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Abstract

In differential-form representation, the Maxwell equations are represented by simple dif-
ferential relations between the electromagnetic two-forms and source three-forms while
the electromagnetic medium is defined through a constitutive relation between the two-
forms. The simplest of such relations expresses the electromagnetic two-forms as scalar
multiples of one another. Because of its strange properties, the corresponding medium
has been considered as nonphysical. In this study such a medium is interpreted in terms
of the classical Gibbsian vectors as a bi-isotropic medium with infinite values for its four
medium parameters. It is shown that the medium is a generalization of both PEC (perfect
electric conductor) and PMC (perfect magnetic conductor) media, with similar proper-
ties. This is why the medium is labeled as PEMC (perfect electromagnetic conductor).
Defining a certain class of duality transformations, PEMC medium can be transformed
to PEC or PMC media. As an application, plane-wave reflection from a planar interface
of air and PEMC medium is studied. It is shown that, in general, the reflected wave has
a cross-polarized component, which is a manifestly nonreciprocal effect.
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1 Introduction

Differential-form calculus is a branch of mathematics based on the algebra of multivectors
(elements of space Ep) and dual multivectors (elements of space Fp) over an n-dimensional
space of vectors [1, 2, 3]1. Its application to electromagnetic theory instead of the classical
Gibbsian vector analysis is suggested by the simplicity and elegance obtained in writing
the basic Maxwell equations as

d ∧ Φ = γm, (1)

d ∧Ψ = γe. (2)

Here, d is the four-dimensional differential operator and ∧ the exterior product, while

Φ = B + E ∧ dτ, Ψ = D −H ∧ dτ (3)

represent the four-dimensional electromagnetic two-forms (elements of the dual bivector
space F2) in terms of three-dimensional two-forms B,D and one-forms E,H. The elec-
tric and magnetic source three-forms γe, γm ∈ F3 are combinations of three-dimensional
charge three-forms ̺e, ̺m and current two-forms Je,Jm as

γe = ̺e − Je ∧ dτ, γm = ̺m − Jm ∧ dτ. (4)

Here τ stands for the normalized time τ = ct. Denoting by | the scalar product between
multivectors and dual multivectors of the same grade [2, 3], the most general linear relation
between the two electromagnetic two-forms has the form

Ψ = M|Φ, (5)

where M is the medium dyadic involving 36 scalar parameters [3]. Inserting (3) in (5)
and separating the spatial and temporal components, the medium equations can be rep-

resented in terms of a set of three-dimensional dyadics α, ǫ′, µ, β by

D = α|B + ǫ′|E, (6)

H = µ−1|B + β|E. (7)

The dyadic ǫ′ is in general not the same as ǫ in the alternative representation

D = ǫ|E + ξ|H, (8)

B = ζ|E + µ|H, (9)

corresponding to the same four-dimensional medium dyadic µ. In the Gibbsian represen-
tation we can apply medium equations similar to (8), (9),

D = ǫ · E + ξ · H, (10)

B = ζ · E + µ · H, (11)

for the vector-valued fields D,B,E,H ∈ E1, in terms of the medium dyadics ǫ, ξ, ζ, µ.
One must note that the field and medium quantities in (8), (9) and (10), (11) are denoted
by the same symbols even if they are elements of different spaces, because they represent
the same physical quantities.

1The notation applied in the present paper coincides with that of [3].
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2 Simple isotropic medium

Obviously, the simplest electromagnetic medium as defined by (5) is obtained when the

M dyadic is a scalar factor M so that the relation becomes

Ψ = MΦ. (12)

In terms of three-dimensional one- and two-forms or Gibbsian vectors the relation (12)
has the form

D = MB, H = −ME. (13)

From the viewpoint of four-dimensional differential forms (12) appears to define the only
possible isotropic medium in the sense that it is invariant in all possible affine transfor-
mations [3]. This means that the medium has no special spatial direction in the four-
dimensional space and it appears the same for all observers moving with constant velocity.
In contrast, it is known that change of motion of the observer changes the medium known
as isotropic in the Gibbsian representation (10), (11) to a more general bi-anisotropic
medium. While being mathematically simple, the medium defined by (12) appears physi-
cally very strange, because for constant M a contradiction arises in the Maxwell equations
(1) and (2), unless the sources satisfy the special relation γe = Mγm. In this special source
system the two Maxwell equations become the same and the solution is not unique. This
is why such a medium has been labeled as nonphysical [4, 5]. It appears that the problem
cannot be posed in such a simple way but one should consider the process of creating the
sources in the medium more carefully. On the other hand, everywhere outside the source
region in such a medium the Poynting two-form E ∧ H and energy-density three-form
E ∧ D + H ∧ B vanish, which means that there cannot exist any energy or transmission
of electromagnetic power in such a medium.

Since the simple isotropic medium defined by (12) arises so naturally in the differential-
form formalism, let us consider its representation in the Gibbsian vector formalism more
closely. It turns out that the medium can be represented as a bi-isotropic medium defined
in terms of four scalar medium parameters ǫ, ξ, ζ, µ as

D = ǫE + ξH, (14)

B = ζE + µH. (15)

Actually, (12) is a special case of such a medium and the four parameters can be expressed
in terms of just two parameters M and q as

ǫ = Mq, ξ = q, ζ = q, µ = q/M. (16)

In fact, (14) and (15) now become

D = q(ME + H), B = q(E + H/M). (17)

This shows us that one of the equations, D = MB, is satisfied for any values of q and M
while the other equation H = −ME requires that the parameter q must become infinite:

q → ∞. (18)
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From (16) we see that, this being the case, all four medium parameters actually become
infinite. Their relations can be expressed as

ξ = ζ =
√

µǫ = q,
√

ǫ/µ = M. (19)

This kind of a medium can be characterized as a special Tellegen medium (nonchiral and
nonreciprocal bi-isotropic medium) [6].

3 PEMC medium

To have some insight in the medium defined by (16), let us perform a duality transforma-
tion which is known to transform a set of fields and sources to another set and the medium
to another one. In its most general form, the duality transformation can be defined as a
linear relation between the electromagnetic fields, and represented in terms of four scalar
parameters A, B, C, D as [7]

(

E

H

)

d

=

(

A B
C D

) (

E

H

)

, AD − BC 6= 0. (20)

Requiring that the Maxwell equations be transformed to Maxwell equations for the dual
fields, the other two field vectors must be transformed as

(

D

B

)

d

=

(

D −C
−B A

) (

D

B

)

(21)

and the medium parameters as








ǫ
ξ
ζ
µ









d

=
1

AD − BC









D2 −CD −CD C2

−BD AD BC −AC
−BD BC AD −AC
B2 −AB −AB A2

















ǫ
ξ
ζ
µ









. (22)

It is easy to see that for ξ = ζ we also have ξd = ζd, which means that a Tellegen medium
is transformed to another Tellegen medium. Now let us study whether there exist possible
transformations leading to vanishing magnetoelectric parameters ξd = ζd = 0 for a given
medium (16). This requirement leads to the condition

−BDM + AD + BC − AC/M = (A − BM)(D − C/M) = 0 (23)

for the transformation parameters. Thus, there are two possible transformations denoted
by subscripts 1 and 2 and defined by the conditions

A1 = B1M, D2 = C2/M. (24)

Inserted in (22), the two duality transformations lead to the respective two sets of trans-
formed medium parameters with vanishing ξd and ζd. Remarkably, it appears that, in
each case, three of the four parameters are transformed to zero:









ǫ
ξ
ζ
µ









1d

=









q(MD1 − C1)/B1M
0
0
0









, (25)
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ǫ
ξ
ζ
µ









2d

=









0
0
0

q(A2 − B2M)/D2M









. (26)

From the assumption AD−BC 6= 0 we must also have MD1−C1 6= 0 and A2−B2M 6= 0.
Thus, for q → ∞ the nonzero transformed medium elements become infinite in both cases.

This shows us that it is possible to find a duality transformation which transforms the
bi-anisotropic medium defined by (16) and q → ∞ to either a PEC (perfect electric
conductor) medium satisfying [8]

ǫ1d → ∞, ξ1d = ζ1d = µ1d = 0, (27)

or to a PMC (perfect magnetic conductor) medium satisfying

ǫ2d = ξ2d = ζ2d = 0, µ2d → ∞. (28)

Actually, PEC and PMC are special cases of the medium (5). In fact, because in the PMC
medium we have D = ǫE + ξH = 0 and H = (B − ζE)/µ = 0 in the Gibbsian vector
representation, these correspond to vanishing of the two-form Ψ = 0. Thus, the PMC
condition can be characterized by the special parameter value M = 0 in (5). Similarly,
the PEC medium corresponds to Φ = 0 and M = ∞. This gives us reason to call the
more general medium defined by (5) as the perfect electromagnetic conductor (PEMC).
It is a one-parameter class of media. Because the Poynting vector and energy density are
transformed as

Ed × Hd = (AD − BC)E ×H, (29)

Ed · Dd + Hd · Bd = (AD − BC)(E · D + H · B), (30)

in the general duality transformation and since these quantities vanish for PEC and PMC
media, they also vanish in the PEMC medium.

Because the duality transformation can be inverted, the medium (5) can also be defined
as one obtained from a PEC or a PMC medium through a special duality transformation.
The effect of the duality transformation can be made more transparent by the following
special choice of transformation parameters:

A = D = cos(θ/2), B =
1

M
sin(θ/2), C = −M sin(θ/2). (31)

In this case the PEMC medium parameters are transformed to those of another PEMC
medium through the θ parameter as

ǫd = qM(1 + sin θ), ξd = ζd = q cos θ, µd =
q

M
(1 − sin θ). (32)

It is seen that θ varying in the interval −π/2 · · ·π/2 reduces the PEMC medium to PMC
and PEC at the end points and the original medium is obtained at θ = 0. For all values
of θ the medium satisfies the condition µdǫd = ξdζd.
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4 Reflection from a PEMC boundary

Because the PEMC medium does not allow electromagnetic energy to enter, an interface
of such a medium serves as an ideal boundary to the electromagnetic field. Let us consider
the boundary of PEMC medium and air with unit normal vector n. Because tangential
components of the E and H fields are continuous at any interface of two media, one of
the boundary conditions for the medium in the air side is

n× (H + ME) = 0, (33)

because a similar term vanishes in the PEMC-medium side. The other condition is based
on the continuity of the normal component of the D and B fields which gives another
boundary condition as

n · (D − MB) = 0. (34)

The latter condition can also be written as

n · (ǫoE− MµoH) = 0. (35)

Put together, these can be expressed as the vector condition

ME = −H + (M2η2

o + 1)nn · H, ηo =
√

µo/ǫo. (36)

As a check, for µ → ∞ we obtain the PEC conditions n ×E = 0 and n ·H = 0.

As an application, let us consider plane-wave reflection from a PEMC boundary plane
at z = 0. For simplicity, the incident and reflected plane waves in the region z < 0 are
assumed polarized parallel to the boundary. The total fields are

E(z) = Eie−jkoz + Erejkoz, (37)

ηoH(z) = uz × Eie−jkoz − uz × Erejkoz. (38)

Inserted in the boundary conditions (36) at z = 0 with n = −uz we have

Mηo(E
i + Er) = −uz × (Ei − Er), (39)

or
(uz × I − MηoI) · Er = (uz × I + MηoI) ·Ei, (40)

with I = uxux + uyuy. Multiplying this by the dyadic (uz × I + MηoI)·, the reflected field
is obtained as

Er = − 1

1 + M2η2
o

[(−1 + M2η2

o)E
i + 2Mηouz × Ei]. (41)

This means that, for a linearly polarized incident field (real Ei), the field reflected from
such a boundary has both a co-polarized component (multiple of Ei) and a cross-polarized
component (multiple of uz ×Ei) in the general case. For the PMC and PEC special cases
(M = 0 and M = ∞, respectively,) the cross-polarized component vanishes. For the
special PEMC case M = 1/ηo, we have

Ei = −uz ×Ei, (42)

which means that the reflected field appears totally cross-polarized. Thus, the boundary
acts as a twist polarizer which is a nonreciprocal device ([6], p.84).
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5 Conclusion

In this study, a class of electromagnetic media, defined in the simplest possible manner as
’the isotropic medium’ when using the four-dimensional differential-form formalism, was
given an interpretation in terms of the corresponding Gibbsian formalism. It turned out
that the class can be defined as that of certain bi-isotropic media whose all four scalar
parameters have infinite values and no power propagation in the medium is possible. Since
this kind of one-parameter class of media could be shown to be a generalization of both
PEC and PMC media, it can be called the class of PEMC media. Since a PEMC medium
acts as an ideal boundary, plane-wave reflection was considered from a planar boundary.
In the general case, the reflected wave has both a co-polarized and a cross-polarized
component.
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