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Abstract

In standard bargaining models the disagreement payoff is exogenous and history indepen-
dent. Here a model of negotiations is proposed which make;s the disagreement payoff in
every period the outcome of a normal form stage game. The model thereby allows for an
analysis of the role played by strategic behaviour during periods in which no agreement has
been achieved, especially as this behaviour relates to the form of the negotiated outcome.
The paper characterizes players’ worst equilibrium payoffs in terms of the structure of pay-
offs in the stage game. The set of subgame perfect equilibria of the model is characterized
in terms of these worst equilibrium payoffs. Quite generally, many feasible outcomes of
the negotiation game can be sustained as subgame perfect equilibria. In particular, many

Pareto inefficient outcomes are sustainable even in the presence of complete information

and full rationality.

Keywords: bargaining, negotiation, repeated games



1 Introduction

Nine years after its publication, Rubinstein’s bargaining model (Rubinstein (1982)) is well
understood and extensively used in modelling the allocation of gains from trade. It is
an attractive and simple model of dynamic allocation, not only due to its clear structure
and easy solution, but also due to its unique subgame perfect equilibrium, which features
immediate agreement. This latter feature, on the other hand, has been perceived as one of
the limitations of the bargaining model, since many circumstances in which bargaining is
thought to occur feature delay.

While many writers have analysed the contribution imperfect information can have in
introducing delay into the bargaining model,? and recently the fact that delay and strike
are not synonymous has been pointed out,® a fundamental question about the bargaining
model remains and has sofar not been addressed: How well does the Rubinstein model
treat the time aspect of negotiations?

Reference is made here to the fact that time enters the bargaining model only via the
discount factor, making delay in reaching agreement costly. This assumption effectively
isolates the pure bargaining aspect of a situation. In particular, the bargaining model
assumes that there are no intratemporal actions or payoffs.* This implies that only the
additional payoffs from agreement matter to the parties and their payoffs during bargaining
are irrelevant. While this may be a reasonable approximation for many situations, and
precisely captures the spirit of the bargaining problem as defined by Rubinstein (1982,
p.97), this aspect of the bargaining model limits the set of situations which map into the

model.

2Wilson (1987) has a survey of related literature. See also the discussion section for some references.
3Haller and Holden (1990) and Fernandez and Glazer (1991) both have a model in which the decision

to strike in a period of delay is modelled explicitly.
4There may be payoffs, but they are assumed constant and exogenous, which allows for them to be

normalized to gero.



Consider, for example, some typical instances of negotiations, such as peace- , wage- or
trade negotiations. One characteristic of these is that they take time — not in the sense of
time before agreement, or delay, but in the sense that real time elapses between offers and
counter-offers. The parties involved in the negotiations have an ongoing relationship which
is not placed on hold while they negotiate, but instead requires decisions to be made and
yields payoffs concurrently with the parties’ efforts to reach agreement. This relationship
may not be part of the negotiations per se, but is coincidentally linked to the negotiation
process due to the fact that it affects the parties’ status quo point. The bargaining model
fails to capture this aspect.

Rubinstein’s bargaining solution depends critically on the relationship between status
quo point and bargaining frontier, and both are assumed stationary and exogenous in his
model. While it can be shown that the bargaining model can be easily ‘extended to deal
with more general exogenous bargaining frontiers (Binmore (1987)), and exogenous non-
stationary staius quo points (Lemma, Section 3.2 below), exogeneity is critical. This limits
the model to instances of simple negotiations where offers are quick and not much is going
on between offers — such as splitting a pie or an inheritance.

The current paper presents a model in which the status quo point of negotiations is
fully endogenized. This is achieved by allowing the parties to make alternating offers as
in bargaining, but to allow them to play a normal form game, which determines their
disagreement period payoffs, after an offer has been rejected. Thus it is possible to account
for the iinportance attached to the agreement sought via the negotiations as well as the
strategic behaviour and payoffs during the negotiations.?

In what follows, the players’ optimal punishment payoffs are derived and implemented

5Note that, while addressing the repeated game aspect of the disagreement payoff determination, the
theory of repeated games alone cannot accommodate the situations under consideration due to the fact that
a fixed time horizon is assumed — contradicting the inherent endogeneity of the duration of negotiations.

A merger of bargaining and repeated game ideas is thus required.

1



as subgame perfect equilibria (SPE). These worst equilibrium payoffs are shown to be char-
acterizable in terms of the payoff structure of the repeated game played before agreement
is reached. Finally, all SPE payoffs of the negotiation model are characterized by showing
that for a ‘large enough’ discount factor any game payoffs above the punishment payoffs
can be supported by SPE strategies.®

The paper is structured as follows: Section 2 describes the model and defines all neces-
sary concepts. Section 3 states the results of the paper while also presenting some exa.xhples.
A discussion of the model’s contribution to some of the issues raised in the literature on
bargaining as well as some concluding remarks can be found in section 4. All proofs are in

an appendix.

2 The Model

Define a Negotiation Problem as a situation where two rational parties have a surplus avail-
able to them if and only if they can agree on an allocation of it, while simultaneously being
involved in an ongoing repeated relationship. The questions asked about the negotiation
problem are i) what agreements are possible in equilibrium, i) how long it will take to
reach agreement, and #if) what the equilibrium value of such a relationship will be to the
parties, taking into account that not only the agreement but also the way it is achieved
yields payofis.

Consider, for example, the following situation: There are two of possibly many Cournot
firms in a market. Both face a relatively large fixed cost. Assuming that no side-payments
are possible but the merger into a single firm is allowed, they could both gain by forming
a monopoly with only one plant. Negotiations are held over the allocation of the resulting

6Considerable intellectual debt is owed to the repeated game literature, in terms of terminology as
well as approach. In fact, the model can be applied to the question of repeated 2-player games with an

endogenous time horizon. See also the discussion and footnote 12.
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Figure 1: Schematic of a Negotiation Game

surplus. While these negotiations go on the two continue to produce and serve the market,
behaving as Cournot firms. The question is what allocations are possible in equilibrium
and what strategies are followed during the negotiations.

This situation is modelled as follows: There are two players, indexed by 3+ = 1,2. Time
is discrete and indexed by ¢t = 1,2,3,.... The time horizon is infinite. Both players
discount the future, with their (common) discount factor being denoted by § € (0,1). In
every period ¢ in which no agreement has yet been reached, the players play the following
constituent game: At the beginning of the period, one player makes a take-it-or-leave-it
offer to the other player. The offer is in terms of the players’ shares of the surplus resulting
from agreement. The other player can then either agree or disagree with this offer. Should
he agree, both players receive their share of the surplus from this period onward and their
prior strategic relationship, and the game, end. Should he not agree, both players play a
simultaneous move game in normal form, called the stage game and denoted G, the outcome
of which determines théir payoffs for this period. Time then advances and the constituent
game is repeated. A schematic of the game is given in Figure 1.

First, consider the exit share bargain within each period. The offer and agreement are

formulated as in Rubinstein (1982). A proposal by a player is a vector in the unit simplex



of R2, say (b,1 — b), where b is player 1’s share and (1 — b) is player 2’s share of the
surplus. A proposal is denoted just by its first coordinate, b € [0,1]. A player’s response
to a proposal is either rejection or acceptance, indicated by N and Y, respectively. The
players are said to reach agreement if one player accepts the other one’s proposal. The
negotiation game ends when players reach agreement, and the players obtain the same
proportion of the surplus, which is given by the proposal which was accepted, in each of
the subsequent periods. The paper only deals with the case when the two players make
alternating proposals, with player 1 proposing in odd periods and player 2 proposing in
even periods.

Next, consider the stage game which is played after the proposal b has been rejected.
The stage game is a two-player one-shot game in normal form. It consists of a set of
two players, their strategy (action) sets, and their payoff functions, and is given by G =
{A;, Az, us(),u2(-)}. Here, A; is player i’s strategy (action) set, assumed compact, and
u;(:) : A — R is his payoff function, assumed continuous, where A = A; % A,

The set A can also be interpreted as the set of outcomes of the stage game G. A generic
element of the set A is denoted a = (a;,a;). Let u(-) = (w1(:), ua(+)) : A — R?. The
set of feasible payoffs of the stage game G is given by the convex hull of u(A), Colu(A)].
Let mf, i = 1,2, denote the strategy pair leading to player i#’s minimax payoff. The
set of feasible and individually rational payoffs is then the intersection of Col[u(A)] and
{v € R?|v; > uy(m?), va > ua(m?)}. It is denoted by F.

To simplify the analysis, the following assumptions are made:

A1: The players’ strategies in G are correlated mixed strategies, and deviations

by either player are publicly observable.

A2: The surplus from agreement is normalized to 1 and the stage game G is
normalized such that u;(m') =0 fori =1,2.



Al implies that the set- A; is convex for i = 1,2; that for any feasible payoff vector v,
J a € A such that v = u(a); and that the stage game G has at least one Nash equilibrium.
A2 is a convenient normalization of the payoff space.

A final assumption on the payoffs is that the surplus from agreement dominates the
payoffs from G, giving rise to gains from trade. This is given formally by

A3:Va€ A, u(a)+us(a) <1

Define the negotiation game NG(§) to be the game in which 2 players with discount
factor § play a sequence of constituent games until agreement, where a constituent game
is an offer game followed, after rejection, by the stage game G, and agreement is the
acceptance of a proposal. Let NG;(8) be the game in which player ¢ makes the proposal
in the first period (note that by convention the first period in NG5(6) is an even period).
For the sake of brevity, all results will be proven only for NG,(§), the proof for NG,(6)
following in an analogous manner.

Define a type 1 t-period history in the game NG;(6) as a finite sequence denoted by
hi(t) = (b, 4%,...,¥%, a’), in which b° is the proposal made in period s and a* € A is the
outcome of G in period s after proposal b* had been rejected, for s = 1,...,¢. Let k,(0) = 0.
A type 1 t-period history can be decomposed as ky(t) = b(t) © a(t) where

bt) = (¥',...,0") € [0,1]%; a(t) = (a%,...,a") € A*

A type 2 t-period history in the game NG;(8) is denoted by ka(t) = hy(t) ® b1, indi-
cating that following the type 1 -period history hi(t), b*+! has been proposed in period
(t+1).

A type 3 t-period history in the game NG;(6) is denoted by hs(t) = ha(t) ® {N},
indicating that the proposal b**! has been rejected in period (¢ + 1).

[0}
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The sets of all possible histories of all three types, H;, H, and Hs, can be written in
the usual way by taking the appropriate countably infinite unions over time of the sets of
all possible t-period histories. For example for Hy: Hy = URoHy(t) = UZo([0, 1] x A%)).

A strategy combination f = (fi, f2) for the game NG, (8) consists of two functions which
map from the sets of all appropriate histories to the sets of all appropriate actions, such
that

(fi,f2) : Hi(t) x Hy(t) = [0,1] x {Y, N} if tis even
(fi, fa) @ Ha(t) x Hy(t) = {Y, N} x[0,1] if¢isodd
(fi,fa) + Ha— A

The strategy combination f gives the players’ instructions on how to play the game in
every period, conditional on history. For example, in the odd period (¢ + 1) after the type
1 t-period history hy(t), fi(hi(t)) gives player 1’s proposal b1, fo(ha(t)) gives player 2’s
response to player 1's proposal, and ( fi(ks(t)), fo(hs(t)) ) is the one-shot play of the stage
game @ in period (¢ + 1) after 1’s proposal has been rejected by 2. The players’ actions in
an even period are specified analogously.

An outcome path of NGy(6), n(T) = (b,a',b%4a2,...,b7,{Y}), can be interpreted to
indicate that the proposal b* has been rejected and the stage outcome a* has been played
in period ¢ for 1 < ¢t < T, and that the proposal T has been accepted in period T By
convention, T is set to infinity in an outcome path in which the two players never reach
agreement. An outcome path of NG;(6) can be decomposed as #(T) = b(T)@a(T-1)®{Y'}.

The payoff to the players from outcome path m(T') is determined by the stage game
outcomes in all periods before agreement is reached and by the agreement itself. The

average payoffs the players receive from the outcome path m(T') are given by

T-1

Uy(=(T)) = (1-9) ,Z_; 8 1uy(at) + 67157 (1)
-1

U(x(T)) = (1-6) g 8 Luy(at) + 67711 - 87) (2)

8



Since a strategy combination f induces a unique outcome path in the game NG;(8), the
average payoffs from f can be calculated directly from equations (1) and (2) and the induced

outcome path.

3 Subgame Perfect Equilibria

In what follows the subgame perfect equilibria (SPE) of the negotiation game NG, (§) are
characterized. In order to generate some intuition on how the game behaves, two examples

are provided.

3.1 Existence and Two Examples

Example 1: Consider the negotiation game which consists of a surplus of size 1 and a

stage game G with the following payoff matrix:

2| ¢ D
C | (4,4 |(-2.6)
D ('6’ ""'2) (0) 0)* |

Note that the payoff vector (0,0) is both the minimax and one-shot Nash equilibrium
outcome in the stage game G. This payoff is also the same as the status quo payoff in the

standard Rubipstein game. The following claim should therefore come as no surprise.

Claim 1: The negotiation game of Example 1 has a Subgame Perfect Equilibrium in which
player 1’s proposal of 1/(1 + §) is accepted by player 2 in the first period.

The strategies implementing this equilibrium are identical to those implementing the
equilibrium in the Rubinstein game, save for the addition of‘ a strategy for G. Player 1
proposes 1/(1 + §) irrespective of the history of the game and rejects any proposal less
than §/(1 + 6). Player 2 rejects any proposal more than 1/ (14 &) and proposes §/(1 + §)

(4]
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irrespective of the history of the game. Should the stage game G be reached, both players
play their Nash equilibrium strategies D, irrespective of history. The reader may check
that these strategies do indeed form a SPE.

In this equilibrium the Nash equilibrium of the stage game is played in every period in
which no agreement has been reached. The SPE of the negotiation game is constructed
using the one-shot Nash payoffs in G as the status quo point in every period. Since the
strategies in G' are Nash and the proposal/reject strategies are history independent, both
players have no incentive to deviate in G. But then the game reduces (for those strategies)
to a bargaining game with a fixed status quo point, and the result obtains. This argument
is made formally in the proof to the next theorem, which asserts existence of SPE in

negotiation games.

Theorem 1 Suppose that a* € A is a Nash equilibrium in the stage game G. V § € (0,1),
NG1(8) has a subgame perfect equilibrium in which player i’s proposal b} is accepted by
player j # i, where

1+ buy(a*) — ua(a*)

b o= 146
b 6+ ul(a*) - 5’!&3(4*)
2 1+6

The equilibrium of Claim 1 is not the only one in the negotiation game of Example 1,

however.

Claim 2: In the negotiation game NGy(6) of Example 1 the average payoffs (1—.4)/(1+
8),(6+.4)/(1+8)) can be supported as a subgame perfect equilibrium.

The equilibrium presented in Claim 1 yielded the same average payoffs for the players
as a standard Rubinstein bargaining game; namely 1/(1 + §),6/(1 + §)). Player 1 does
considerably worse in the equilibrium of Claim 2. In fact, the equilibrium given here yields

the worst possible equilibrium payoff for him. Interestingly, the average payoffs in Claim 2

10



are the same as those in a Rubinstein bargaining game with a status quo point of (0, .4).
As before, the claim will not be proven since it is implied by the theorems to be presented
shortly. The reader may, however, check that the strategies which are outlined in the
following are subgame perfect.

In general, player 1 proposes .6/(1 + §), and player 2 accepts this proposal. Any higher
proposal is rejected by 2 and the players play the strategy pair (C, D), yielding a one period
payoff of (—.2,.6). In the following even period, if player 1 has not deviated from C, player
2 proposes (.2 + .46%)/6(1 + 6) and 1 accepts any proposal at least that big. Player 2
proposes .66/(1 4+ §) instead if 1 deviated from C, and 1 accepts any proposal at least that
big. Should 1 not accept these offers by player 2, they play the strategy pair (D, D) in G,
yielding a one period payoff of (0,0), and it is 1’s turn again to offer .6/(1 + §). Finally,
should 2 not make the required offers, or should 2 not accept 1’s equilibrium offer, the
players will follow the equilibrium strategies of Claim 1 from the next subgame on.

These strategies point to the difference in negotiation games from bargaining games:
The existence of payoffs during disagreement periods can be exploited to reduce player 1’s
share of the surplus. Notice that the way they enter the calculations is via player 2’s payoff
rather than player 1’s. In particular, while 1 is required to play the strategy C, which is
not one shot optimal, his average payoff from doing so is actually the same as if he were
just minimaxed, since the following exit offer compensates him. However, player 2 gains
from this choice of strategies. Instead of receiving the payoff from minimaxing 1, zero in
this case, he has a positive payoff even after compensating player 1. Thus, while player 1
is effectively minimaxed, player 2 obtains a higher payoff than he would from minimaxing
player 1. »

The possibility for these types of strategies does not exist in all negotiation games,

however. Consider the following, very similar, negotiation game.

Example 2: The surplus is of size 1, and the stage game G has the following payoff matrix:

11

o



w

12| ¢ D
¢ | (4,4) | (~8,8)
D |(8,-8)| (0,0

Claim 3: The negotiation game of Example 2 has a unique subgame perfect equilibrium.
It is given by history independent offers of 1/(1 + &) by player 1 and §/(1 + 6) by player 2,
and the play of (D, D) in G in all periods in which an offer has been rejected.

The stage game in this second example has the same structure as that in the first
example, both games being variants of the Prisoners’ Dilemma game. In particular, both
have a unique Nash equilibrium which is also the mutual minimax, and players have only 2
strategies, of which one is strictly dominated in both games. Nevertheless, the equilibrium
sets of the associated negotiation games differ dramatically. Clearly, the usual methods of
classifying normal form games are not sufficient to predict the equilibrium set of negotiation
games.” The reader may find it instructional to check that strategies analogous to those
used in Claim 2 do not allow for a lower payoff for player 1. Notice in particular that
the payoffs do not allow 2 to receive a higher one period disagreement payoff than from

minimaxing 1.

3.2 Optimal Punishments

The examples above pose the question under what circumstances equilibria other than
those based on the play of Nash equilibria in G can be supported. The optimal punishment
for player i in NG,(8) is defined as that SPE in which player i’s equilibrium payoff is less
than or equal to all SPE payoffs of the game. The optimal punishment for player 1 will be

derived first. Player 2’s optimal punishment can then be derived by analogous arguments.

7This result may not be that surprising, since all utilities are transferable in negotiation games, whereas
the standard theory of normal form games assumes non-transferable utility and only requires a ranking of

outcomes by each player.
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The derivation of the optimal punishment will proceed in two steps. First, the lower
bound of player 1’s equilibrium payoffs is computed for the game NG,(6). Then, a SPE
is constructed such that player 1’s average equilibrium payoff achieves this lower bound.
It then follows that the equilibrium which has been constructed is in fact the optimal
punishment for player 1.

Before the punishments are derived, consider for a moment the type of strategies used
as punishments in repeated games. The general flavour of the punishment strategies is
that the punishment of player 1 is enforced by restarting the same punishment should
1 deviate from it, and by starting a punishment for player 2 should he fail to punish 1.
Here, very similar strategies are employed, only complicated by the fact that the game
is not symmetric between even and odd periods and has 3 subgames per period. There
is an additional difference, however. This is the fact that player 2 cannot be punished
for wrongly accepting ‘a deviating exit offer. Contrary to repeated games, in which a
punishment always has a future,® a deviating accept decision in negotiations ends the
game, precluding punishment of the deviation. Combined with the fact that exit offers a
surplus over continued play, this limits the severity of the 'p"unishment which 1 can be made
to suffer in NGy(5). The reason is that 2 will accept any offer which yields at least as much

as punishing 1, and that 1 will therefore want to make such an offer, since it leaves him

better off than delaying or offering 2 any more of this surplas. This points to the necessity A

of giving player 2 as high a payoff as possible, in order for him to reject the lowest possible
offers by 1.

In order to clarify the role that disagreement period payoffs play in players’ offer strate-
gies, the following Lemma, which is also used to prove Theorem 1, is useful. The Lemma
concerns Rubinstein type bargaining games with exogenous but time variant status quo

points. It upholds ‘RuBinstein’s uniqueness result for this class of bargaining games, un-

8Notice how in finitely repeated games a long enough time span is required, and how the punishments

collapse near the time horizon.
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der the condition of common discount factors. The interesting point the Lemma makes
about equilibrium offers is the fact that only the disagreement payoffs received in periods
in which the player does not make an offer enter into the computation of the equilibrium
offers. A player’s disagreement payoffs in periods in which he himself makes an offer are
totally irrelevant to his equilibrium payoffs. Thus, only payer 1’s even period payoffs and
player 2’s odd period payoffs affect the equilibrium offers.

Lemma: In a Rubinstein type bargaining game with alternating offers over the split of a
surplus of size 1 in which players have a common discount factor § and receive the payoff
(u1(t),ua(2)) in period t if no agreement has yet been reached, and where u, (t) +u,(t) < 1,
the unique subgame perfect equilibrium is that the proposal b* is accepted in period t,

where bt is given as follows:

Ift is odd
B = —— 4 (1= 8) 3 6% [Sus(t + 2k + 1) — ua(t + 2K)]
1 + 6 k=0
and if t is even
B =0 (1-6)3 *ua(t + 2k) — Sug(t + 2k + 1)
1 + 6 k=0

The Lemma is proven in the Appendix, following the method of Shaked and Sutton
(1984), whereby the equilibrium proposal for each player and all times is computed under
the condition that the players are faced with a known but fixed sequence of disagreement
payoffs.

In the light of this, consider again the strategies outlined for implementing the equilib-
rium of Claim 2. The unusual feature of these strategies is that they call for 1 to play C
in G in odd periods, a strategy which is not 1-shot optimal in G. In order to make this
strategy subgame perfect, player 1 is compensated in the following exit proposal, and his
payoff from playing along with the strategy and being compensated is indeed the same as

14



his payoff from deviating to the 1-shot optimal strategy D and not being compensated. In
even periods player 1 is minimaxed and receives zero. In Example 1, this strategy choice
leads to a net gain for player 2 in odd periods, since he obtains 0.6 and compensates 1
by 0.2. Player 2’s ‘effective disagreement payoff’ in an odd period is thus 0.4 while player
1 has an ‘effective disagreement payoff’ of 0 in even periods. This explains the fact that
the equilibrium shares of the surplus are the same as those of a Rubinstein game with the
disagreement payoff (0, 0.4).

As the Lemma has shown, a higher disagreement payof for 2in odd periods will decrease
the exit offer made by 1, while a lower disagreement payoff to 1 in even periods will also
decrease the exit offer. Minimaxing 1 in even periods will yield the worst possible payoft
to him in even periods. The remaining question is what the highest possible ‘effective
disagreement payoff’ for player 2 is, given a game G.

Let y} denote player 2’s highest effective disagreement payoff. Then yj is given by

¥i = max{uy(a) — (max us(a3, aa) — wa(a))}- (3)

For future reference in strategy profiles, also define the strategy combination in G which

achieves y} as®

a' = Argmax{uy(a) — ( max uy(ay, a3) — wi(a))}. (4)

The number y; gives the maximum difference between player 2’s payoff and player 1’s
best deviation gain over all strategies in G, which is, in fact, the maximum payoff 2 can
eﬂ'ectively obtain from disagreement in odd periods under the punishment strategies for 1.
The value of y; depends only on the structure of G, and A2 and A3 imply 0 < y;y < 1.
The following theorem gives the lower bounds of player 1's payoffs in negotiation games as

a function of player 2’s effective disagreement payoff y;.

9This may, of course, not be unique. While player 1's payoff does not. affect the exit offer and exit will

occur immediately in equilibrium, assume that the strategy which yields the lowest payoff to 1 is chosen.

15
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Theorem 2 Player 1’s average equilibrium payoffs in the game NG1(8) [NG,(8)] are
bounded below by 1_:?(1 - ) [1L+6(1 - y;)]

Notice that this lower bound coincides with the Rubinstein solution to a bargaining
game with disagreement payoffs of (0, ¥;). The proof of the theorem proceeds by deriving
the infimum of player 1’s equilibrium payoffs, which is a meaningful concept due to Theorem
1. In doing so, the restrictions imposed by subgame perfection and the fact that u,(a) +
uz(a) < 1 are exploited. Details are in the Appendix.

In the next theorem a subgame perfect equilibrium of NG,(8) [NG3(6)] is constructed in
which player 1’s average equilibrium payoff is ﬁ(l —-97) [Tf_&-(l - y{)] if § is large enough.
Theorem 2 then directly implies that this SPE is the optimal punishment equilibrium for
player 1 in NG,(8) [NGa(6)].

Theorem 3 There exists a § € (0,1) such that, V§ € (§,1), the average payoff vector

1-y 6491 §(1—w7) 1+6y;
1+6°1+6 1+6 " 1+6

can be supported by a subgame perfect equilibrium in the game NG,(8) [NG1(9)).

The strategies implementing these payoffs are defined recursively and given below for
NGy(8). Strategies for NG,(6) are analogous. In the strategies, a* refers to a Nash
equilibrium strategy in G, and a* and m* are as defined previously.!®

In the first period, players’ strategies are

_1-u
f[(r(0)) = 1+£
hey = 1Y Y Sogl-u)
N otherwise
. B < (1 —
(fi, R)(B*®{N}) = {a1 ! —'.1+6( ¥1)
a' otherwise

10Note that the choice of a* affects the value of § needed.
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Thereafter, V ky(t) = a(t) ® b(t) € Hy, ha(t) = a(t) ® b(t+1) € H, and
ha(t) = a(t) ® b(t+1) @ {N} € Hj:
For an odd period (¢ + 1)
Ih(l + 6uy(a*) — ua(a*)) if either (fi, fa)(hs(t — 1)) = a*
filha()) = or a] = fi(ha(t—1)), a3 # fa(hs(t—1))
sl —91) otherwise
)Y 6 < fu(ha(t))
Alhatt)) = { N otherwise
a* if either (fy, fa)(ha(t — 1)) = a* or b**! < fi(R4(2))
(f1, f2)(Rs(t)) = or ai = fi(ha(t — 1)), a3 # fa(hs(t — 1))
otherwise
and for an even period (¢ + 1)
[ 225(5+ua(a”) — ua(a*)) if either (i, fo)(Ralt — 1)) = a*

fz(hq(t)) = < or a':» = f1(hs(t—1)), a'; # fz(hs(t—l))

w (1~ i) if af # fi(hs(t—1)), 0} = fo(ha(t-1))
| F2ua(a?) + %’:’% otherwise

Y if b > fo(Re(2))

N otherwise

a* if either af = fi(ha(t — 1)); af # fo(ha(t — 1))
or b+ < fo(hy(t)) or (f1, fo)(hs(t — 1)) = a*

otherwise

fi(ha(t)) = {

(f1, F2)(Rs(2))

ml
The proof of this Theorem first derives the necessary §, and then checks the strategy
for subgame perfection in each subgame.
Given the result of Theorem 2, Theorem 3 in fact provides the optimal punishments for

player 1 in the negotiation games starting with his offer and with 2’s offer. By analogous
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arguments, and without proof, the optimal punishment for player 2 can be found. Let

23 = max{uy(e) — (max uz(a, a3) — ua(a))} (5)
a; €Az
and
a® = Argmax{u(a) — ( max u3(a1,4,) — ua(a))} (6)

be player 1’s highest effective disagreement payoff in even periods in player 2’s punishment,
and the strategy combination in G implementing it. As before, 0 < z3 < 1. The following

theorem gives the optimal punishment payoffs for player 2 as a function of z3.

Theorem 4 There exists a § € (0,1) such that, V§ € (§,1), the average payoff vector

1+ 6z &(1—=23) §+z; 1—2}
1467 146 1+6° 146

can be supported by a subgame perfect equilibrium in the game NG1(5) [NG2(6)).

In the spirit of the Folk Theorem literature, the characterization of the supportable
equilibrium payoffs is for “large enough” discount factors. Therefore the following limiting

values are defined as § tends to 1:
1 . 1 "
v = 5(1—3/1) and vz = '2'(1—%)- (7)

The results so far indicate that player i’s equilibrium payoffs in the negotiation game N G;(9)
are bounded below by v;. The outstanding question at this point is if indeed all feasible
payoffs above the lower bound v; can be supported as SPE for “large enough” discount

factors. This question is addressed next.

3.3 Perfect Equilibria in Negotiation Games

In answer to the question posed above, the following can be shown.

18



Theorem 5 For a given feasible payoff vector (v1,v2) in the negotiation game NGy(6)
[NG2(8)] such that (vy,v3) > (vy,v2), there exists § € (0,1) such that V § € (§,1), NG,(6)
[N G2(5)] has a subgame perfect equilibrium with average payoff (v1,v,).

The equilibrium strategy profiles implementing any such equilibrium are very simple.
First, an outcome path which leads to the average payoff (vy,v;) is found. It consists of the
agreement players reach in some pe'rib‘d T, and the outcomes of the stage game G in every
period before agreement is reached. The outcome path is, in general, not unique. In order
for it to be applicable, both players mist have a future average payoff above their respective
minimum payoffs at every point in the path. For any average payoff above the lower bound
there exists at least one outcome path with that feature. The following strategies then
implement this outcome path.

In every period before the last, the player who makes the proposal demands the whole
value of the surplus for himself. Any other offer will be considered a deviation by that
player, and he will be punished by implementation of his punishment equilibrium, subject
to the fact that the other player accepts a proposal made before the last period if the
proposal pays him more than he could obtain if the other player is punished. In the stage
game, players play strategies leading to the appropriate outcome for the period as specified
in the outcome path. Ifa player deviates from his strategy in the stage game, he is punished
by implementation of his punishment equilibrium. Simultanéous deviations by the players
are ignored. This strategy is given formally below.

Let 7(T) = b(T) ® &(T — 1) ® {Y'} be the outcome path of the negotiation game, where
HT) = {8}L, and &(T — 1) = {a*}T5!. Define the indicator function

ID(:): HHUH, U H; - {0} U{(;t)i=1,2; 1<t < T}
recursively as follows: at the beginning of period 1, the history is the empty set and the

indicator function takes the value 0, i.e. ID() = 0. Thereafter, V hy(t) = hs(t — 1) @
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(ai, a§) € H1, hg(t) = hl(t) & b‘+1 € Hz, and ha(t) = hz(t) (4] {N} c Hs,

[ (,8)  ifel #4%; ab = & and ID(hs(t — 1)) = 0
ID(k(t)) = (2,t) if @t = a%; o # &} and ID(hs(t — 1)) =0

L ID(hg(t — 1)) otherwise

((L,+1) b+ £ B4 and (¢ + 1) is odd and ID(ha(t)) = 0
ID(ho(t)) = { (2,6+1) if b+ # B+ and (¢ + 1) is even and ID(h,(t)) = 0

| 1 D(hy(t)) otherwise

[ (1,6+1) ift+1="T and T is odd and ID(hs(£)) = 0
ID(hs(t)) = { (2,t+1) ift+1=T and T is even and ID(hs(t)) =0

|1 D(hy(t)) otherwise

The indicator function takes two types of possible values, 0 and (3,t). The value 0 implies
that no player has deviated from the proposed path #(T). The value (3, t) implies that
player i first deviated from the proposed path in period ¢, where 1 <¢ < T.

Let fi denote the strategy combination in the optimal punishment equilibrium for
player i in the game NG;(§). The strategies implementing the outcome path =(T) =
§T) @ &(T — 1) ® {Y}, where

(T —1) = {a4}751 € AT and §(T) =(1,0,1,0,...,b),

in NGy(8) for large enough § then are:
V hi(t) € Hy, ha(t) = ha(t) ® b+ € H,, and hy(t) = ha(t) @ {N} € Hs,
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for an odd period (¢ +‘1‘)

{ b if ID(hy(t)) =0 and t+1="T"
1 if ID(hy(t)) =0and t +1 < T*
f(b(t - 9)) if ID(ha(t)) = (1,8) for even 5
13(hy(t — 5)) if TD(hy(t)) = (1,5) for odd s
2(hy(t —8)) if ID(hy(2)) = (2 s) for even s
\ ffz(hl(t - a).) if ID(hy(t)) = (2,3) for odd s

filha(2)) = 3

Y if£+1=T and ID(ky(t)) = 0 or if ID(hy(t)) =
(1,6 +1) and 1 — b+ > (1 ~ 8Yuz(a”) + t25(5 + 37)
N otherwise

fi(ha(t)) = 5 'f}l(hz(‘t —8)) if ID(hy(t)) = (1,8) foreven s < ¢
13k, (t — 8)) if ID(ha(8)) = (1, ) for odd 5 <t
: f;l"‘('hz‘(‘t - s)) if ID(hz(t)) = (2, 5) for even s <t
| F2(ha(t — 5)) if ID(ha(t)) = (2,5) for odd s < ¢

for an even period (t + 1),

f Y if t +1 =T and ID(ha(£)) = 0 or if ID(ha(t)) =
(2,8 + 1) and B+ > (1 — §)uz (a*) + 1+‘,(5+ z3)
N otherwise

Alha(®) = { FU(hat —5)) if ID(ha(t)) = (1, 8) for even s < ¢
13(ha(t — 8)) i ID(ha(t) = (1,) for odd s < ¢
F2(ha(t — 8)) if ID(ha(t)) = (2, 5) for even s < ¢
23(ho(t — 8)) if ID(hy(t)) = (2,5) for odd 5 < ¢t

21



("

4 a

b if ID(hy(t)) = 0 and t+1 = T*
0 if ID(hy(t)) = 0 and £ +1 < T*
1 (hy(t — 8)) if ID(h4(¢)) = (1, 8) for even s
12(hy(t — 8)) if ID(h1(t)) = (1,8) for odd s
21(hy(t — 8)) if ID(hy(t)) = (2, 8) for even s
| f2(ha(t — 8)) if ID(Ry(t)) = (2,8) for odd s

fo(ha(2)) = 5

for both odd and even periods (¢ + 1),

f P if ID(hs(t)) =0
a* if ID(hs(t)) = (*,t +1)
F(ha(t — 8)) if ID(hs(t)) = (1,8) foreven s < ¢
F¥2(ha(t — 8)) if ID(hs(t)) = (1,8) for odd s <t
P2 (ha(t — 8)) if ID(ha(t)) = (2,8) foreven s < t
| 73(hs(t — 5)) if ID(hs(t)) = (2,5) for odd s <t

f(ha(t)) = 4

Theorem 5 characterizes all subgame perfect equilibria of negotiation games. It shows
that all payoffs above the optimal punishment payoffs can be supported. This fact has
various implications. For one, there is quite generally a multiplicity of equilibria, and
many feasible outcomes can be supported in equilibrium. While there will be a range
of efficient equilibria along the bargaining frontier, this multiplicity implies that Pareto
inefficient outcomes can also be an equilibrium. In the context of this model this implies
delay, the fact that parties may not agree to a split of the surplus right away. This delay
does not depend on the discount factor, unlike in some other models of delay in bargaining.
Indeed, as the discount factor approaches unity delay does not get shorter. In Example i,
for instance, infinite delay can be supported for any discount factor larger than one half.

Delay is governed instead by the structure of the stage game and the size of the sur-

plus which agreement yields over continued play of the stage game, the size of the gains
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from trade. Delay is not related to informational asymmetries. The model has a perfect
information environment, and thus delay is not due to signaling or uncertainty, as in some
other models.

Finally, Theorem 5 shows that the pure existence of strategic payoffs in disagreement
periods is not sufficient to invalidate Rubinstein’s result of immediate settlement. While
one can generally expect them to lead to a multiplicity of equilibria, Example 2 shows
that that is not a foregone conclusion. It is sufficient to compute z; and 37 to determine
if multiplicity — and delay — can occur. Only if both are equal to zero will there be a
unique equilibrium and no delay.

4 Discussion

The previous sections have presented a model of negotiations and characterized its equi-
libria. The model built upon two extant models of dynamic allocation, the bargaining
model of Rubinstein, and the repeated game model. This made it possible to account more
realistically for a characteristic of negotiations, namely the fact that parties have strategic
payoffs during the negotiations if time is not trivial. Most extant bargaining models do not
consider this circumstance. The set of subgame perfect equilibrium payoffs of the negoti-
ation model was characterized as any payoffs above the optimal punishment equilibrium
payoffs for the players, which in turn were shown to depend in a simple way on the payoff
structure of the stage game played in disagreement periods. The relevant magnitude is
the highest effective disagreement payoff the punisher can obtain in periods in which it is
his turn to accept or reject offers. This was shown to be easily computed as the maximal
difference between the punisher’s payoff and the punishee’s best deviation gain in the stage
game.

The negotiation model was introduced as an alternative to the bargaining and repeated

game models. The fact that parties have strategic payoffs during their attempts to agree
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on an allocation — a characteristic not accounted for by the bargaining model — and that
any extant relationship which generates these payoffs is of endogenous length — a fact not
accounted for by repeated game models — made this new model necessary. The results
which have been presented confirm this analysis.

The Lemma presented in Section 3.2 shows that Rubinstein’s bargaining model can
easily be adapted to deal with exogenous non-stationary status quo points, but Claim 2
and Theorems 3 to 5 show that endogeneity of the status quo point can indeed affect the
equilibrium outcome significantly. Theorems 3 and 4 imply a simple test if it does: If y7
and z3 as given by equations (3) and (5) are both equal to zero, the Rubinstein bargaining
game is sufficient to analyse the situation.

It was shown that the model extends the analysis of delay in bargaining. It is well known
that the original bargaining model can not generate delay. However, delay is commonly
observed in situations which are taken to involve bargaining. Therefore, several extensions
have been proposed in the past to deal with this aspect. One approach has been to relax
the assumption of complete information. Models with both one- and two-sided incomplete
information have been brought forward and have been shown to be able to generate delay.’
Delay in these types of model generally has a signalling function, since valuation is private
information and the cost of delay depends on it.

A more recent approach, which is closely related to the one taken here, is that of Haller
and Holden (1990) and Fernandez and Glazer (1991). The model in their papers derives
from the realization that delay and strike are not the same. Instead, the decision to strike
is modeled explicitly. Both sets of authors show that multiple equilibria exist in such a
framework, and that delay can be supported in equilibrium without requiring incomplete

information.

114 very partial list of such papers includes Admati and Perry (1987), Gul and Sonnenschein (1988),
Chaterjee and Samuelson (1987), Ausubel and Deneckere (1989). A survey of related literature can be
found in Wilson (1987).
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The negotiation model represents a considerable strengthening of this latter result. In
both Haller and Holden, and Fernandez and Glazer, there is no surplus to be gained from
agreement, since new wage offers and the old wage bargain lie on the same frontier. In the
negotiation model, in contrast, there can exist a substantial surplus while delay is still an
equilibrium. The negotiation model thus addresses cases where there are gains from trade,
while upholding the result that delay can occur under perfect information. The model also
allows for much richer strategies during disagreement. In the context of wage negotiations,
for example, it is easy to incorporate such labour action as work to rule or the employment
of strike breakers into the analysis.

The current investigation largely derived from an attempt to endogenize the time hori-
zon in repeated games by allowing parties to exit.}? One implication of the Folk Theorem
literature in repeated games is that any feasible and individually rational payoff can be
supported as equilibrium in infinitely repeated games, and in finite games of sufficient
length under a dimensionality condition.’® An important implication of these results is
that inefficient outcomes can be equilibria. While the current model generally restricts the
equilibrium set as compared to the Folk Theorems, it strengthens this latter implication.
Even if it is possible to end the game with an efficient payoff, as it is here, inefficient out-
comes still can be an equilibrium. The model also implies that some care must be taken
in choosing models, since a negotiation model may be observationally similar to a finitely
repeated game if the exit agreement, for example; is hard to observe. Note here, that the
stage game in Example 1 would have a unique equilibrium in a finitely repeated game of

any length, but that any length of apparently repeated play can be supported as outcome

12 As a matter of fact, all Theorems hold in a corresponding fashion if the order of subgames in a period
is reversed, such that the stage game is played first and then an exit offer is made which, if accepted, will

determine payoffs from the next period on.
13See, for example, Abreu (1988), Abreu, Pearce, Stacchetti (1990), Benoit and Krishna (1985), Fuden-

berg (1990) and Fudenberg and Maskin (1985).
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of a negotiation model — with payofts which are consistent only with infinitely repeated
play in a repeated game model.

In the presentation of the model certain assumptions were made for analytical conve-
nience. While some are minor, the relaxation of others could be the subject of future work
in this area. The assumption of a common discount factor is clearly minor, since all results
require a sufficiently high discount factor beforehand.'® Most of the cause of bargaining
power in this model is furthermore to be suspected in the stage game, not different time
preferences, thus diminishing the case for separate discount factors.

There were two assumptions made on the payoff spaces. One is the restriction that every
payoff in G is dominated by some exit payoff. This assumption is economically motivated
— there are gains from trade in negotiations, not just a redistribution. The result of delay
in equilibrium is also stronger under this assumption, due to the implied inefficiency. An
obvious avenue for future work, however, is an extension to the case where the bargaining
frontier intersects the payoff space of G.1°

This raises the second assumption, the shape of the bargaining frontier, which is here
assumed to be a straight line. This assumption could be relaxed to allow for an arbitrary
bargaining frontier — and in particular for a frontier that coincides with that of the stage
game. This latter possibility is reminiscent of the work by Okada (1986), although he
uses a very different focus and completely different framework of analysis. It may, however,
provide an alternative approach to the question of long-term contracting which he addresses.

In closing, let it be said that the negotiation model presented here provides an alter-

native approach to modelling dynamic allocation. The model may provide a framework to

1414 ghould be noted, however, that the Lemma will not hold for sufficiently disparate discount factors.
This is due to the fact that agents may evaluate future payoff paths too differently, and thus an acceptable

offer may not be made.
15The case where the bargaining frontier is entirely inside the payoff space of G is uninteresting: the

usual Folk Theorem for infinitely repeated games will continue to hold.
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introduce non-static payoffs. In the context of dynamic allocation, it is conceivable that
flaye;s’ actions during negotiations not only affect their current payoffs but also the struc-
ture and size .of, futnrg. pgyoﬁs, for example the size of the sl;rplus, A p:_ot_ra.cted strike,
for example, may cost market share. A model incorporating such dynamic payoffs will be

another step closer to being a complete model of dynamic alil‘pga:t_ipg'.

27

[0}



Appendix

Proof to Lemma, Section 3.2

Following Shaked and Sutton (1984), the equilibrium proposals in every period are
derived for the bargaining game with a fixed sequence of disagreement payoffs {u(t)}2,.

Assume that the set of equilibrium payoffs in such a game is not empty. Let M} and
m! be the supremum and infimum of player i’s average equilibrium payoffs in the subgame
that starts in period ¢, fori =1,2and ¢ > 1.

First, consider players’ strategies in an odd period ¢ in which player 1 makes the proposal
and player 2 makes the response. Player 2’s payoff from rejecting is u5(t) in period ¢ and a

SPE payoff from period (¢ + 1) on which is bounded between m5t! and M;*™*. Therefore,

player 2 will always reject if his payoff in the proposal is less than (1 — §)ua(t) + dm3*,
and always accept if his payoff in the proposal is more than (1 — §)ua(t) + §M;+". Subgame
perfection requires that player 1’s proposal, b, should satisfy
(1 = 8)ua(t) + 6mit! <1 -0 < (1 — 8)uy(t) + 5MZ*H
which implies that m{ and M} satisfy the following inequalities
mi 2 1-(1-8u(t) — M;*" (1)
M < 1 (1-8us(t) — mit (2)
Considering players’ strategies in the following even period (¢ + 1), we have
mitt > 1—(1-—68)uy(t+1)— sM;H? (3)
MY < 1—(1=8)uy(t+1) — émit? (4)

Substituting (4) into (1), (8) into (2), (2) into (3), and (1) into (4), with appropriate
updating, yields

mt > 1—(1-8)us(t) — 8[1 — (1 - 8)us(t +1) — smit? (5)
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M < 1—(1—68)us(t) — 81 = (1 — 8)ua(t + 1) = M) (6)
mitt > 1— (1 - 6)un(t+1) = 6[L — (1 — 8)us(t +2) — 6m3*] (7)
MEF < 1= (1= Sug(t+1) = 8L — (1 — S)ualt +2) — M5+ ®)

Recursive substitution on equations (5), (6), (7) and (8) yields, for odd ¢,

oD

mt > ,;:, [1-(1- 8)uy(t + 2k) — 81 — (1 = 8yus(t + 2k + 1)) (9)
M < i [1— (1= yua(t + 2k) = 81 — (1 — 8Yus(¢ + 2k + 1)]] (10)
mitt > jjj [1= (1= 8)uy(t+2k+1) — 81 — (1 — 8)uy(t + 2k + 2)]] (11)
M < é[l — (1= 8)uy(t + 2k + 1) — §[1 — (1 — 8)ua(t + 2k + 2)]] (12)

Further simplification then yields that

< it < Mf <¥ iftisodd (13)

IA

1-B< m < M} <1-Hiftiseven (14)

where bt is as given in the Lemma. (13) and (14) iniply that the infima and suprema
coincide; and this if an equilibrium exists in the game, it must be unique in terms of
payoffs.

It remaitis to be shiown that an equilibrium exists for the game. Consider the following
strategies: in period ¢, the player who makes the proposal will propose b, and the player
who makes the résponse will accept all proposals that e weakly prefers to b* and reject all
others.

By constiction of b, the player ¢ who makes the response in period ¢ is just indifferent
between accepting b and waitinig to propose b*+! in the next period, collecting w;(¢) in the
meantime. Therefore; rejecting proposals which are not preferred to b and accepting those

which areis player i’s best strategy. This implies that any proposal which is preferred to b*
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by the proposing player will be rejected. It then is easy to show that the assumption that
u1(t) + u2(t) < 1 implies that

v

b* (1 — 8)ua(t) + 66+ if t is odd
(1-0) > (1-8)ug(t)+6(1—0b*+) iftiseven

and thus the proposing player prefers the proposal he is to make according to his equilibrium
strategy over deviating and waiting for one period. The strategy profile is, therefore, a
subgame perfect equilibrium of the bargaining game for the given sequence of disagreement
payofis.

Q.E.D.

Proof to Theorem 1, Section 3.1

The proof will show that the equilibrium claimed in the Theorem is a special case of the
Lemma of Section 3.2. First, note that the disagreement outcome in every period is a Nash
equilibrium of the stage game and that all proposals are history independent. Therefore,
neither player will deviate in the stage game from ¢* individually, since he cannot increase
his payoff in the current period or thereafter by doing so. Thus, a fixed disagreement payoff
is given by u(a") for every period without agreement. The Lemma gives the equilibrium
proposals in the unique SPE of a bargaining game with a fixed sequence of disagreement
payoffs. These proposals are uniquely determined by the disagreement payoffs. Here,
u;(t) = u;(a*) V¢ > 1. The equilibrium outcome is that player 1’s [2s] proposal

b= 1+ duy(a*) — ua(a®) [ . 8+ uy(a*) — buz(a*)
T =

1+6 1+4

is accepted in the first period of the game NG,(8) [NG,(6)].

In equilibrium, player i will always propose b} and only reject proposals which are not
preferred to b} for j # i. After any rejection, players will play the Nash equilibrium a* in
the stage game. The equilibrium strategies for NG,(8) are given as follows. V h,(t) € Hy,
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ha(t) = ha(t) © b+ € Hy and hy(t) € Hy:
for an odd period (¢ + 1),
1 . .
Aa(t)) = 751+ 8u(e”) —us(a%))

Falha®)) = {Y 9 < (1)
| N otherwise

AR

for an even period (¢ + 1),

fz(hl(t)) = i%(s +u1(a.*) _ 5‘“3(0*))

if 81 > fu(hy
Alha(e) = {; 2 100
f(ha(t) = a*c 4

Q.E.D.

Proof to Theorem 2, Section 3.2

The proof proceeds by deriving the infima of the set of average subgame perfect equilib-
rium payoffs, taking assumption A2 and subgame perfection into account. Theorem 1 states
that NG;(6) has, at least, one subgame pe:fect equilibrium V§ € (0,1). Therefore, the set
of average payoffs of the SPEs in the negotiation game NG;(§) is not empty, V§ € (0,1)
and 4 = 1,2. Given § € (0,1), let m,(8) be the infimum of player 1’s average equilibrium
payoffs in NG1(6). In the game NG,(8), since player 1 can guarantee himself a payoff of 0
in the current period, and his average payoff from the next period on cannot be less than
m,(8), player 1’s average equilibrium payoffs are bounded below by §m;(8).

By the definition of the infimum, Ve > 0, NGi(§) has a SPE with average payoff (z1,¥:)
such that

my(8) < 21 S my(b) + € (15)
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If z, + 1 < 1, it must be the case that player 1’s proposal is rejected in the first period of
NG, (8). Construct a new SPE whose strategies are the same as those in the equilibrium
with the payoff (z1,%1), but in which player 2 only accepts the proposal z; in the first
period. If player 2 rejects z1, the strategy is the same as when player 2 rejects player 1’s
equilibrium proposal in the equilibrium with payoff (2;,%:). This new SPE is efficient and

the average payoff vector is (21,1 — ;). Therefore assume without loss of generality that
z; + nh = 1. (16)

In a SPE of NG;(§), if player 2 rejects player 1’s proposal in the first period, players
must play one stage game outcome, say a € A, and one of the SPEs in NG3(6), the payoff
of which is, say, (22(a),y2(a)), where z3(a) + y2(a) < 1. Therefore, if player 2 rejects player
1’s proposal in the first period of NG,(6), player 2’s average payoff is bounded above by
the maximum of all possible continuation payoffs. Subgame perfection implies that 2 will
certainly accept a proposal if his payoff is more than the maximum of his continuation
payoffs, and that player 1 will propose z; in the first period of NG(6) only if

% < max{(1 - 6)uz(a) + bya(a)} (17)
However, if player 2 does reject player 1’s proposal, player 1 should not deviate from a € A
in the stage game. Subgame perfection, then, requires that
(1-46) max uy(a}, a3) + 8°my(8) < (1 — 8)us(a) + 8z2(a)
d. 1
< (1= 8)u(a) + 8(1 - y2(a)),

which implies that

8ys(a) < 8(1 — 6my(8)) — (1 — 8)(max ui(ay, a2) — wa(a)) (18)

%
Substituting (18) into (17), and using the definition of y; from the text, one obtains
y < (1-8)max{u(e) +us(a) - maxu(ay, )} +6(1 - §m(6))
a Gl
= (1-8)y +8(1 - 6m(8))
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Together with (15) and (16), this implies

1-my(6)—€e < 1—=2 =y < (18] +8(1 —8mny(6))
. l1-y €
> ml) 2 T 1ss

Since € can be chosen ‘arbitrarily small, the last inequality implies that m,(5) is greater

than or equal to 1—_’}3(1 —¥1). Moreover, player 1’s average equilibrium payoffs in NG,(8)
are bounded below by §m;(8), which is greater than or equal to 'Tf_g(‘l - 97).
Q.E.D.

Proof to Theorem 3, Section 3.2 |

Note that the payoffs correspond to the perfect equilibrium for a bargaining game with
the disagreement payoff (0,y}) in every period. If (0,%?) is a Nash equilibrium outcome
of the stage game G, then the result follows from Theorem 1. If (0,%?) is not a Nash
equilibrium of G, the proof is lengthy. The necessary § will be derived first. Then subgame
perfection of the given strategy for § > § will be verified.

Suppose a” is a Nash equilibrium in the stage game G. The definition of 3} implies that
91 2 ua(a*). Since u(a*) > 0 and (0,y}) # u(a*), it must be that y} +u,(a*) — uz(a*) > 0.
Let a® € A such that

2l +9i =wi(e') +ua(a’) and 2] = maxui(d},a}) (19)
aj€4;
Let d = max[u;(a’) — u;(a")], Va',a" € Aand i = 1,2. Since the set u(A) is compact, d
must be finite. Consider the following three functions of § € (0, 1],

a(d) = Tglet +Bua(a) - Buala)] — (1~ )ld+ (e
() = Tl + Bun(e”) — wala)] — (1 - £)d

ca(8) = yi — (1 — 8)uy(a') — 62uy(a*) + duy(a”)

Since these three functions are positive and continuous at § = 1, there must exist § € (0,1)

such that, V6 € (§,1), the functions ¢,(8), c2(6) and c3(6) are positive. Equivalently,
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V§ € (§,1), the following three inequalities hold

(1-8)d < %”6—1 — (1= )us(al) - Lu _u(a’) +6us(a’)]  (20)
1-8)d < 1+6[ + 1] - 1+6[5 §uy(a”™) + ua(a®)] (21)
0@ + g < () - ) (22)

This concludes the derivation of §.

Consider the strategy for NG;(6) which was given in the text. The subgame perfection
of the strategy will be proven by exhaustive consideration of all subgames.

In an odd period (¢ + 1), there are two cases to be considered.

Case 1: either f(hs(t—1))=a"; or at = fi(hs(t—1)), a4 # fa(ha(t—1)); or b+ < fi(ha(2)).
Player 2 is the last deviator, i.e. he either deviated in the negotiation game before period
(t — 1), or in the stage game in period ¢, or rejected a proposal which should have been
accepted in period (¢+1). The disagreement payoff will be u(a*) for every period thereafter.
Since a* is a Nash equilibrium in the stage game, Theorem 1 implies that the strategy f
induces a perfect equilibrium in such a subgame.

Case 2: otherwise

f(Rha(t)) = a'. If player 1 were to deviate from a', according to the strategy, player 2 will
propose iz(1 — y7) instead of 23%u,(a') + g7yg;(6” — 97) in period (¢ + 2). Comparing

player 1’s payoffs, one obtains

(1 — 6)ua(a®) + (1 - S)ua(a’) + H’g‘ = (1- 6)[u1(a1)+uz(a*)1+5i+§*
-+ + S8 = (-8t )

J .
(1-14) max ui(a},83) + 67— (1 - 1)

Therefore, player 1 will not deviate from a.
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If player 2 were to deviate from a?, player 2 will demand 33(1 — u;(a*) + Sug(a*))
instead of 5‘:'1":6) 1=8u,(a') in period (¢ + 2). Inequality (20) implies that
(1 - 6)lmax vaal,}) — w(a)] < (1-6)d
a3 €Az

< S+

<175 (1 — &)uj(a’) —

T 6(1 uy(a") + ug(a*))

Therefore, player 2 will not deviate from &!.
Player 2 will also not deviate from fg(hg(t)): If player 1 were to deviate from f;(h,(t)),

player 2's payoff from rejecting will be &8, Therefore, player 2 will accept the proposal

1+6

only if player 1 proposes less than "1—+6L On the other hand, if player 1 follows f;(k,(t)),

player 2’s payoff from rejecting will be

(1= 8ua(0") + Tt = (") + B1a(a)) = Tl — Bta(a) + (")

1+6
which is less than 61—";"5'- Therefore, player 2 will not deviate from fa(ha(t)).

Finally, player 1 will not deviate from fi(hi(t)): If player 1 were to make a higher
‘proposal player 2 will reject and prbpdse'-lg—su'z(dl)'+ m’_ﬁ;(bﬂ — ;) in‘period (¢ +2). Since
23+ 9} <1by A2,

(1 6(a) + (1= Opuala) + S8 = (1-)a1 447+ TKE

1+5 , 146
8 — .1,—,'3[;
Q-9+ 55 1+5 146

Therefore, player 1 will not deviate from fi(h1(¢)). This conclides the checks for an odd
‘period.

In an even period (t + 1), when either f(hs(t — 1)) = a" or a} = fi(hs(t — 1)),a% #
Fa(ha(t — 1)) or b+ < fa(ki(t)), Theotem 1 implies that ‘the induced strategy forms a
perfect equilibrium in such a ‘subgame, because ‘the disagreement payoff in every period
‘thereafter is the ‘Nash ‘equilibrium ‘payoff u(a"). ‘Otherwise, if 'player 2 ‘has not deviated

last, there afe 'two cases that have to be considered.
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Case 1: a¢ # a] and a} = a}

Player 1 deviated in the stage game in period £. Player 1 will not deviate from m?, because
m! is his minimax strategy. If player 2 deviates from m!, the disagreement payoff will be
u(a") in every period thereafter, and player 1 will propose 3z(6 — fui(a*) + uz(a*)) to

player 2 instead of %{’}. Inequality (21) and the definition of d imply that

§ — buy(a*) + ua(a®)
1+6

5§+ 3
146

(1 - 8) max wa(mi, a5) + 5 < (1- Syua(m?) +6

Therefore, player 2 will not deviate from m?.

Player 1 will not deviate from f,(h,(t)): If player 2 follows his strategy, player 1’s payoff
from rejecting will be %(1 —9}). So, player 1 will accept. If player 2 deviates, player 1’s
payoff from rejection will be m[ﬁ + u(@*) — 8uz(a*)], which is more than 1L+6(1 - %)
Player 1 will therefore not deviate from f;(ka(t)).

Player 2 will not deviate from f,(hy(t)) either: If player 2 were to demand more, player
1 will reject and propose iz(8 — Sui(a*) + u2(a*)) to player 2 in period (¢ + 2). Since
Suy(a*) — uy(a*) < ua(a*) — uq(a*) < 95,

§ — buy(a*) + ua(a®) < 1 —u;(a*) + buq(a”) 1+y;
1446 1+6 146

(1—8)uz(a”)+ 6

Therefore, player 2 will not deviate from f(k1(t)).

Case 2: o' = a!
For the same reasons as in Case 1, players will not deviate from f(hs(t)) = m'.

If player 2 follows his strategy, player 1 will accept, since his payoff from rejecting is
equal to 73z(1 — y7) which is less than 8u,(at) + i (67 — v1) due to

y; < wfa') = (1-8) < (1—6")ua(a’)

= &(1l-y) < (1- 8 )ug(at) + & -y
§ 1

2 __ o *
1+6 YN ¥i)

1-4§
= (1-97) < Tuz(al) +
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On the other hand, if player 2 were to demand more, player 1’s payoff from rejecting is

equal to

(1= 8)uy(a") + I—%u + Bus(a®) — ua(a”)) = ——(6 + ul(a ) — Sus(a”))

1+5

which is greater than or equal to 2x%us(a’) + 2k 5(1 +6) dué to (22). Therefore, player 1 will
not deviate from fj(ha(2)).

Player 2 will follow fa(k,(t)): If player 2 were t6 demand more, player 1 will reject and
propose 73(§ — 6uy(a*) + ua(a*)) to player 2 in period (¢ +2). Player 2’s payoff then would
be

(1= B)ua(a”) + 5 (6~ Bua(a’) #wale")) < ol = a(a’) + Bun(a))

1+5
_ Sty 1-6 1 _1- 1y _ & -y
<fi+e s ule) = 1-=3 (e 5(1+9)

Therefore, player 2 will not deviate from fa(hy(2)).

It has been shown that the strategy profile f constitutes a subgame perfect equilibrium
for the negotiation game NG;(6). The equilibrium outcome is that player 1’s proposal is
accepted by player 2 in the first period, yielding average payoffs of ( ﬁg(l -v1), ﬁg@ +31))-

Finally, consider the one period history k(1) = 1 ® (a},a}) where o} # al. fly,yis a
perfect equilibrium of NG;(8)|n, 1) which is NG3(6), and the equilibrium outcome is that
player 2’s proposal is accepted by player 1 in the first period, yielding average payoffs of
(135(1 — 1), 33(1 + 63})). This proves the theorem for the game NGy(5).

Q.E.D.

Proof to Theorem 5, Section 3.3 The theorem is proven for NGy(8) only, but the
arguments can easily be adapted to prove the theorem for NG;3(8). Let a* be a Nash
equilibrium of G. Since (vy,v3) > (vy,%3), 3 € = min{v; — vy,v; — ,}/2 > 0. According
to the results in section 3.2, 3 § such that, V § € (§,1), the game NG;(6) has an optimal

37

(3

(1]



punishment equilibrium for player i with strategy f, and

1-9 1 . 5+
nte 2 max{iT0 (- () + 57 1- (- u) - 675 £21 ()
)

1—2z; — 5 +
> 2. 2. -
vyt+e 2 ma.x{ 1738 (1 — 8)ua(a* )+6' T8 1—(1-8)us(a* }(24)
1—7—6d < e<v;—(v;+¢€) fori=1,2 (25)

)
Vée(4,1),3ac A, b € [0,1] and a positive integer T (which may or may not be finite),
such that

(v1,92) = (1 — 6T)u(@) + 67(8,1 — b) and (B,1—8)> v > u(d) (26)
Consider the outcome path 7(T') = §(T) ® &(T — 1) ® {Y'} of NG,(6), where
(T — 1) = {a}T5! € AT! and H(T) = (1,0,1,0,...,b).

Inequality (26) implies that players’ average payoffs from the outcome path #(T') are (v1,v2).
Let ID(-) be the indicator function for the outcome path #(T’) as defined. Decompose the
type k t-period history hy(t) € Hy as hy(t) = hi(8) © he(t — 8), for k=1,2,3 and s < &.

Consider the given strategy profile f = (f1, f2). It remains to verify that f constitutes
a SPE for NG,(9).

V hy(t) € Hy, if ID(hy(t)) # 0, fln,(s) is one of the four strategy profiles f'*, f12, f*! or
£22, which are subgame perfect due to Theorems 3 and 4. Therefore, the strategy profiles
under consideration are subgame perfect if ID(h,(t)) # 0. It remains to verify the strategy
profile along the proposed path (T), i.e. for ID(hy(t)) = 0 and (¢ +1) < T. Due to
symmetry, only an odd period (¢ + 1) before period T needs to be considered.

V hy(t) € Hy such that ID(hy(t)) = 0, player 1 will follow the strategy to propose 1 in
period (¢ 4+ 1) < T and b in period T. If player 1 follows this strategy his average payoff
will be, by (26) above,

(1 — 67*)u(@) + 675 > w.
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However, if player 1 deviates, according to the strategy and (23), his average payoff will be

either
(1= 8Jn(a) + 6= 54 < (1 s)u,(a)+61+6 <
or 1— (1 — 8)ug(a ).—m(6+y1_)‘ Su+tea < w

Therefore, player 1 will not deviate from ,fl1(h1(t)),.
¥ ha(t) € Hy. T ID(ha(t)) = (1, + 1), player 1 has deviated from f;(hy(t)) in period
(t +1). Player 2's payoff from rejecting is

§+y;

T+6 (27)

(1 - 6)ua(a”) + 6

Therefore, player 2 will accept a proposal only if his share is not less than (27) before
period T. In period T, (23) and (26) imply that 1 — bis less than (27), so “player 2 will
reject if player 1 demands more than bin period T. If I D(hy(t)) = 0, player 2 will reject
in period (¢ +1) < T, since his payoff from accepting is 0 which is certainly less tha.ﬁ that
from rejecting. In period T, player 2 will accept the proposal if .I'D(hz(T —1)) =0. Due
to (24) and (26), his payoff from rejecting satisfies

(1 - 8)ua(a*) + 5 < vy

14+ 5
which is less than 1 — b. Therefore, player 2 will not deviate from fg(hz(t')).
¥ ha(t) € Ha. 1 ID(ha(2)) = 0, f(ha(t)) = &. Neither players will deviate from 4, since

.1.%.5. [:nea.} ul(al,ag)—ul(@)] < %—éd @ < - (u+e)
< -+ £ 5 R
and

# [:neajcuz(al,az)—uz(a)] < _}ﬁd < & < vz—(23+60)
< (1- F-‘-‘)uz(a)+6f-“1b

1+5
39
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due to (23), (25) and (26). If ID(hs(t)) = (3, + 1), i = 1,2, f(ha(t)) = a*. Since a* is
a Nash equilibrium in the stage game and the continuation payoff is history independent,
no player can increase his payoffs in period (t + 1) or thereafter by deviating from o

individually. Therefore, players will not deviate from f(hs(t)).
(vy,v3) is, therefore, supported by the strategy profile f as a subgame perfect equilibrium

payoff from the outcome path m(T') in the negotiation game NG1($).
Q.E.D.
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