitarray is overall lossless, as the resistance

seen from the illuminated side is in fact the radiation resistance

of the transmitting array (the two arrays need to be connected

by matched cables).

The same model describes also the concept of field control

and active cloaking using active Huygens’ surfaces [13,34].

In that scenario, there is no connection between the receiving

side (realized as a matched absorber) and the active array. The

incident field is assumed to be known and the amplitudes

and phases of sources feeding the radiating array are set

accordingly.

D. Symmetrical double current sheets

Within the metasurface paradigm, the simplest approach

to realization of refractive metasurfaces is to assume that

the refraction is controlled by engineering surface densities

of electric and magnetic current sheets, coexisting at the

metasurface plane. It is obvious that sheets of only electric or

only magnetic currents cannot offer the desired functionality

because of the symmetry of the scattered fields in the forward

and backward directions. Because electric and magnetic

surface current sheets are conveniently modeled by surface

impedance relations, it appears reasonable to model refractive

metasurfaces by two impedance relations which should hold

both for the electric and magnetic surface current densities Je

and Jm [35–37]:

Je = n × Ht1 − n × Ht2 = YeEt = Ye

Et1 + Et2

2
, (14)

Jm = −n × (Et1 − Et2) = YmHt = Ym

Ht1 + Ht2

2
. (15)

Here Et and Ht are the averaged tangential electric and

magnetic fields at the metasurface plane. Forming sums and

differences of (7) and (8), it is easy to see that relations (14)

and (15) can hold only if the metasurface is symmetric and

reciprocal, that is, when Z11 = Z22 and Z12 = Z21. Under

these assumptions,

Ye =
2

Z11 + Z12

, Ym = 2(Z11 − Z12). (16)

Since we have only two unknown complex parameters Z11 and

Z12, the solution of (9) and (10) becomes unique and it reads

Z11 =
η1

cos θi

e−j�t + ej�t

e−j�t − η1 cos θt

η2 cos θi
ej�t

, (17)

Z12 =
√

η1η2√
cos θi cos θt

η1 cos θt

η2 cos θi
+ 1

e−j�t − η1 cos θt

η2 cos θi
ej�t

, (18)

where �t is defined by (3). We see that these parameters,

as well as the electric sheet admittance and magnetic sheet

impedance (16), are complex numbers, which physically

means that the surface is either lossy or active at different

values of z. For a special case of refraction of a normally

incident plane wave at 45◦ such solution for sheet parameters

has been published in [12,38] and later on discussed in, e.g.,

[7].

Inspecting (17) and (18), we see that the metasurface

parameters can be purely imaginary for all z, corresponding to

passive lossless realizations, only if

η1 cos θt

η2 cos θi

= 1, (19)

in which case

Z12 = j
η1

cos θi

1

sin �t

, Z11 = j
η1

cos θi

cot �t. (20)

Corresponding surface admittances, given by (16), are also

purely imaginary and coincide with those derived in [17]

in an alternative way. Condition (19) physically means that

the impedance of the incident plane wave at the top side of

the metasurface (
η1

cos θi
) equals the impedance of the refracted

wave at the bottom side of the surface (
η2

cos θt
). It is, however, in

contradiction with the desired field structure: Equations (1) and

(2) imply that the ratio of the tangential field components (the

wave impedance) must in general change if we require perfect

refraction. Thus, lossless double current sheets modeled by

impedance relations (14) and (15) cannot realize perfectly

refractive metasurfaces.

In paper [17] the requirement for equal impedances (19)

was derived in a different way, demanding the absence of

losses, and it was concluded that perfect refraction using
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lossless metasurfaces was not possible without reflections.

Indeed, it is clear that adding some reflected field to (1),

it is possible to make sure that the ratio of the tangential

fields on top of the metasurface is the same as at the bottom.

This approach is followed nearly in all current literature on

lossless metasurfaces for refraction control: Nearly always

only symmetric metasurfaces have been considered and used

(see [5,7]) and the realization is thought in form of a

symmetric double current sheet. This is the reason why earlier

publications (see the review in [7]) state that there must be at

least small reflections or there is a need to use active elements.

The only known to us exception is the recent paper [18] where

the problem is attacked using the generalized scattering matrix.

Next we show that perfect refraction at an angle which

is not equal to the incidence angle is in fact possible using

only lossless structures, but only if the surface is spatially

dispersive, exhibiting bianisotropic omega coupling. This

result has been independently obtained in [39].

E. Metasurface formed by lossless elements

In the above example realizations, metasurfaces contained

both lossy and active elements, which may require complicated

and expensive realizations. It is therefore of interest to consider

whether and how one can realize the same functionality using

only reactive lossless components.

1. Impedance matrix

To answer this question, we again consider the main set

of requirements on the Z parameters of an ideal refractive

metasurface (9) and (10) and look for a solution where all the

Z parameters are purely imaginary (i.e., Zij = jXij ):

e−jk1 sin θiz = jX11

1

η1

cos θi e
−jk1 sin θiz

−jX12

1
√

η1η2

√
cos θi cos θte

−jk2 sin θtz+jφt ,

(21)

e−jk2 sin θtz+jφt = jX21

1
√

η1η2

√
cos θi cos θt e

−jk1 sin θiz

−jX22

cos θt

η2

e−jk2 sin θtz+jφt . (22)

This is a system of four real-valued equations for four real

unknowns Xij , which has a unique solution:

X11 =
η1

cos θi

cot �t, (23)

X22 =
η2

cos θt

cot �t, (24)

X12 = X21 =
√

η1η2√
cos θi cos θt

1

sin �t

. (25)

For the case of zero phase shift (φt = 0) formulas (23)–(24)

agree with the result of [18], obtained using the generalized

scattering parameters approach.

The metasurfaces modeled by (23)–(25) are reciprocal

(X12 = X21). Indeed, the same solution follows from (9)–(10)

if we demand that a plane wave coming from the second

medium (the incidence angle θt) is fully transmitted into

the first medium in the direction θi. The required physical

properties of such metasurfaces can be understood from the

corresponding equivalent T circuit (see Fig. 2). The circuit is

asymmetric, because X11 �= X22. This structure of the Z matrix

corresponds to bianisotropic omega layers; see a discussion

in [40,41]. Possible appropriate topologies include arrays of

�-shaped inclusions [42], arrays of split rings, double arrays of

patches (patches on the opposite sides of the substrate must be

different to ensure proper magnetoelectric coupling) [43–46],

etc. A more complicated set of three parallel reactive sheets

was proposed in [18].

Previously, probably only in paper [18] asymmetric meta-

surfaces were used for transmission management [Eqs. (23)–

(25) also appear in [18] for the case when φt = 0]. Note also

that the role of the omega-type bianisotropy of metasurfaces

has been discussed in the review paper [4], and omega layers

have been successfully used in single-layer metamirrors [42].

Comparing to the simple designs based on symmetrical

metasurfaces (Sec. II D), we again see from (23) and (24) that

lossless symmetric realizations with X11 = X22 are possible

only if
η1

cos θi
= η2

cos θt
, as we already saw from requirement (19).

If media 1 and 2 are the same, we can conclude that previously

proposed symmetrical metasurfaces cannot provide perfect

refraction (without parasitic reflections or energy loss).

2. Unit-cell polarizabilities and appropriate topologies

Although the impedance matrix model provides a simple

tool to design structures for desired wave transformations,

it is not directly applicable for identifying appropriate

topologies of the metasurface unit cells. Here we show

how to determine what are the required properties of unit

cells which realize ideally refractive metasurfaces. Knowing

the polarizabilities of each unit cell, we can identify what

polarization response should be generated in unit cells and

what inclusions are needed to realize this response. So-called

collective polarizabilities [47] relate the tangential electric

and magnetic dipole moments induced in the unit cell to

the fields of the incident wave. Knowing the Z parameters

of a metasurface is tantamount to knowing reflection and

transmission coefficients. Writing them also in terms of the

collective polarizabilities of unit cells, we can find the required

polarizabilities which realize the desired response. For the

perfect refractive metasurfaces the collective polarizabilities

of unit cells read (see [48])

α̂yy
ee =

S

jω

cos θi cos θt

η1 cos θt + η2 cos θi

×

[
2 −

(√
η1 cos θt

η2 cos θi

+

√
η2 cos θi

η1 cos θt

)
ej�t(z)

]
,

(26)

α̂zz
mm =

S

jω

η1η2

η1 cos θt + η2 cos θi

×

[
2 −

(√
η1 cos θt

η2 cos θi

+

√
η2 cos θi

η1 cos θt

)
ej�t(z)

]
,

(27)
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α̂yz
em = −α̂zy

me =
S

jω

η2 cos θi − η1 cos θt

η1 cos θt + η2 cos θi

, (28)

where S is the unit-cell area and α̂
yy
ee ,̂αzz

mm ,̂α
yz
em ,̂α

zy
me are,

respectively, electric, magnetic, electromagnetic, and magne-

toelectric polarizability components (coupling coefficients).

The last two coefficients α̂
yz
em and α̂

zy
me imply so-called bian-

isotropic response in the unit cells which models the effect

of weak spatial dispersion [29]. In other words, the incident

electric (magnetic) field should induce also magnetic (electric)

polarization in the unit cell. Here, α̂
yz
em = −α̂

zy
me, which is a

typical characteristic of reciprocal omega inclusions [29].

As can be expected, both the electric and magnetic polariz-

abilities in (26) and (27) depend on z, and this dependence is

the same for both of them. This result reflects the requirement

of zero reflection at any point of the metasurface, which

demands the balance of the induced electric and magnetic

surface currents at any point (Huygens’ condition). On the

other hand, the omega coupling coefficient in (28) is constant

with respect to z and depends only on the impedances and

angles. This result reflects the fact that bianisotropic coupling

of omega type is necessary to ensure that the waves incident on

both sides of the metasurface see the same surface impedance,

so that reciprocal full transmission is realized. Since the

impedances of the two waves depend only on the impedances

of the media and on the two angles, the coupling coefficient

also depends only on these parameters. As expected, we see

that when the impedances of the incident and transmitted

waves are the same, that is,
η1

cos θi
= η2

cos θt
, the required coupling

coefficient vanishes.

Bianisotropic metasurfaces with the required properties

defined by (26)–(28) can be realized as arrays of low-loss par-

ticles with the appropriate symmetry. As was mentioned, for

microwave applications, metallic canonical omega particles or

double arrays of asymmetric patches can be used. Multilayered

topologies were proposed in paper [18]. For optical appli-

cations, arrays of properly shaped dielectric particles were

introduced as omega-type bianisotropic metasurfaces [49,50].

It is important to compare the polarizabilities (26)–(28)

which are required for realizing perfect refraction with the

polarizabilities found in earlier works on wave transformations

in the transmitting regime (e.g., [8–11,31]), where the design

approach is based on the geometrical optics model and

the “generalized law of refraction” (3). In that theory, the

metasurface is assumed to be locally periodical, and the

unit cells are designed so that the transmission coefficient

has unit amplitude and the desired phase at every point.

These requirements are satisfied if the electric and magnetic

polarizabilities read (taking the earlier considered special case

of normal incidence and identical media at both sides [31])

α̂yy
ee =

1

η2
α̂zz

mm =
S

jωη
(1 − ej�t(z)), (29)

and the magnetoelectric coupling coefficient α̂
yz
em is zero.

Periodical arrays formed by unit cells having these collective

polarizabilities have unit transmissivity and the transmitted

waves have the required phases �t(z), but when the cells

are assembled into a nonuniform array, the performance

becomes nonideal. In other words, in order to ensure the

desired response of the nonuniform metasurface, properties

FIG. 4. Illustration of the desired performance of an ideally

reflecting metasurface. TE incidence is assumed and the metasurface

is located in the yz plane.

of periodical arrays formed by its unit cells must deviate

from the simple geometrical-optics design recipe (3). This

result is consistent with that in [6]. We can conclude that in

order to ensure perfect refraction, it is not enough to make the

metasuface bianisotropic (introducing asymmetry with respect

to its two sides). The electric and magnetic polarizabilities in

the exact synthesis [see (26)–(28)] solution are also different

as compared to the conventional synthesis solution (29).

III. CONTROL OF REFLECTION: PERFECTLY

REFLECTING METASURFACE

In the previous case of refractive metasurfaces, there is

only one single plane wave at every point of space. In

order to be able to synthesize metasurfaces for general field

transformations, we need to understand how to control several

plane waves which propagate and interfere in the same space.

This problem can be solved at an example of a perfectly

reflective metasurface, which we consider next.

The geometry of the problem is shown in Fig. 4. The design

goal is to fully reflect a plane wave coming from a given

direction θi into another plane wave propagating in a different

and also arbitrary direction θr. Here, we consider the case when

the polarization of the reflected wave is the same as that of the

incident wave. Metasurfaces designed for full reflection were

called metamirrors in [42,43]. In this scenario, the desired field

distribution at the surface of the metamirror is the superposition

of two plane waves (the incident wave and the reflected wave):

Et1 = Eie
−jk1 sin θiz + Ere

−jk1 sin θrz+jφr ,

n × Ht1 = Ei

1

η1

cos θie
−jk1 sin θiz − Er

1

η1

cos θre
−jk1 sin θrz+jφr .

(30)

Here, Et1 and Ht1 are the tangential (to the metamirror

plane) components of the total electric and magnetic fields

at the metamirror surface. For generality, we assume that the

reflected plane wave can have any desired phase shift φr with

respect to the incident wave. With these notations, we can

choose the origin of the z axis so that both Ei and Er will be

real-valued vectors.

Similarly to the refractive metasurface, we see that the phase

of the reflection coefficient

�r(z) = −k1 sin θrz + φr + k1 sin θiz (31)

075142-6



PERFECT CONTROL OF REFLECTION AND REFRACTION . . . PHYSICAL REVIEW B 94, 075142 (2016)

depends on z, except the trivial case of specular reflection (θi =
θr). Differentiating, we find the relation between the reflection

and incidence angles in terms of the gradient of the reflection

coefficient phase:

k1(sin θi − sin θr) =
d�r(z)

dz
. (32)

Analogously with the transmitting regime, this result suggests

a simple design approach: to realize a fully reflective surface

(the amplitude of the reflection coefficient equals unity at each

point) but with a linearly varying reflection phase, according to

(32). Reflecting surfaces with an engineered reflection phase

are often called high-impedance surfaces [51] or reflectarrays

[52]. Such an approach has been used, for example, in

[20–27,42] as well as in all known designs of reflectarrays.

However, similarly to refracting metasurfaces, in designing

reflecting surfaces this simplistic method also does not allow us

to exactly realize the desired performance. Next, we present

the theory of perfect reflecting surfaces and explore various

reflection scenarios, with their advantages and limitations.

A. Power flow into the metamirror

Applying the same method as in analyzing metasurfaces

for transmission control, we start from considering the power

flow into the metamirror structure. The normal component of

the Poynting vector at the reflector surface reads

Pn = 1
2
Re(Et1 × H∗

t1). (33)

Substituting the required field distributions (30), we can write

the normal component of the Poynting vector as

Pn =
1

2η1

[
−E2

i cos θi + EiEr (cos θr − cos θi) cos �r(z)

+E2
r cos θr

]
, (34)

where the reflection phase �r(z) is defined by (31).

If this quantity is identically zero at all points along z,

the metasurface locally (at every point) acts as a lossless

reflector. Conventional realizations of nonuniform reflectors

belong to this class of locally responding reflectors. Examining

the above expression, we see that within this scenario, full

transformation of an incident plane wave into a single reflected

plane wave of the same polarization is impossible, except

the cases of specular or retroreflection, when θr = ±θi (this

fact is proven also in [28]). Indeed, the expression for the

normal component of the Poynting vector (34) contains an

oscillating term, proportional to cos �r(z), which can be zero

only if cos θr = cos θi, that is, θr = ±θi. Therefore, any local,

passive, and lossless nonuniform reflecting surface will create

modulated reflected waves with spatial dependence of the

fields different from the design target (30).

The same expression (34) tells us also that it is possible

to reflect a plane wave into only one plane wave along a

specified direction if we allow energy loss in the metasurface.

To understand this conclusion, let us look for such constant

amplitude of the reflected wave Er which ensures that Pn � 0

for all z (negative values of Pn correspond to flow of power into

the surface, where it is absorbed). Obviously, this condition

can be satisfied if Er = Ei, since with this amplitude of the

FIG. 5. Comparison between the power efficiencies of the passive

metamirror which reflects a single plane wave [surface impedance

(41), dashed curve] and the optimized metamirror which minimizes

reflections into nondesired directions [surface impedance (43), solid

curve] at normal incidence.

reflected field we have

Pn =
E2

i

2η1

(cos θr − cos θi)[1 + cos �r(z)]. (35)

Since 1 + cos �r(z) is non-negative, Pn is negative or zero

at all points of the metasurface z if cos θr − cos θi � 0. This

realization scenario was introduced in [28]. For instance, if

the metamirror is excited by a normally incident plane wave

(θi = 0), it is possible to create a single reflected plane wave

along any direction, because cos θr � 1 for any θr. However,

as is seen from Eq. (35), the amount of power which is lost in

the metasurface increases with increasing difference between

the incidence and reflection angles. In the limit of cos θr −
cos θi → −1, which corresponds to θi → 0 and θr → π/2,

all incident power is completely absorbed. Figure 5 (dashed

line) shows the efficiency of this scenario as a function of

the reflection angle θr. The efficiency ζ is defined as the ratio

of the plane-wave power carried into the desired direction

Pr = |Er|2
2η1

cos θr to the power of the incident plane wave Pi =
|Ei|2
2η1

cos θi. As is clear from (35) and this figure, increasing the

reflection angle results in decreasing the efficiency by a factor

of cos θr/ cos θi (notice that Er = Ei).

Actually, ideal reflection into a single plane wave without

losing any power is possible, but only if we allow periodical

flow of power into the metamirror structure and back into

space. This conclusion is also evident from formula (34).

Indeed, we see that if the amplitude of the reflected plane

wave equals

Er =
√

cos θi√
cos θr

Ei, (36)

the normal component of the Poynting vector is a periodical

function with zero average value:

Pn =
E2

i

2η1

√
cos θi√
cos θr

(cos θr − cos θi) cos �r(z). (37)
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FIG. 6. The required normalized input impedance Z11/η1 of the

ideal metamirror for θi = 0◦,θr = 70◦,φr = 0◦.

The metasurface performs the desired function perfectly, but

the response must be strongly nonlocal: the power which enters

the metasurface structure in the areas where Pn < 0 must be

launched back from the areas where Pn > 0. Alternatively, the

perfect reflection can be achieved if the metasurface has active

and lossy elements (being overall lossless in the average over

the surface area). We see again that there is no power flow

into the metamirror at any point only if θr = ±θi, in agreement

with the previous conclusion.

B. Required surface impedance

Following the introduced synthesis approach based on the

impedance matrix, we write the linear relation between the

tangential fields at the metamirror surface. Assuming that

the metamirror is a boundary and the fields behind it are

zero (Et2 = 0,Ht2 = 0), we need only one parameter of the

Z matrix (7)–(8), the input impedance Z11:

Et1 = Z11 n × Ht1. (38)

Substituting the desired field values from (30), we get the

following equation for the unknown input impedance Z11:

Ei e
−jk1 sin θiz + Er e

−jk1 sin θrz+jφr = Z11

1

η1

(Ei cos θi e
−jk1 sin θiz

−Er cos θr e
−jk1 sin θrz+jφr ). (39)

For the ideally performing nonlocal metasurface, which

produced the reflected wave with the amplitude given by (36),

the corresponding input impedance reads

Z11 =
η1√

cos θi cos θr

√
cos θr +

√
cos θi e

j�r(z)

√
cos θi −

√
cos θr e

j�r(z)
. (40)

We see that the input impedance is a complex number, whose

real part is a periodical function of z. Figure 6 presents the

required input impedance for the case when θi = 0◦ and

θr = 70◦. The real part of the input impedance periodically

takes positive (loss) and negative (gain) values. The surface

acts as if it is lossy close to the regions where the reactive

FIG. 7. The required normalized input impedance Z11/η1 for

passive metamirrors in the case when θi = 0◦,θr = 70◦,φr = 0◦.

One period of the metamirror along the z coordinate is shown.

The solid, dashed, and dotted lines correspond, respectively, to the

lossy metamirrors [Eq. (41)], the lossless metamirrors creating two

reflected plane waves [Eq. (43)], and the conventional nonuniform

reflectors [Eq. (47)].

impedance is high (close to the regime of a perfect magnetic

conductor, PMC) and active in the areas where the reactance is

small (close to a perfect electric conductor, PEC). Importantly,

this behavior does not imply that the surface cannot be passive

or lossless. We stress that, on the contrary, a properly tuned

metasurface with strongly nonlocal response can emulate such

a metamirror: The power which passes through the input

surface in the “lossy” regions is not absorbed but it is reradiated

from the “active” regions. Another possibility to realize the

ideal performance dictated by impedance (40) could be a

metasurface with truly active and lossy elements where only

the overall response is lossless.

As discussed in Sec. III A, it is possible to eliminate the

need to realize active input impedance (which increases the

realization complexities), at the expense of losing some part of

the incident power in the metamirror. The surface impedance of

such a lossy metasurface, which creates a single plane wave in

the desired direction, can be found from (39) upon substitution

of the reflected field amplitude Er = Ei. The result reads

Z11 = η1

e−jk1 sin θiz + e−jk1 sin θrz+jφr

cos θi e−jk1 sin θiz − cos θr e−jk1 sin θrz+jφr
. (41)

An example is plotted as a function of the coordinate in Fig. 7

(the solid lines). As is seen, the real part of the impedance

is always non-negative, corresponding to the absorbed power

given by (35).

So far we have demonstrated that a surface having the input

impedance (41) produces a single (nonmodulated) reflected

wave in the desired direction if the power loss in the metamirror

is allowed (see Fig. 5). However, depending on the application

requirements, it can be preferable to allow some modulation

of the reflected wave but reduce the power loss. In the next

section, we present a scenario in which the metamirror is
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lossless at every point, and at the same time the reflections

into nondesired directions are reduced.

C. Optimizing reflections from lossless and local metamirrors

It is possible to optimize the reactance Im{Z11} profile of

a lossless metamirror in order to minimize reflections into

nondesired directions based on particular optimization criteria.

As one example, we notice that there is an interesting lossless

design, where all the power which cannot be sent into the

desired reflection direction θr is reflected into the specular

direction. To demonstrate this possibility, we consider the

situation when the difference between the incidence angle θi

and θr is large, so that only three propagating plane waves can

exist in the Floquet spectrum of the propagating reflected field

[53]:

Er =
0∑

n=−2

Ene
−jk1[(n+1) sin θr−n sin θi]z. (42)

For the normal illumination (θi = 0), this corresponds to θr

larger than 30◦. It is easy to check that a set of three plane

waves—the incident wave, the wave reflected into the desired

direction (n = 0), and the parasitic plane wave reflected into

the specular direction (n = −1)—exactly satisfy the boundary

condition (38) with a purely reactive impedance

Z11(z) = j
η1

cos θr

cot [�r(z)/2], (43)

if the wave reflected in the desired direction θr is given by

E0 = Ei

2 cos θi

cos θi + cos θr

, (44)

and the wave reflected into the specular direction θi is

E−1 = Ei

cos θi − cos θr

cos θi + cos θr

. (45)

The amplitude of the Floquet harmonic n = −2 is equal to

zero, and the evanescent part of the spectrum also vanishes.

These amplitudes have been found by requiring that the normal

component of the Poynting vector be identically zero at the

surface. In this case, the metasurface is lossless and exhibits

no strong spatial dispersion. Reciprocally, we can conclude

that 100% power reflection in the desired direction can be

achieved by illuminating the metasurface by two plane waves

at once, properly selecting their relative amplitudes, phases,

and propagation directions.

It is interesting that the efficiency of transformation of the

incident plane wave into the desired reflected plane wave is

much better than for the passive lossy scenario (presented

in Sec. III A) where the parasitic reflections were absent. This

conclusion is illustrated in Fig. 5 by comparing the efficiencies

of these two cases.

The conventional approach for designing lossless nonuni-

form reflectors is based on the “generalized reflection law”

(32), which corresponds to a linear phase variation along the

metasurface. In that approach, the metasurface is designed

so that the local reflection coefficient at every point has

unit amplitude and the phase as dictated by (32). The local

reflection coefficient is defined for an infinite uniform array;

that is, the input impedance can be found from

Ei + Er e
j�r(z) = Z11

1

η1

(Ei cos θi − Er cos θi e
j�r(z)), (46)

where Er = Ei and �r(z) is given by (31). The result reads

Z11 = j
η1

cos θi

cot [�r(z)/2], (47)

and an example is plotted in Fig. 7. One can see that the

required surface impedance in the conventional reflectors is

different from that of the lossless metamirror described by

(43). In the conventional reflectors, the reflected wave has a

complex structure: Generally, several propagating plane waves

in different directions and some evanescent fields localized

close to the surface are excited. To study the field structure,

one can use numerical simulations or the theoretical technique

exploited for the case of refraction in [54].

D. Unit-cell polarizabilities and appropriate topologies

Making use of the boundary conditions on the reflecting

metasurface which tell us that the tangential electric and mag-

netic fields are equal, correspondingly, to the surface magnetic

and electric current densities, we can find relations between

the surface impedance Z11 and the collective polarizabilities

of unit cells of the metamirror (see [48]):

η1

cos θi

cos θi + cos θr

Z11 cos θr + η1

=
jω

S

(
η1

cos θi

α̂yy
ee + α̂yz

em

)
, (48)

Z11

cos θi + cos θr

Z11 cos θr + η1

=
jω

S

(
cos θi

η1

α̂zz
mm − α̂yz

em

)
. (49)

Here S is the unit-cell area. Obviously, these equations have

infinitely many solutions for polarizabilities which realize the

desired response. The metasurface can be either bianisotropic

(omega coupling) or it can be a non-bianisotropic pair of

electric and magnetic current sheets. For the non-bianisotropic

realization we set

α̂yz
em = α̂zy

me = 0, (50)

and find the unique solution

α̂yy
ee =

S

jω

cos θi + cos θr

Z11 cos θr + η1

, (51)

α̂zz
mm =

S

jω

Z11 η1

cos θi

cos θi + cos θr

Z11 cos θr + η1

. (52)

We see that in the design of fully reflective metasurfaces, weak

spatial dispersion effects are necessary at least in the form of

the artificial magnetism. If we demand that both magnetic

polarizability and the bianisotropy coefficient be zero, the

above equations have no solutions. The use of bianisotropy

offers additional design flexibilities.

Knowing the collective polarizabilities required for the

desired performance we can immediately see what are the

appropriate topologies of unit cells. Since we need both

electric and magnetic polarizations, the physical thickness

of the reflecting layer must be different from zero, to allow

formation of tangential magnetic moments in unit cells. For

example, it is not possible to realize the desired performance by
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any patterning of a single, infinitesimally thin sheet of a perfect

conductor. The non-bianisotropic realization scenario suggests

the use of a single array of small particles which are polarizable

both electrically and magnetically, such as small metal spirals

as in [31]. A typical realization based on the bianisotropic route

is a high-impedance surface with a PEC ground plane (such

as “mushroom layers” [51]). An important advantage in using

bianisotropic effects is the relaxed requirement on the strength

of the magnetic response. Especially for optical applications,

it is easier to realize strong bianisotropy (which is a first-order

dispersion effect) as compared with the artificial magnetism

(which is a weaker, second-order effect) [29].

E. Ideal metamirrors

We have seen that all local lossless nonuniform reflectors

modulate the reflected waves, which reduces the power

efficiency in the desired direction. The operation of conven-

tional planar reflectors (such as high-impedance surfaces [51],

reflective diffraction gratings [55], and reflectarrays [52]) are

similar in this respect. Next we discuss the potentials of ideal

metamirrors based on nonlocal and nonreciprocal surfaces.

As shown above, it is possible to synthesise an overall

lossless metamirror which would create an unmodulated

reflected wave into any desired direction, satisfying the

requirement (30) exactly, with a constant value of the reflected

plane wave amplitude Er. This goal can be achieved if we

require that the normal component of the Poynting vector

on the metasurface be zero only in the average over the

metamirror period, and not necessarily be equal to zero at every

point. In this case, the amplitude of the plane wave reflected

into the desired direction is given by (36), and the normal

component of the Poynting vector oscillates, according to

Eq. (37). Realization of such metamirrors requires absorption

of power in some areas of the surface and generation of

power in some other areas or, alternatively, power channeling

from one area to the other. Conceptually, this scenario of

balanced loss and gain can be realized using the same two

approaches which were found in the analysis of perfectly

refractive metasurfaces: the teleportation metasurface (Sec.

II B) and transmitarrays (Sec. II C). In the former approach,

one can envisage a realization in the form of an array of small

receiving antennas loaded by positive resistors in the areas

where the energy should be partially absorbed, and by negative

resistors where the energy should be launched back into space.

This arrangement is similar to the teleportation metasurface

described in Sec. II B, where such arrays were positioned at

the two opposite sides of a metal screen. Alternatively, one can

envisage a similar array of antennas, where the antennas of the

absorbing areas are connected by cables to the antennas of

the active areas. Thus, the power received at the absorbing

areas is reradiated by the active areas. It is important to

note that both these devices should be nonreciprocal, as the

“active” antennas should radiate power but not receive it back

from space. Actual realization of both these concepts is a

challenging task. As to the teleportation approach, one needs

nonreciprocal antennas, which can be in principle realized

using nonreciprocal materials such as magnetized ferrites

or using active components. There is also an interesting

possibility to use parametric circuits for the same purpose [56].

FIG. 8. Illustration of the desired performance of an ideal

metamirror which perfectly transforms a TE incident wave into a

TM reflected wave.

The nonreciprocal transmitarray approach in principle can be

realized also in reflecting metasurfaces, using nonreciprocal

circuits inside the metasurface, but it appears that the use

of spatial modulation of the surface impedance by external

forces (using unit cells equipped with varactors, for example)

is more promising. Conceptually, the desired performance

can be achieved by modulating (for example) varactors in all

unit cells with the same amplitude but with different phases.

Controlling the spatial distribution of the modulation phase,

one can possibly realize parametric amplification or absorption

according to the design specifications. Initial work on space-

time modulated metasurfaces [57,58] produced interesting and

promising results, and we expect that developing this route may

lead to realizations of theoretically perfectly operating lossless

nonuniform metasurfaces.

IV. PERFECTLY REFLECTING POLARIZERS

In the previous section, we considered metamirrors which

reflect an incident plane wave into a desired direction.

However, we encountered either active-lossy realizations of

the metamirror or lossless reflection of modulated waves. In

this section, we introduce a solution for a lossless metamirror

which ideally reflects the incident wave into the desired

direction without any modulations. Since the main reason for

modulations of reflected waves is interference between the

incident and reflected fields, we construct a metamirror which

reflects waves with the polarization orthogonal to that of the

incident wave. As a simple canonical example, we consider

the transformation of a transverse electric (TE) wave with the

amplitude E
y
i into a transverse magnetic (TM) wave with the

amplitude Ez
r = Er cos θr, propagating in the desired direction.

Figure 8 shows the problem configuration. It is clear that in this

case there is no interference between the incident and reflected

waves. The desired tangential electric and magnetic fields at

the metamirror surface read

Et1 = ŷ Ey
i e−jk1 sin θiz + ẑ Ez

r e
−jk1 sin θrz+φr (53)

and

n × Ht1 = ŷ
cos θi

η1

Ey
i e−jk1 sin θiz

−ẑ
1

η1 cos θr

Ez
r e

−jk1 sin θrz+φr , (54)

respectively. Considering the metamirror as a boundary,

the impedance relation between the tangential electric and
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magnetic fields (7)–(8) in this case reads [47]

Et1 = Z11 · n × Ht1, (55)

where the impedance has the matrix form

Z11 =
[
Z

yy

11 Z
yz

11

Z
zy

11 Zzz
11

]
. (56)

Notice, in contrast with the previous case, we should consider

the full-rank impedance dyadics Z in order to account for

any possible polarization transformation. Substituting (53) and

(54) into (55), we obtain the following matrix equation:

[
1

Rzyej�r

]
=

[
Z

yy

11 Z
yz

11

Z
zy

11 Zzz
11

][
cos θi

η1

−1
η1 cos θr

Rzyej�r

]
, (57)

where Rzy = Ez
r /E

y
i and �r is defined in (31). The solution

of the above equation for the lossless case (i.e., Re{Z11} = 0)

is unique and reads as

[
Z

yy

11 Z
yz

11

Z
zy

11 Zzz
11

]
= j

[
η1

cos θi
cot �r

η1 cos θr

Rzy

1
sin �r

η1

cos θi
Rzy 1

sin �r
η1cos θr cot �r

]
. (58)

Here, Z
yy

11 is the metamirror input impedance which is re-

sponsible for suppressing unwanted reflections in the specular

direction. The proper values of the cross-components Z
yz

11

and Z
zy

11 ensure the polarization rotation, and, finally, Zzz
11 is

responsible for reflection with the orthogonal polarization in

the desired direction.

Next, we apply the condition for power conservation (we

demand that the normal component of the Poynting vector

identically equal zero at the metasurface plane at each point to

ensure local response) to find the required reflection coefficient

Rzy . This condition reads

−
(
Ey

i

)2
cos θi

1

2η1

+
(
Ez

r

)2 1

2η1 cos θr

= 0, (59)

which defines the reflection coefficient for the perfect reflec-

tion regime:

Rzy =
√

cos θi cos θr. (60)

As is clear from (58), realization of this scenario is possible

with purely lossless metasurface elements. Moreover, since the

reflected field does not interfere with the incident one, there

is no field modulation. Therefore, the proposed metamirror

provides an ideal and single reflecting wave.

A. Unit-cell polarizabilities and appropriate topologies

Following the procedure outlined in Sec. III D, we can

find the relations for collective polarizabilities of unit cells

of the proposed metamirror in the case of perfectly reflecting

polarizers (see [48] for details):

1 =
jω

S

(
cos θi

η1

α̂zz
mm + α̂zy

me

)
, (61)

Rzyej�r = −
jω

S

(
cos θi

η1

α̂yz
mm + α̂yy

me

)
, (62)

cos θi

η1

=
jω

S

(
cos θi

η1

α̂yz
em + α̂yy

ee

)
, (63)

Rzyej�r

η1 cos θr

= −
jω

S

(
cos θi

η1

α̂zz
em + α̂zy

ee

)
. (64)

Obviously, these equations have infinitely many solutions

for polarizabilities which realize the desired response. Even

restricting ourselves by reciprocal realizations, the metamirror

can be either bianisotropic (both omega and chiral couplings)

or it can be non-bianisotropic with anisotropic electric and

magnetic responses. Here we show two simple design so-

lutions. In the first design, the metamirror is modeled by

anisotropic electric and magnetic polarizabilities. The nonzero

polarizabilities read

α̂zz
mm =

S

jω

η1

cos θi

, (65)

α̂yz
mm = −

S

jω

η1

cos θi

Rzyej�r , (66)

α̂yy
ee =

S

jω

cos θi

η1

, (67)

α̂zy
ee = −

S

jω

1

η1 cos θr

Rzyej�r . (68)

In this design, the bianisotropic properties are excluded, that

is, α̂
zy
me = α̂

yy
me = α̂

yz
em = α̂zz

em = 0. Notice that there are no

limitations on the selection of the polarizability components

α̂
yz
ee ,̂αzz

ee ,̂α
zy
mm, and α̂

yy
mm (they can be chosen from considerations

of reciprocity, for example).

Alternatively, another simple solution of system (61)–

(64) can be found by suppressing the cross-polarizability

components (i.e., α̂
zy
me = α̂

yz
mm = α̂

yz
em = α̂

zy
ee = 0). This implies

that the metamirror possesses chiral bianisotropic response:

α̂zz
mm =

S

jω

η1

cos θi

, (69)

α̂yy
me = −

S

jω
Rzyej�r , (70)

α̂yy
ee =

S

jω

cos θi

η1

, (71)

α̂zz
em = −

S

jω

ej�r

Rzy
, (72)

while there is no limitation on α̂zz
ee ,̂α

yy
em ,̂αzz

me, and α̂
yy
mm (they can

be chosen from considerations of reciprocity). It can be shown

that if we apply the reciprocity condition (̂α
yy
em = −α̂

yy
me and

α̂zz
me = −α̂zz

em [29]) and choose

α̂zz
ee =

S

jω

1

η1 cos θi

, (73)

α̂yy
mm =

S

jω
η1 cos θi, (74)

then the same metamirror dually operates both for TE and

TM polarized incident waves. One can note a similarity of

the conditions on the polarizabilities (69)–(74) with those

used earlier for realizing polarization transformers [59] and

absorbers [31,60]. Here we see that the amplitudes of the
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polarizabilities should be balanced (as shown in [59] for the

normal incidence), and the ideal reflector operation is ensured

by proper adjustments of the chirality parameter phase.

These solutions are only two possibilities, selected for their

simplicity. Other solutions are possible considering (61)–(64).

V. CONCLUSIONS AND DISCUSSION

In this paper we have introduced a general approach to

the synthesis of metasurfaces for arbitrary manipulations of

plane waves. We have explained the main ideas of the method

on two canonical examples: a metasurface which perfectly

refracts plane waves incident at an arbitrary angle θi into

plane waves propagating in an arbitrary direction defined

by the angle θt, and a metasurface which fully reflects a

given plane wave into an arbitrary direction θr. The general

synthesis approach shows a possibility for alternative physical

realizations, and we have discussed different possible device

realizations: self-oscillating teleportation metasurfaces, non-

local metasurfaces, and metasurfaces formed by only lossless

components. The crucial role of omega-type bianisotropy in

the design of lossless-component realizations of perfectly

refractive surfaces has been revealed.

The conventional approach to realization of refractive

and reflecting metasurfaces as well as both transmitarray

and reflectarray antennas is based on requiring full power

transmission or reflection at each point of the surface and

providing complete phase control over the transmitted and

reflected waves. We have clarified the role of modifications

in the required phase gradient for conventional planar re-

fractive/reflective structures in gaining higher efficiencies.

Moreover, we have revealed fundamental limitations of this

classical technique and showed how the ideal performance can

be realized. For full control over transmission, weak spatial

dispersion in form of bianisotropic coupling is necessary,

while ideal lossless reflectarray operation calls for the use of

structures with a strongly nonlocal response to the incident

fields or structures that transform polarization of reflected

waves.

We think that the reason why the role of metasurface

bianisotropy in controlling refraction has not been appreciated

earlier is that in this field transformation the wave polarization

should not change, and it appears natural to expect that bian-

isotropic effects, such as chirality, are not needed. However,

as we have shown here, omega coupling effects, which do

not change polarization, are crucial in engineering perfectly

matched lossless refractive metasurfaces.

In contrast to perfectly refracting metasurfaces, creation

of perfectly reflecting surfaces requires careful control over

the interference of the incident and reflected waves. We have

shown that ideal transformation of an incident plane wave

into a reflected plane wave propagating at an angle different

from what is dictated by the usual reflection law requires either

active structures or passive lossless nonlocal metasurfaces. We

have discussed the structure of reflected fields and proposed

an optimal compromise realization using local and passive

metasurfaces.

In the last part of the paper we have shown that the

requirement of strong spatial dispersion or active inclusions

for realization of perfect metamirrors can be lifted if the polar-

ization of the reflected wave is orthogonal to that of the incident

field. In this case there is no interference between the incident

and reflected wave, and perfect reflection can be realized using

only weak spatial dispersion effects (artificial magnetism and

chirality), similarly to ideally refractive metasurfaces.

Since any exciting fields can be expressed in the form of a

plane-wave expansion, the developed approach can be general-

ized to metasurfaces for the most general field transformations.

We hope that understanding of the physical requirements

for perfect metasurface operation in both transmission and

reflection regime as well as the developed synthesis method

will open a way for design and realization of ultimately thin

composite sheets for a broad range of applications, such as

lenses, antennas, sensors, etc.

Note added. Recently a related preprint [61] has been pub-

lished, which describes a conceptual realization of perfectly

reflecting lossless metasurfaces in the form of a set of three

parallel reactive sheets. This structure exhibits the required

nonlocal properties (“channeling” energy in the transverse

direction), according to the theory presented here.
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