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Abstract

We show there is an uncountable number of parallel total perfect codes in
the integer lattice graph Λ of R2. In contrast, there is just one 1-perfect
code in Λ and one total perfect code in Λ restricting to total perfect codes
of rectangular grid graphs (yielding an asymmetric, Penrose, tiling of the
plane). We characterize all cycle products Cm × Cn with parallel total
perfect codes, and the d-perfect and total perfect code partitions of Λ
and Cm×Cn, the former having as quotient graph the undirected Cayley
graphs of Z2d2+2d+1 with generator set {1, 2d2}. For r > 1, generalization
for 1-perfect codes is provided in the integer lattice of Rr and in the
products of r cycles, with partition quotient graph K2r+1 taken as the
undirected Cayley graph of Z2r+1 with generator set {1, . . . , r}.

1 Introduction

As in [11], a vertex subset S in a graph G is said to be a perfect dominating set

(PDS) in G if each vertex of the complementary graph G \ S of S in G is adjacent
to just one element of S. In that case, if the induced components of S are 1-cubes,
(respectively 0-cubes), then S is said to be a total perfect code [7], (respectively a
1-perfect code [8], or efficient dominating set [2]).

The NP-completeness of finding a 1-perfect code in G and that of finding a
minimal PDS in a planar graph were established respectively in [2, 8] and in Sections
3 and 4 of [6], even if its induced components are i-cubes with i ≤ 1.

The integer lattice graph Λ of R2 is the graph with vertex set {(i, j) : i, j ∈ Z} and
such that any two vertices in Λ are adjacent if and only if their Euclidean distance is
1. Λ and its subgraphs are represented orthogonally, their vertical paths from left to
right for increasing indices i = 0, 1, 2 . . . , m − 1 and its horizontal paths downward
for increasing indices j = 0, 1, 2 . . . , n−1. If a total perfect code in Λ has its induced
components as pairwise parallel 1-cubes in Λ, then it is said to be parallel.

We represent a perfect dominating set S in Λ by setting the vertices of S as black
dots at their locations and by tracing only the edges between vertices in Λ \ S (by
means of unit-length solid segments), thus avoiding (or deleting) those edges in Λ
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Figure 1: Illustrations for Theorem 1

incident to S. This way, we represent not only S but also Λ \ S, as in Figure 1, that
accompanies Theorem 1. Notice that G\S is 3-regular, for any PDS S in a 4-regular
graph G, like G = Λ.

We show in Section 2 that there is no algorithmic characterization of parallel
total perfect codes in Λ. In fact, there is an uncountable number of such codes, in
one-to-one correspondence with the doubly infinite binary sequences. This allows to
characterize, in Section 3, all cycle products Cm ×Cn in which parallel total perfect
codes exist, and in Sections 4 and 5, the d-perfect and total perfect code partitions
of Λ and Cm × Cn. We also show that the quotient graphs of these d-perfect code
partitions are Cayley graphs of Z2d2+2d+1 with generator sets {1, 2d2}. In contrast
with the mentioned uncountability, seen as one of perfect dominating sets, not only
there is just one 1-perfect code in Λ but, as a result of a characterization of grid graphs
containing total perfect codes due to Klostermeyer and Goldwasser, there exists only
one total perfect code in Λ that restricts to total perfect codes of rectangular grid
graphs, its complementary graph in Λ yielding an asymmetric tiling of the plane,
like the Penrose tiling, (Section 6). Section 7 considers some special cases, including
a correction to a result of [9]. In Section 8, the generalization of the results for
1-perfect codes is provided in dimensions r > 1, with partition quotient graph K2r+1

as undirected Cayley graph of Z2r+1 with generator set {1, . . . , r}.

2 Total perfect codes in Λ

Theorem 1 The family of PDSs in Λ whose induced components are parallel, hori-

zontal, 1-cubes is in one-to-one correspondence with the set of doubly infinite {0, 1}-
sequences.

Proof. Let (. . . , a−i, . . . , a0, . . . , ai, . . .) be a doubly infinite {0, 1}-sequence.
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Define vertices An, Bn in Λ by means of

A−n = Σ−n
i=−1 − (4 + ai, ai), A0 = (0, 0), An = Σn

i=1(4 + ai, ai),

for n > 0; and Bn = An + (1, 0), for n ∈ Z. Then,

∪∞

j=−∞
sj(∪∞

i=−∞
{Ai, Bi})

is a PDS in Λ, where sj(x, y) = (x + 2j, y + 2j), with j ∈ Z. This yields the claimed
correspondence. For example,

(. . . , a−2, a−1, a0, a1, a2, a3, a4, a5, . . .) = (. . . , 0, 0, 1, 0, 0, 1, 1, . . .)

is sent into a PDS S as partially represented on the upper part of Figure 1, where
only the edges in Λ\S are shown and the arrows indicate assignment of some vertices
An and Bn, with |n| small, via s = s1.

Now, PDSs whose induced components are parallel, horizontal, 1-cubes can only
be images of {0, 1}-sequences through the just introduced one-to-one correspondence,
for otherwise a path of length 3 would be found as an induced component of such a
PDS, as in the bottom of Figure 1, a contradiction. In particular, we conclude that
there are no less PDSs in Λ than doubly infinite binary sequences, whose cardinality
surpasses ℵ0.

Corollary 2 There is no algorithmic characterization for PDSs in Λ.

Proof. Because of the uncountability of total perfect codes in Λ found in Theorem 1,
it is clear that there cannot be such algorithmic characterization.

Given a PDS S in Λ, the graph Λ \ S has chordless cycles delimiting rectangles
of areas at least 4, that we call rooms, and maximal connected unions of 4-cycles
arranged either horizontally or vertically into rectangles, that we call ladders, a
possible case of which is a single 4-cycle bordered by rooms. The totality of ordered
pairs formed by the horizontal and vertical dimensions, (widths and heights), of
the rectangles spanned by these rooms and ladders can be presented in an array of
integer pairs that we call the PDS-array associated to S. For example, the PDS
partially depicted in the upper part of Figure 1 has a PDS-array correspondingly
containing the following disposition of ordered pairs of (one-digit) integers (with
deleted parentheses and commas):

. . . 12 32 12 32 21 32 12 32 12 32 21 32 21 32 . . .

. . . 32 12 32 12 32 21 32 12 32 12 32 21 32 21 . . .

. . . 12 32 12 32 12 32 21 32 12 32 12 32 21 32 . . .

. . . 32 12 32 12 32 32 32 21 32 12 32 12 32 21 . . .

. . . 12 32 12 32 12 12 12 32 21 32 12 32 12 32 . . .

with the pairs 32 = (3, 2) in the second and third rows representing the rooms
containing the vertices Ai, Bi in the figure and its destination vertices s(Ai), s(Bi),
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respectively, for i = −2, . . . , 4. The pairs in a PDS-array giving the dimensions of a
room, (ladder), are called room pairs, (ladder pairs).

Let TPC stand for total perfect code. Let Ψ denote the correspondence in Theo-
rem 1 that assigns to each doubly infinite binary sequence (. . . , ai, . . . , a0, . . . , ai . . .)
a parallel TPC (PTPC) in Λ, meaning that its induced 1-cubes are pairwise parallel.

Corollary 3 The family of TPCs S in Λ having only ladder pairs of the form (2, 1) =
21 is in one-to-one correspondence with the set of doubly infinite {0, 1}-sequences.

Proof. Consider the translated lattice graph Λ′ = Λ+(1

2
, 1

2
). Given a doubly infinite

binary sequence A = (. . . , ai, . . . , a0, . . . , ai . . .), we construct a TPC Ψ′(A) in Λ′ as in
the statement of the corollary by selecting its component vertices (in Λ′, instead of Λ)
as the barycenters of the unit-area squares delimiting the 4-cycles of Λ\Ψ(A). Then,
by taking Ψ′′(A) = Ψ′(A) − (1

2
, 1

2
), we get a one-one correspondence as required.

The PDS-array partially presented above in relation to the example of Figure
1, for a PTPC Ψ(. . . , 0, 0, 1, 0, 0, 1, 1, . . .), has a counterpart due to the argument of
Corollary 3, which is the PDS-array for the TPC

Ψ′′(. . . , 0, 0, 1, 0, 0, 1, 1, . . .),

correspondingly representable as follows:

. . . 23 21 23 21 32 21 23 21 23 21 32 21 32 21 . . .

. . . 21 23 21 23 21 32 21 23 21 23 21 32 21 32 . . .

. . . 23 21 23 21 23 21 32 21 23 21 23 21 32 21 . . .

. . . 21 23 21 23 21 21 21 32 21 23 21 23 21 32 . . .

. . . 23 21 23 21 23 23 23 21 32 21 23 21 23 21 . . .

obtained from the previously given PDS-array by subtracting 1 from each one of
the two component integers of each room pair and adding 1 to each one of the two
component integers of each ladder pair.

We may say that the relation between Ψ(A) and Ψ′(A) is one of room-ladder

duality. This applies, more generally, to all PDSs S in Λ whose complementary graphs
Λ\S in Λ have PDS-arrays with room pairs (r, s) satisfying only min{r, s} = 2. This
extends to PDSs in quotient graphs in Λ of the form Cm×Cn, where min{m, n} ≥ 3.

Theorem 1 may have been expressed for PDSs whose induced components are
parallel, vertical, 1-cubes. Corollary 3 may have been expressed for TPCs having
only ladder pairs of the form (1, 2) = 12.

3 PTPCs in cycle products

By restricting Ψ to periodic doubly infinite binary sequences, we find the following
result. A binary n-tuple has weight k if and only if it has exactly k unit entries.
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Figure 2: The fundamental tile T (00011101)

Theorem 4 A periodic doubly infinite binary sequence with period B = (b1, b2, . . . ,
bn) of weight k is sent by Ψ into a PTPC Ψ(B) in Λ that covers a PTPC Φ(B) in the

Cartesian product Cp × Cp, where p = 4n if k is even, and p = 8n if k is odd. This

establishes a one-one correspondence Φ from the irreducible periodic doubly infinite

binary sequences onto the irreducible horizontal PTPCs in Cartesian products of two

cycles.

Proof. The irreducible periods B = (b1, b2, . . . , bn) of periodic doubly infinite binary
sequences can be listed lexicographically and by their nondecreasing lengths, as fol-
lows: 0, 1, 01, 001, 011, 0001, 0011, 0111, 00001, 00011, 00101, 00111, 01011, 01111,
. . . , where periods whose images through Ψ are horizontal PTPCs Ψ(B) in Λ already
obtained from previously listed periods are avoided. This yields two subsequences
according to weight parity, namely: 0, 011, 0011, 00011, 00101, 01111, . . . and 1, 01,
001, 0001, 0111, 00001, 00111, 01011, . . . , with respective sequences of values of p
as in the statement of the theorem as follows: p = 4, 12, 16, 20, 20, 20, . . . and p =
8, 16, 24, 32, 32, 40, 40, 40, . . . .

In the PDS-array associated to one such Ψ(B), there are only two types of hor-
izontally contiguous pairs of entries (which are integer pairs) formed by a leftmost
room pair and a rightmost ladder pair, namely: (32, 12) and (32, 21). For example,
Figure 2 shows the first stage of the procedure in the proof of Theorem 1 applied
to the irreducible period B = 00011101, producing concretely the fundamental tile

T (B) associated to B, before extending it periodically to its (upper-)left and to its
(lower-)right sides and applying subsequently the transformation s of Theorem 1
and its powers in order to exhibit Ψ(B). Observe that each null entry in this B has
associated a pair (32, 12) and each non-null entry in it has associated a (descending)
pair (32, 21).

The unit-area squares determined by the 4-cycles of Λ in the Euclidean plane are
labeled for convenience as shown in Figure 2, which establishes a fixed labeling of
the realizations of the pairs (32, 12) and (32, 21) in Ψ(B). By extending the period
B to left and right and applying s and its powers, a larger picture of this labeling
representing Ψ(B) can be seen as a 32 × 32 array M = M(00011101) produced by
these labels of unit-area squares, whose first two rows form the sub-array M1 =
M1(00011101) =

6 4 2 0 6 4 2 0 6 4 2 0 6 4 2 7 5 3 1 0 6 4 2 7 5 3 1 7 5 3 1 0
7 5 3 1 7 5 3 1 7 5 3 1 7 5 3 1 0 6 4 2 7 5 3 1 0 6 4 2 0 6 4 2

from which the whole array can be obtained by means of the following induction
step, where j = 0, . . . , 15: Let Mj be the sub-array of M formed by the (2j + 1)-th
and (2j + 2)-th rows of M. If Mj = (X, Y ), where Y is the rightmost 2× 2 sub-array
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Figure 3: Labelled room-label pairs for middle entries of binary triples

of Mj, then Mj+1 = (Y, X). This induction step is produced by the transformation
s and what follows.

The union of the 32× 32 = 1024 4-cycle-delimiting unit squares whose labels are
arranged precisely as in M(B) form a square N(B) of side length 32 in the Euclidean
plane. By identifying the top and bottom sides of N(B) as well as its left and right
sides, a (flat) torus S is obtained, (flat torus in the sense of [4]). In S, the projections
of the original vertices and edges of Λ form the Cartesian product Cp ×Cp (p = 32).
In this Cp ×Cp, the PTPC S in Λ determined by the period B = 00011101 projects
onto a PTPC S in Cp ×Cp, as required in the statement of the theorem. Also, N(B)
can be furnished as a cutout of S in which S or S can be visualized, as is done down
below in Figures 4 and 5 for the first two even- and odd-weight cases of periods B
in their listings as indicated above, respectively.

Given a PDS S in Λ, a labeling fS of Λ with symbols in {0, 1, 2, 3, 4} is defined
as follows: let 2 label each v ∈ S; for each vertex v of Λ \ S, let 0,1,3,4 label v if
v − (0, 1), v − (1, 0), v + (1, 0), v + (0, 1) belongs respectively to S.

The exemplified period B = 00011101 contains all eight cases of possible binary
triples. The vertex labels of fS associated to the room-ladder pairs in the image of
the middle entries of such triples through Ψ are as shown in Figure 3, (where also
the unit-area squares determined by the 4-cycles of Λ are labeled in their centers as
indicated above).

In general, a fundamental tile T (B) is determined, for any period B of a periodic
doubly infinite binary sequence by replacing each entry bi = 0 of B by a sub-tile τ0

as in the two top cases of Figure 3, formed by a room-ladder pair with PDS-sub-
array (32, 12), and by replacing each entry bi = 1 of B by a sub-tile τ1 as in the two
bottom cases of Figure 3, formed by a room-ladder pair with PDS-sub-array (32, 21).
If bi = 0, then the unit-area squares with labels 0 and 1 in τ0 are adjacent to their
right to unit-area squares with respective labels 7 and 6, belonging to a sub-tile of
either type. if bi = 1, then the unit-area square with label 0 is adjacent to its right
to a unit-area square with label 7, that is at the upper-left corner of another sub-tile.
This composed periodically (for a fixed period B) and translated by the powers of s
yields Ψ(B).

Given a period B of a periodic doubly infinite binary sequence, let B1 be the
subsequence of B whose last entry is the first, or leftmost, unit entry of B. Induc-



PERFECT DOMINATION IN REGULAR GRID GRAPHS 105

tively for 1 < i ≤ k, let Bi be the subsequence of B \ (∪i−1

j=1Bj) whose last entry

is the i-th unit entry of B, where B \ (∪i−1
j=1Bj) is the subsequence of B obtained

by deleting the successive concatenation of B1, B2, . . . , Bi−1. The sequence ξ(B1) of
labels of unit-area squares in the first, or top, row of T is obtained by successively
replacing each null entry of B1 by a subsequence 6420, and the final unit entry of
B1 by a subsequence 642. There is an accompaniment of this ξ(B1) by a sequence
η(B1) in the second row of such labels in T (B): below each subsequence 6420 in
ξ(B1), corresponds a subsequence 7531; below the final subsequence 642 of ξ(B1)
corresponds a subsequence 75310, extended two extra positions to the right of the
final entry of ξ(B1). From the subsequent position to the right of this final entry of
ξ(B1), T contains ξ(B2), and below it, η(B2), and so on, down to ξ(Bk) and η(Bk).

For B = 00011101, the first row of M1(B) is formed by the concatenation of the
first, third and fifth rows of B, namely ξ(B1) = ξ(0001) = (6420)3642, η(B2)ξ(B3) =
η(1)ξ(1) = 75310642 and η(B4) = η(01) = (7531)20, respectively; the second row
of M1(B) is formed by the concatenation of the second and the fourth rows of B,
namely η(B1)ξ(B2) = η(0001)ξ(1) = (7531)40642 and η(B3)ξ(B4) = η(1)ξ(01) =
7531(0642)2, respectively.

Similarly for any other period B of even weight k: the first (second) row of M1(B)
is the concatenation of the odd (even) rows of T (B) in their increasing order, which
is then repeated periodically in Λ by way of horizontal concatenations. Observe that
the rows of T (B) have successively the following label sequences, or concatenations
of label sequences:

ξ(B1), η(B1)ξ(B2), . . . , η(Bi)ξ(Bi+1), . . . , η(Bk−1)ξ(Bk), η(Bk),

from which we must select the concatenation of the odd- (even-) positioned member
label subsequences as the first (second) row of M1(B), whose total length is then
seen to be 4k, (4k).

For each period B of odd weight k, the first (second) row of M1(B) is the con-
catenation of the odd (even) rows of T (B) followed by the concatenation of the even
(odd) rows of T (B), in their increasing order in both cases.

The total length of the concatenations in either the first of the second row is
p = 4n if the weight k of B is even and is p = 8n if k is odd. This implies the
statement of the theorem.

Corollary 5 A PTPC in a Cartesian product Cm × Cn of two cycles Cm and Cn

exists if and only if m and n are multiples of 4.

Proof. Let B be a fixed period B of a periodic doubly infinite binary sequence.
By taking the union of several contiguous copies of N(B) conforming a square or
rectangle N ′ in the Euclidean plane, or just N ′ = N(B), and identifying the top and
bottom sides of N ′ as well as the left and right sides of N ′, it is seen that a toroidal
graph of the form Cm ×Cn is obtained that contains a PTPC. Because of Theorems
1 and 4, both m and n must be multiples of 4. Moreover, no other sources of PTPCs
in Cartesian product of cycles exist.
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Figure 4: First two even-weight cases: M(0) and M(011)
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Figure 5: First two odd-weight cases: M(1) and M(01)

Each Cartesian product Cm ×Cn of cycles Cm and Cn of lengths m and n larger
than 2, respectively, is the target of a canonical projection graph map ρ from Λ onto
Cm × Cn such that ρ(i, j) = (i mod m, j mod n), where i mod m and j mod n are
the remainders of dividing i and j respectively by m and n. Clearly, ρ is surjective
graph homomorphism.

Corollary 6 A TPC in a Cartesian product Cm ×Cn producing only ladder pairs of

the form 21 in the inverse-image TPC in Λ via ρ exists if and only if m and n are

multiples of 4.

Proof. The statement of the corollary arises by combining Corollary 3 and Theo-
rem 4.

4 d-Perfect code partitions of Λ and Cm × Cn

In contrast with the uncountability of Theorem 1, there is just one 1-perfect code
S0 in Λ, up to symmetry, which can be taken as the sublattice of Λ generated
by {(1, 2), (2,−1)}. (A generalization of this fact is given in Section 8 for integer
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Figure 6: 1-Perfect code in Λ and a cutout for C5 × C5

lattices in Rr, r ≥ 2). Figure 6 partially depicts S0 and its complementary graph in
Λ. Moreover, S0 does not restrict to a 1-perfect code in any rectangular grid graph
Γm,n with m or n larger than 4. The center 4 × 4 grid graph Γ4,4 in the interior of
the dotted line in Figure 6 depicts the only existing 1-perfect code in a Γm,n with
min{m, n} > 2, up to symmetry, [9]. (It is not difficult to visualize 1-perfect codes
in Γm,n if m = 1 or 2, in the latter case with n odd).

V (Λ) admits a partition into five copies of S0. Now, the total number of perfect
codes isomorphic to S0 in Λ is ten, of which five are tilted as in Figure 6 and five are
tilted in the other way, composing two enantiomorphic presentations of S0, (mirror
images of the other). Thus, there are two possible partitions of Λ into copies of S0,
or of its enantiomorphic code in Λ.

Moreover, there are 1-perfect codes in toroidal graphs, specifically Cartesian prod-
ucts C5k × C5ℓ, for 0 < k, ℓ ∈ Z, obtained from S0 and having cardinality 5kℓ. (The
existence of such a code would follow from Theorem 2.5 of [9], but look at the remark
after Theorem 11 in Section 6.)

An example of such 1-perfect code in C5×C5 can be visualized in Figure 6, where
the dotted lines delineate the boundary of a cutout of the (flat) torus involved; the
left side of the figure represents the minimum-distance graph of S0, which is the
restriction of the power graph (Λ)3 to S0; the right side represents the complementary
graph of S0 in Λ. No other 1-perfect codes in Cartesian products of two cycles exist.

Theorem 7 There exists a toroidal graph Cm ×Cn having a 1-perfect code partition

S0 = {S0
0 = S0, S

1
0 , . . . , S

4
0} if and only if m and n are multiples of 5. Each component

code Si
0 of S0, which is a translate of the sublattice S0, has cardinality mn/5 and

cannot be obtained by side identifications from 1-perfect codes in any rectangular

grid graph.

Theorem 7 is a particular case of the following result. Recall from [3] that for
d ≥ 1, a d-perfect code in a regular graph G is a vertex subset S such that every
vertex v in G \ S is at distance ≤ d from just one vertex w(v) of S. Notice however
that no G \ S is 3-regular, for any d-perfect code S in a 4-regular graph G, when
d > 1, contrary to the observation previous to Theorem 1. Figure 7 illustrates this
point.

A d-perfect code S in Λ can be found easily, following inductively a construction
whose first two steps are illustrated in Figures 6 and 7, for d = 1, 2 respectively.
Given such an S, the vertices of the d-neighborhood Nd(v) of any vertex v of S are
labeled as follows: the top element of N(v) gets label 1; the vertices of the longest
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Figure 7: 2-Perfect code in Λ and a cutout for C13 × C13

horizontal path of N(v), that is the (d + 1)-th horizontal path, of length 2d + 1, get
the subsequent integer labels from left to right: 2, 3, . . . , 2d + 2; the bottom vertex
of N(v) gets label 2d+3; if there are still horizontal paths with unlabeled vertices in
N(v), then the d-th and 2d-th horizontal paths of N(v) receive the subsequent integer
labels increasingly from left to right; and so on, if necessary, with the (d− 1)-th and
(2d − 1)-th horizontal paths, etc.

In other words, by denoting the rows of vertices of N(v) from top to bottom
successively as row 1, row 2, . . ., row (2d + 1), and by considering this row order
cyclically mod 2d + 1, we label with 1, 2, . . . , 2d2 + 2d + 1 = q subsequently from left
to right the vertices in the rows 1, 1 + d, 1 + 2d, . . . , 1 + (2d)d = d + 2 mod 2d + 1,
in that order. For Figures 6 and 7, this looks respective as follows:

1
1 8 9 a

2 3 4 2 3 4 5 6
5 b c d

7

where hexadecimal notation is used. (This coincides with a case of [12], leading to
the graph Qd in Corollary 9 below. Compare also with [1, 4]). The advantage of this
labeling is that it can be extended to all d-neighborhoods of vertices of S so that in
each row the labels from 1 to q = 2d2 +2d+1 appear subsequently and contiguously
from left to right, which in the cases of Figures 6 and 7 makes that the first row of the
depicted cutout of Cq ×Cq receives the following labels from left to right: 3 4 5 1 2 3
and 4 5 6 7 8 9 a b c d 1 2 3 4 respectively, and so on for the remaining rows of the
cutout, comprising all the numbers in the range 1, 2, . . . , 2d(d+1) in increasing order
mod q from left to right, from certain vertex on, and then extended periodically for
the vertices of each horizontal path in Λ. Observe that the disposition of these labels
yields a q × q Latin square and that the vertices having any fixed label constitute a
translate of the sublattice of Λ generated by {(d, d + 1), (d + 1,−d)}.

Theorem 8 There exists a toroidal graph Cm ×Cn having a d-perfect code partition

Sd−1 = {S0
d−1 = Sd−1, S

1
d−1, . . . , S

q−1

d−1}, where q = 2d2 + 2d + 1, if and only if m and

n are multiples of q. Each of the component codes Si
d−1 of Sd−1 has cardinality mn/q

and cannot be obtained by side identifications from 1-perfect codes in any rectangular

grid graph.
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Figure 8: Total perfect code in Λ and a cutout for C4 × C4

Proof. Since a cutout square Pq ×Pq of Cq ×Cq projects onto q2 different vertices of
Cq × Cq and since any d-neighborhood of a vertex of Λ contains q vertices, then the
projected code from S in Cq ×Cq contains q vertices. The statement of the theorem
follows by forming larger cutouts which are rectangular arrangements obtained by
continuation of copies of the original cutout.

Corollary 9 Identification of vertices in Λ with each common label i = 1, 2, . . . ,
q = 2d2 + 2d + 1 yields the quotient graph Qd of its partition into q d-perfect codes.

Moreover, Qd is a 4-regular bipartite graph, namely the undirected Cayley graph of

the cyclic group Zq under the generator set {1, 2d2}.

Proof. What is the difference mod q between the label of any vertex w of Λ and the
label of the vertex immediately below w? We answer this on the central, longest,
vertical path, or column of vertices, of N(v). Observe that the labels in this path
start in its top vertex with label 1 and continue with labels that increase mod q in
subsequent increments of value 2d2. This is due to the fact that by starting with the
vertex labeled 1 and descending in this column cyclically mod 2d + 1 by jumping d
rows in each of 2d + 1 instances, we cover subsequently the central position in the
rows 1, d + 1, 2d + 1, d, 2d, d − 1, 2d − 1, . . . , 2, 2 + d and again 1. By finishing this
process in label 2, two steps before returning to label 1, we obtain the sequence of
2d−1 subsequent label differences d+2, d+2, d+1, . . . , d+2, d+1, which starts with
d + 1 twice and then alternating d + 1 with d + 2, amounting to d times d + 1 plus
d− 1 times d. We conclude that Qd is the 4-regular bipartite graph whose vertex set
is the cyclic group Zq = {1, 2, . . . , q − 1, q = 0}, with vertices i and j adjacent if and
only if i − j ∈ {1,−1, 2d2,−2d2}. Thus, Qd is the claimed Cayley graph.

Of course, Corollary 9 holds with Λ replaced by any Cm × Cn as in Theorem
8. Continuing the remark that ends the second paragraph of this section, we note
that there are only two possible partitions of Λ into copies of a d-perfect code of Λ,
corresponding to the two enantiomorphic presentations of such a code. In the second
such code, the labeling of the vertices of an N(v) ascends on each row from right to
left, instead of being from left to right.

5 Total perfect code partitions of Λ

Among the PTPCs in Λ arising from Theorem 1, there is only one, call it S2, such
that Λ admits a partition into copies of S2 that can be projected onto a partition
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of C4 × C4, based on the PTPC corresponding to the null {0, 1}-sequence, and due
to Corollary 5. The total number of copies of such PTPC S2 existing in Λ is 16,
of which eight have just horizontal (vertical) induced edges, yielding four possible
partitions of Λ into copies of S2.

From Corollary 5, it can be seen that there are PTPCs in toroidal graphs C4k×C4ℓ,
for 0 < k, ℓ ∈ Z, obtained from S2 by means of identifications in Λ and having
cardinality 4kℓ. An example of such PTPC in C4 ×C4 can be visualized in Figure 8,
where the dotted lines delineate the boundary of a cutout from which the (flat) torus
involved can be obtained; the left side of the figure represents part of the restriction
of (Λ)3 to S2; the right side represents the complementary graph of S2 in Λ.

Theorem 10 Let 1 < m, n ∈ Z. There exists a toroidal graph Cm × Cn having a

PTPC partition S2 = {S0
2 = S2, S

1
2 , S

2
2 , S

3
2} if and only if m and n are multiples of

4. Each component PTPC Si
2 in S2 has cardinality mn/4 and cannot be obtained by

side identifications from PTPCs in any rectangular grid graph.

6 A Penrose-tiling-like total perfect code

In [7], it was shown that an m × n grid graph Γm,n with min{m, n} > 1 contains a
TPC if and only if m ≡ 0 (mod 2) and n ≡ −3,−1 or 1 (mod m + 1).

In [5], this was used to show that there is only one TPC S1 in Λ that restricts to
TPCs in rectangular grid graphs Γm,n, where m and n are integers > 2. Moreover,
the complement Λ\S1 yields an aperiodic tiling of the plane (like the Penrose tiling,
[10]) whose automorphism group coincides with the group D8 of the square [−1

2
, 1

2
]×

[−1

2
, 1

2
].

Again, this result is in contrast with the uncountability of TPCs shown in The-
orem 1.

It is impossible to partition Λ into copies of the graph S1, nor there are quotient
toroidal graphs in Λ containing a TPC obtained by projecting S1, because of the
presence of a unique central ladder of area 3 in the complementary graph of S1 in
Λ, while all the other ladders have area 2. See Figure 9, where two concentric stages
in the construction of S1 and of Λ \ S1 are shown. Observe that the leftmost stage
must be rotated 90 degrees in order for its immersion into the second stage to be
visualized, with intermittent lines added for ease of comprehension of the immersion
(and in accordance with the definition of PDS-arrays of graphs Γm,n in [5]).

7 PDSs in other toroidal grid graphs

Denote by C2 the multigraph composed by two vertices and two parallel edges be-
tween them. We have the following complementary results.

Corollary 11 A PTPC in a C2 × Cn exists if and only if n is a multiple of 6.
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Figure 9: Two stages in the construction of S1 and Λ \ S1

Proof. Let C2 ×C6k be represented in a (flat) torus obtained from the immersion of
the rectangular sub-grid of Λ that has vertex set {(i, j); 0 ≤ i ≤ 2; 0 ≤ j ≤ 6k} into
the Euclidean plane, by means of vertex identifications (i, 0) ≡ (i, 6k), for 0 ≤ i ≤ 2,
and (0, j) ≡ (2, j), for 0 ≤ j ≤ 6k, and corresponding edge identifications. Then,
a PTPC in C2 × C6k is given by the projection of the vertices (0, 1 + 6i), (0, 2 +
6i), (1, 4 + 6i), (1, 5 + 6i), where 0 ≤ i < k.

Theorem 12 There exists a toroidal graph C2×Cn having a 1-perfect code partition

S0 if and only if n is divisible by 4. In this case, S0 contains four 1-perfect codes, and

the component codes cannot be obtained by side identifications from 1-perfect codes

in any rectangular grid graph.

Proof. Let C2 × C4k be represented in a (flat) torus obtained from the immersion
of the rectangular sub-grid in Λ possessing vertex set {(i, j); 0 ≤ i ≤ 2; 0 ≤ j ≤ 4k}
into the Euclidean plane by means of the vertex identifications (i, 0) ≡ (i, 4k), for
0 ≤ i ≤ 2, and (0, j) ≡ (2, j), for 0 ≤ j ≤ 4k, accompanied by the corresponding
edge identifications. Then, one of the 1-perfect codes in S0 is given by the projection
of the vertices (1, 0+4i), (0, 2+4i), where 0 ≤ i < k. (An example of this for k = 1 is
given on the left side of Figure 10, commented in a remark below). The other three 1-
perfect codes here are obtained by translation along the vectors (1, 0), (0, 1), (1, 1).

Theorem 2.5 of [9] announces correctly the existence of the code S0 mentioned in
Section 3 above. However, it also claims the existence of a 1-perfect code in C4 ×C6,
which is incorrect. The right side of Figure 10 serves to get a counterexample: we
can select successively vertices u, v, w as members of a candidate 1-perfect code in
C4 × C6, as depicted in the figure, (where diagonals join the dominated vertices of
each of u, v, w; notice that after selecting vertex u, the only dominating vertex for
s, up to symmetry, is v, and then the only dominating vertex for t is w). But then
vertex x cannot form part of any such 1-perfect code, nor can be dominated by any
vertex of it.

The left side of Figure 7 shows a detachment of C2 ×C4 showing a 1-perfect code
{u, v}, as correctly cited in the mentioned theorem, Generally, diagonals joining
dominated vertices would form square rhombuses, but in this case, the rhombus
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Figure 10: Example and counterexample for Theorem 2.5 of [9]

around u is a degenerate one, because two opposite vertices of the rhombus are
identified.

8 Case of integer lattice graphs of Rr, r ≥ 2

Let 1 < r ∈ Z. In this section, we replace Λ = Λ2 by the integer lattice graph Λr of
Rr. We extend facts and results in Section 4 to Λr as follows, noticing that this can
only be done for d = 1 if r > 1, in the notation of Section 4.

Theorem 13 There exists just one 1-perfect code S0 in Λr, up to symmetry. More-

over, S0 can be taken as the sublattice of Λ generated by the vectors (1, r, 0, . . . , 0),
(2,−1, 0, . . . , 0), (3, 0,−1, 0, . . . , 0), . . . , (r, 0, . . . , 0,−1)). Furthermore, S0 does not

restrict to a 1-perfect code in any r-dimensional parallelepiped grid graph Γm1,m2,...,mr

with at least one of m1, m2, . . . , mr larger than 4.

Proof. We consider the vertices of Λr as centers of r-dimensional cubes with unit-
length edges that are parallel to the coordinate axes of r-space. The collection of all
such cubes forms a tessellation of Rr which can be interpreted as a Voronoi diagram,
[4]. Each cube in such a tessellation receives a label in the range 1, 2, . . . , 2r + 1
according to the following rule, which extends the case d = 1 of the argument
previous to Theorem 8 and Corollary 9, above. Let r + 1 label the null vertex of Λr;
let r + 1 + iδ label the vertex having all coordinates null but for the i-th coordinate,
which equals δ = ±1. Extend this labeling initialization by making the difference
ℓ(w)− ℓ(v) of the labels ℓ(v) and ℓ(w) of two contiguous vertices v = (v1, v2, . . . , vr)
and w = (w1, w2, . . . , wr) equal to ℓ(w) − ℓ(v) = i, where wj = vj if j �= i and
wi = vi + 1. The vertices of Λ having any fixed label 1, . . . , 2r + 1 constitute a
translate of the sublattice generated by the vectors cited in the statement. The
resulting labeling of the vertices of Λr is as claimed.

Figure 11 illustrates, for r = 3, the labeling indicated in Theorem 13 by means
of a partial representation of the mentioned Voronoi-diagram tessellation, which in
this case is 3-dimensional. The figure only shows eight partially horizontal levels of
such tessellation, where (a) each edge represents a 4-cycle face looked upon from
above; (b) each vertex represents the intersection edge of two such faces; (c) the
first (upper-left) and eighth (lower-right) levels coincide. Only faces of outlines of
3-dimensional crosses with central cube labeled 4 and remaining six cubes labeled
1,2,3,5,6,7 are indicated.

The centers of the 83 labeled 3-cubes suggested in the figure are original vertices
of Λ3. The convex hull of these 83 vertices constitutes a cutout of a 3-dimensional
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Figure 11: Case r = 3

torus (flat in the sense of [4]) in which a 3-toroidal graph C7 ×C7 ×C7 is embedded,
obtained by identification of (corresponding vertices in) opposite faces of the cutout,
which happens to be a 3-dimensional cube of side lengths 8, that is: each side, or
maximal lateral path of the cutout is a path of length 8. Then the distribution of
the seven labels 1 through 7 yields a 1-perfect code partition of C7 ×C7 ×C7, which
illustrates the following Corollary. By taking the inverse image of this partition
through the canonical projection graph map ρ : Λ3 → C7 × C7 × C7, a 1-perfect
code partition S0 is obtained in Λ3. By reverting the label ordering along one of
the coordinate directions, the enantiomorphic image of S0 is obtained (through an
(r − 1)-dimensional mirror), as well as the enantiomorphic image of S0, yielding a
total of 2(2r + 1) perfect codes equivalent to S0.

Likewise, an example for Λ4 leads to a 1-perfect code partition of the 4-toroidal
graph C9×C9×C3×C9, where the component C3 corresponds to the third coordinate
direction, with label differences ±3 mod 9 between neighboring vertices along it.
Theorem 8 and Corollary 9 generalize now as follows.

Corollary 14 Λr admits a partition into 2r + 1 copies of S0. Moreover, the total

number of perfect codes isomorphic to S0 in Λ is 2(2r + 1).

Corollary 15 There exists an r-dimensional toroidal graph Cm1
× . . . × Cmr

hav-

ing a 1-perfect code partition S0 = {S0
0 = S0, S1

0 , . . . , S2r
0 } if and only if mi is a

multiple of q/ gcd(q, i), for i = 1, . . . , r. Each component code Si
0 of S0 has cardinal-

ity m1 . . . mr/q and cannot be obtained by side identifications from 1-perfect codes in

any r-dimensional parallelepiped grid graph. Identification of vertices in Λr with each

common label i = 1, 2, . . . , q yields the quotient graph of the partition. This graph is

Kq, that is the undirected Cayley graph of the cyclic group Zq under the generator

set {1, 2, . . . , r}.
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