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Abstract

The focus of this paper is the class of perfect GMV-algebras, which
includes all non-commutative analogues of perfect MV-algebras. As
in the commutative case, we show that each perfect GMV-algebra
possesses a single negation, it is generated by its infinitesimal ele-
ments, and can be realized as an interval in a lexicographical product
of the lattice-ordered group of integers and an arbitrary lattice-ordered
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group. Further, we establish that the category of perfect GMV-
algebras is equivalent to the category of all lattice-ordered groups.
The variety of GMV-algebras generated by the class of perfect GMV-
algebras plays a key role in our considerations. Among other results,
we describe a finite equational basis for this variety and prove that
it fails to satisfy the amalgamation property. In fact, we show that
uncountably many of its subvarieties fail this property.

1 Introduction

In this section we provide an overview of the contents and aims of the paper.
The reader should refer to the next section or the explicitly cited references
in the literature for definitions of undefined concepts.

MV-algebras are the algebraic counterparts of infinite-valued sentential
calculus of  Lukasiewicz logic, as Boolean algebras are the counterparts of
classical propositional logic. By Mundici’s fundamental result, [Mun], every
MV-algebra can be realized as the MV-algebra Γ(G, u) based on the interval
[0, u] of a unital Abelian lattice-ordered group (henceforth, `-group) (G, u).
Because of the non-idempotency of the MV-algebraic conjunction, unlike
Boolean algebras, the class of MV-algebras contains subdirectly irreducible
members that are not simple, as well as members that are not semisimple,
i.e., the intersection of their maximal ideals is non-trivial. We refer to this
intersection as the radical of the MV-algebra in question and to the non-zero
elements of the radical as infinitesimals. Perfect MV-algebras, introduced
by Belluce, Di Nola and Lettieri in [BDL], may be viewed as the most com-
pelling examples of non-archimedean MV-algebras, in the sense that they
are generated by their infinitesimals. In a perfect MV-algebra, every element
belongs to either its radical or its coradical (set-theoretic complement). It is
shown in [DiLe1] that given a perfect MV-algebra M , there exists an abelian
`-group G, such that

M ∼= Γ(Z×lex G, (1, 0)), (1.1)

where Z is the `-group of integers, Z ×lex G is the lexicographic product of
Z and G, and Γ is the aforementioned Mundici functor.

GMV-algebras, called also pseudo MV-algebras [GeIo] or non-commutative
MV-algebras [Rac], are non-commutative versions of MV-algebras and the
algebraic counterparts of noncommutative many valued logic. The key repre-
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sentation theorem for GMV-algebras is Dvurečenskij’s [Dvu1] non-commutative
generalization of Mundici’s result, which states that every GMV-algebra can
be realized as the GMV-algebra Γ(G, u) based on the interval [0, u] of a unital
`-group (G, u). This result provides a new bridge between different research
areas, including GMV-algebras, unital `-groups, noncommutative many val-
ued logic, soft computing and quantum structures (see [DvPu]). Further, it
motivates a new set of questions in the study of `-groups (see, for example,
[DvHo]). A generalization of Dvurečenskij’s result for a wider class of resid-
uated structures was established by Galatos and Tsinakis in [GaTs]. The
reader should be cautioned that, in the latter paper, the term GMV-algebra
is used for possibly unbounded structures and the algebras of the present
paper are referred to as bounded GMV-algebras.

This paper initiates the study of perfect GMV-algebras. Unlike arbi-
trary GMV-algebras, which admit two negations, the class of perfect GMV-
algebras admits a single negation. However, the existence of a single nega-
tion does not imply that perfect GMV-algebras are close to being commuta-
tive. For example, given an arbitrary `-group, Condition (1.1) above yields
a GMV-algebra with a unique negation. In fact, every perfect GMV-algebra
can be described by (1.1). We remark that Leuştean [Leu] established an
analogous result. Her approach to the study of strong perfect GMV-algebras
is somewhat different than ours.

We prove that the category of perfect GMV-algebras is categorically
equivalent to the category of all `-groups. The variety of GMV-algebras
generated by the class of perfect GMV-algebras plays a key role in our con-
siderations. Among other results, we describe a finite equational basis for
this variety and prove that it is generated by any algebra described by (1.1),
as long as G is a doubly transitive `-group. Further, we show that, un-
like the situation with perfect MV-algebras, this variety and the class of
perfect GMV-algebras fail the amalgamation property, and exhibit uncount-
ably many subvarieties of the former that fail the same property. The basic
technical tools we employ to establish these results are the representation
of GMV-algebras via unital `-groups, the notion of a top variety introduced
in [DvHo], and McCleary’s Trichotomy Classification Theorem of primitive
`-groups.

The paper is organized as follows. The basic properties of GMV-algebras
are reviewed in Section 2. Symmetric GMV-algebras are studied in Section
3, where also one of the results in [DDJ] is corrected. Perfect GMV-algebras

3



are introduced in Section 4, and their categorical equivalence with the class
of all `-groups is established in Section 5. The variety generated by all perfect
GMV-algebras is studied in Section 6. Section 7 provides an alternative short
discussion of GMV-algebras within the framework of residuated lattices. This
alternative perspective is used to demonstrate that the subvariety lattice of
the variety of symmetric GMV-algebras has the cardinality of the continuum.
Finally the amalgamation property is investigated in the last section of the
paper.

2 Basic Notions

GMV-algebras were independently introduced in [GeIo] and [Rac] under the
names pseudo MV-algebras and generalized MV-algebras, respectively. Ac-
cording to [GeIo], a GMV-algebra is an algebra (M ;⊕,− ,∼ , 0, 1) of type
(2, 1, 1, 0, 0) such that the following axioms hold for all x, y, z ∈ M , where
the derived operation � appearing in the axioms (A6) and (A7) is defined
by

y � x = (x− ⊕ y−)∼.

(A1) x⊕ (y ⊕ z) = (x⊕ y)⊕ z;

(A2) x⊕ 0 = 0⊕ x = x;

(A3) x⊕ 1 = 1⊕ x = 1;

(A4) 1∼ = 0; 1− = 0;

(A5) (x− ⊕ y−)∼ = (x∼ ⊕ y∼)−;

(A6) x⊕ (x∼ � y) = y ⊕ (y∼ � x) = (x� y−)⊕ y = (y � x−)⊕ x;2

(A7) x� (x− ⊕ y) = (x⊕ y∼)� y;

(A8) (x−)∼ = x.

Given a GMV-algebra M , the stipulation x ≤ y iff x− ⊕ y = 1 induces a
partial order on M . M actually becomes a distributive lattice with respect
to this order, with joins and meets being defined by x∨ y = x⊕ (x∼� y) and
x∧ y = x� (x− ⊕ y). A GMV-algebra M is an MV-algebra iff x⊕ y = y⊕ x
for all x, y ∈ M. We refer the reader to [GeIo] for the basic properties of
GMV-algebras.

2� has a higher priority than ⊕.
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As a means of an example, if u is an arbitrary positive element of a – not
necessarily Abelian – `-group G,

Γ(G, u) := [0, u]

and

x⊕ y := (x+ y) ∧ u,
x− := u− x,
x∼ := −x+ u,

x� y := (x− u+ y) ∨ 0,

then (Γ(G, u);⊕,− ,∼ , 0, u) is a GMV-algebra [GeIo].

Let now (M ;⊕,− ,∼ , 0, 1) be a GMV-algebra. Define a partial binary
operation + on M as follows: x+ y is defined iff x ≤ y−, and in this case

x+ y := x⊕ y.

It is clear that x + y is defined iff y ≤ x∼. In addition a ≤ b iff there exists
c ∈M such that a+ c = b iff there exists d ∈M such that d+ a = b.

Moreover, for a ≤ b, we define two subtractions, −· and −· by a−· b := a∼�b
and b−· a = b� a−. Then a+ a−· b = b = b−· a+ a.

As was noted earlier, the GMV-algebras (Γ(G, u);⊕,− ,∼ , 0, u) comprise,
up to isomorphism, all GMV-algebras due to the following basic representa-
tion result of Dvurečenskij [Dvu1, Thm 3.9, Thm 6.4].

Theorem 2.1 For any GMV-algebra M , there exists a unique (up to iso-
morphism) unital `-group G with a strong unit u such that M ∼= Γ(G, u).
The functor Γ defines a categorical equivalence between the category of GMV-
algebras and the category of unital `-groups. In addition, if h is an isomor-
phism of M with Γ(G, u), (G, h) is the universal group for M : that is, for
any partially ordered group (K; +,≤, 0) and any order and + preserving map-
ping g : M → K, there exists a homomorphism of partially ordered groups
g′ : G→ K such that g = g′ ◦ h.

An ideal of a GMV-algebra M is a subset I of M satisfying the following
conditions for all elements x, y ∈M : (i) 0 ∈ I; (ii) if x, y ∈ I, then x⊕ y ∈ I
and y ⊕ x ∈ I; and (iii) if x ∈ I and y ≤ x, then y ∈ I. It can be shown
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that a non-void subset I of M is an ideal of M iff (i) x, y ∈ I and x+ y ∈M
imply x+ y ∈ I, and (ii) a ≤ b ∈ I implies a ∈ I.

Throughout the remainder of this paper, the algebraic closure family of
ideals of M will be denoted by I(M).

An ideal I of M is said to be (i) normal if x⊕ I = I ⊕ x for all x ∈M ; 3

(ii) maximal if it is a proper ideal of M and is not included into any proper
ideal of M . We will denote byM(M) the set of maximal ideals of M . It can
be shown that an ideal I is normal iff x+ I = I + x for any x ∈M.

Theorem 2.1 gives a one-to-one correspondence between the ideals, nor-
mal ideals, maximal ideals of M = Γ(G, u), and convex `-subgroups, C(G), `-
ideals, L(G), and maximal convex `-subgroups,M(G), of (G, u), see [Dvu2];
the one-to-one mapping φ : I(M)→ C(G) is defined by

φ(I) = {x ∈ G : ∃ xi, yj ∈ I, x = x1 + · · ·+ xn − y1 − · · · − ym}. (2.1)

A state on a GMV-algebra M is a mapping m : M → [0, 1] such that
(i) m(1) = 1, and (ii) m(a + b) = m(a) + m(b) whenever a + b is defined in
M . If m is a state on M , the set

Ker(m) := {a ∈M : m(a) = 0}

is a normal ideal of M .

Let S(M) denote the set of all states of a GMV-algebra M . Then S(M) is
a convex set. Let ∂eS(M) be the set of all extremal states on M . A net {mα}
of states on M converges weakly to a state m iff mα(a)→ m(a) for every a ∈
M. Therefore, in view of the Krein-Millman theorem, M has at least one state
iff M has an extremal state. It is well-known that every MV-algebra possesses
at least one state. More generally, every normal-valued GMV-algebra admits
a state, but there exist noncommutative stateless GMV-algebras (see [Dvu2]).

A state-morphism on a GMV-algebra M is a mapping m from M into
the standard MV-algebra [0, 1] such that, for all a, b ∈ M , m(a ⊕ b) =
m(a)⊕R m(b); (ii) m(a−) = m(a∼) = 1−m(a); and (iii) m(1) = 1.

The class of extremal states on a GMV-algebra M was characterized in
[Dvu2] by the following equivalent statements:

3x ⊕ I := {x ⊕ y : y ∈ I} and likewise I ⊕ x. The sets x + I and I + x are defined
analogously.
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(i) m is an extremal state on M .

(ii) m is a state-morphism on M .

(iii) m(x ∧ y) = min{m(x),m(y)}, x, y ∈M.

(iv) Ker(m) is a maximal ideal.

Moreover, there is a one-to one correspondence between the set, ∂eS(M),
of extremal states on M and the set, NM(M), of normal and maximal ideals
of M given by

m↔ Ker(m). (2.2)

Let a ∈ M and an integer n ≥ 0 be given. We define 0a := a and
na = (n− 1)a+ a for n ≥ 1 whenever the right-hand side exists in M.

An element a of a GMV-algebra M is said to be an infinitesimal if na ∈M
for any integer n ≥ 1, or equivalently, n�a := a⊕· · ·⊕a ≤ a− for any n ≥ 1.
We denote by Infinit(M) the set of all infinitesimal elements of M . It is clear
that (i) 0 ∈ Infinit(M), (ii) if a ≤ b ∈ Infinit(M), then a ∈ Infinit(M), (iii)
1 /∈ Infinit(M).

If a GMV-algebra M has only one infinitesimal, 0, then M is commuta-
tive, i.e., an MV-algebra.

We define (i) the radical of a GMV-algebra M , Rad(M), as the set

Rad(M) =
⋂
{I : I ∈M(M)},

and (ii) the normal radical of M , Radn(M), as the set

Radn(M) =
⋂
{I : I ∈ N (M) ∩M(M)}.

We have, see [DDJ, Prop. 4.1, Thm 4.2], that

Rad(M) ⊆ Infinit(M) ⊆ Radn(M). (2.3)

If M is an MV-algebra, the inclusions in (2.3) are equalities. An example
in [DDJ, Ex. 4.10] demonstrates that the last inclusion of (2.3) may be proper
for arbitrary GMV-algebras. However, if every maximal ideal is normal, then
all inclusions in (2.3) are equalities.
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3 Symmetric GMV-algebras

GMV-algebras have, in general, two negations, − and ∼. A GMV-algebra
M is said to be symmetric (or, more precisely, have symmetric negations)
if a− = a∼, for all a ∈ M. The class of all symmetric GMV-algebras forms
a variety, SPMV , which contains as a proper subvariety the variety of all
MV-algebras.

For example, if G is an arbitrary noncommutative `-group, then M =
Γ(Z×lex G, (1, 0)) gives a noncommutative symmetric GMV-algebra; if G is
linear, then so is M = Γ(Z ×lex G, (1, 0)). Moreover, M admits a unique
state.

We recall that if M = Γ(G, u), then a− = a∼ holds for all a ∈ M iff u is
in the center of G, i.e., u+ g = g + u, for all g ∈ G.

The following proposition was proved in [DDJ, Prop. 6.5].

Proposition 3.1 The following hold in a symmetric GMV-algebra M .

(i) For all x, y ∈M , x+ y − x, −x+ y + x ∈M.

(ii) If x ∈ Infinit(M), then −y + x + y, y + x − y ∈ Infinit(M), for all
y ∈M .

The following example, due to A.M.W. Glass (oral communication), pro-
vides a negative answer to a problem posed in [DDJ, Prob. 6.7] as to whether
any symmetric GMV-algebra admits a state. In our discussion below we use
Holland’s fundamental representation of an `-group as a group of automor-
phisms of a linear set [Hol].

Example 3.2 There exists a symmetric stateless GMV-algebra M such that
Rad(M) = {0} 6= Infinit(M) and Infinit(M) is not an ideal of M .

Proof. Let Aut(R) denote the group of automorphisms g : R→ R, and set

G = {g ∈ Aut(R) : (t+ 1)g = tg + 1, ∀ t ∈ R}.

Then G is an `-group with a strong unit u : t 7→ t + 1 (t ∈ R) that
is central. Indeed, if g ∈ G, and 0g = s > 0, let n ∈ Z+ be an integer
such that n > s. For all t ∈ R, let m ∈ Z with m < t < m + 1. Then
tu−(m+1) < 0 and 0um < t. So tu−(m+1)g < 0g = s < n = 0un, which gives
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tg = tu−(m+1)gu(m+1) < 0un+m+1 < tun+1 since u is central. Thus tg < tun+1

for all t ∈ R so g < un+1.
Similarly, if 0g ≤ 0, then u−(n′+1) < g (since g−1 < un′+1 for some n′ ∈

Z+), which proves u is a strong unit for G.
Let t0 ∈ R and Gt0 = {g ∈ G : t0g = t0} be the stabilizer of t0. Then

u /∈ Gt0 and if H is any subgroup of G strictly containing Gt0 , there is h ∈ H
with t0h 6= t0. By replacing h by h−1, we may assume that t0h > t0.

Now if t0h > t0 + 1, then h ≥ u, and if t0h < t0 + 1, there exists
g ∈ Gt0 ⊂ H with t0 + 1/2 < t0hg < t0 + 1 and t0hg > (t0 + 1)h−1. This
follows from the fact that Gt0 = Gt0+1 and h /∈ Gt0 , and there is an open
unit interval I ⊆ R with t0 ∈ I and I ⊆ supp(h) = {t ∈ R : th 6= h}. Since
h ∈ G, we have (I + 1) := {t+ 1 : t ∈ I} ⊆ supp(h). So t0hgh > t0 + 1.

It follows that t0(hgh)2 > t0 + 2 and hence u < (hgh)2 ∈ H. Thus
if H is a convex subgroup, then u ∈ H. Consequently, Gt0 is a maximal
convex `-subgroup of G not containing u. If f ∈ G with t0f = t0 + 1/4, then
f−1Gt0f = Gt0+1/4 6= Gt0 so Gt0 is not normal in G.

On the other hand, (G,R) is a transitive and primitive periodic `-group
[Gla1, Ex.1.9.2, p. 93], and G has only trivial normal convex `-subgroup,
i.e., no maximal convex ideal of G is normal.

Consequently, M = Γ(G, u) is a symmetric stateless GMV-algebra. Since
every stabilizer Gt is a convex maximal `-subgroup of G, then Gt ∩M is a
maximal ideal of M , and Ker(M) = {0}.

Let g ∈ Gt0 ∩M . Then for t0 < t < t0 + 1 we have t0 < tgn < t0 + 1 for
all n ≥ 1, so that g ∈ Infinit(M) and Gt0 ⊆ Infinit(M) for all t0 ∈ R.

If Infinit(M) were an ideal of M , by Proposition 3.1, Infinit(M) would
be a non-trivial normal ideal, which contradicts the fact that G has no non-
trivial `-ideals. 2

According to [DDJ, Thm 5.5], if Infinit(M) is an ideal of a symmetric
GMV-algebra M , M admits a state. The converse statement is not valid in
general as the following example shows.

Example 3.3 Infinit(M) is not always an ideal in a symmetric GMV-algebra,
M , with a state.

Proof. Let M1 be the symmetric stateless GMV-algebra of Example 3.2
and let M2 = Γ(R, 1). Then M = M1 ×M2 is a symmetric GMV-algebra
with a unique state, s, namely s(g, t) = t for any (g, t) ∈ M1 ×M2. Since
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Infinit(M) = Infinit(M1) × Infinit(M2), [DDJ, Prop. 4.9], we have that
Infinit(M) is not an ideal of M since Infinit(M1) is not an ideal of M1. 2

Example 3.3 shows that, in [DDJ, Thm 4.3], the implication “the ex-
istence of a state on M implies Infinit(M) is an ideal” is incorrect, conse-
quently, all statements using this implication are not necessarily valid.

Remark 3.4 It is worth mentioning that we can replace M2 in Example
3.3 by any MV-algebra, and thereby obtain infinitely many nonisomorphic
symmetric GMV-algebras M for which Infinit(M) is not an ideal of M .

Let a, b ∈ G, we say that a is infinitarily small with respect to b (in
symbols, a� b) if na ≤ b for any n ∈ Z.

We set
Infinit(G, u) := {g ∈ G : g � u}.

If Infinit(M) is an ideal of M , then by [DDJ, Thm 5.2],

φ(Infinit(M)) = {x0 − y0 : x0, y0 ∈ Infinit(M)} = Infinit(G, u). (3.1)

As shown in [DDJ, Cor. 7.5], the inequality Infinit(G, u) 6= Infinit(G, 2u)
can occur. However, if M = Γ(G, u) is symmetric, then, by [DDJ, Thm 5.5],

Infinit(G, u) = Infinit(G, ku), (3.2)

for every integer k ≥ 1.

Proposition 3.5 In a symmetric GMV-algebra M , Infinit(M) is an ideal of
M if and only if Rad(M) = Infinit(M). Moreover, in this case, M possesses
at least one state.

Proof. Let Infinit(M) be an ideal of M . By Proposition 3.1, Infinit(M) is
a normal ideal. According to (2.3), it is necessary to verify that Infinit(M) ⊆
Rad(M). Let a ∈ Infinit(M) and a /∈ Rad(M). There exists a maximal ideal
I of M such that a /∈ I. Hence, the ideal I0(I, a) – generated by I and the
element a – must coincide with M . Therefore, 1 = a1 +x1 + · · ·+ ak +xk for
some ai ≤ a and xi ∈ I (i = 1, . . . , k). Then 1 = a1+a′2+· · ·+a′k+x1+· · ·+xk;
by Proposition 3.1, all a′i are infinitesimal, so that a0 := a1 + a′2 + · · ·+ a′k ∈
Infinit(M), since Infinit(M) is an ideal of M and x0 := x1 + · · · + xk ∈ I.
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Then 1 = a0 + x0 = a−0 + a0. But a0 ≤ a−0 , which entails x0 ≥ a0, so that
a0 ∈ I, and 1 = a0 + x0 ∈ I, a contradiction. Hence, Rad(M) = Infinit(M).

Conversely, let Rad(M) = Infinit(M). Hence, Infinit(M) is an ideal and,
by Proposition 3.1, J := Infinit(M) is a normal ideal of M , so that, φ(J) is an
`-ideal of G. Suppose n(a/φ(J)) ≤ u/φ(J) for any integer n ≥ 1. Therefore,
there exists un ∈ φ(J) such that na ≤ u + un ≤ u + u+

n ≤ 2u, when we
have used (5.3). By (3.2), a � 2u, i.e., a ∈ Infinit(M), which proves that
a/φ(J) = 0 and that G/φ(J) is an Abelian `-group such that M/Infinit(M)
is an MV-algebra having a state. This implies that M has a state, too. 2

Let M be a GMV-algebra and A ⊆ M . We set A− := {a− : a ∈ A},
A∼ := {a∼ : a ∈ A}, and A∗ := A− ∪A∼. If M is symmetric, it is clear that
A∗ = A− = A∼.

Proposition 3.6 Let M be a symmetric GMV-algebra. If a, b are infinites-
imals and a + b = b + a, then a + b ∈ Infinit(M). Moreover, Infinit(M) ∩
Infinit(M)∗ = ∅.

Proof. Let a, b ∈ Infinit(M) and a + b = b + a. Assume M = Γ(G, u)
and calculate addition in G: n(a + b) = na + nb ≤ 2u which by (3.2) yields
n(a + b) ∈ M for all n ≥ 1, that is, a + b ∈ Infinit(M). Assume now that
a ∈ Infinit(M) ∩ Infinit(M)∗. Then a, a− ∈ Infinit(M), but a + a− = 1 =
a− + a. Thus 1 = a+ a− ∈ Infinit(M), which is a contradiction. 2

4 Perfect GMV-algebras

Perfect MV-algebras were introduced and studied in [BDL]. In this section,
we generalize this notion to the wider class of GMV-algebras.

We have seen that if G is an `-group, then M = Γ(Z ×lex G, (1, 0)) is a
symmetric GMV-algebra, which is commutative iff G is. Moreover, it satisfies
the following properties.

(i) M = {(0, g) : g ∈ G+} ∪ {(1,−g) : g ∈ G+},
(ii) {(0, g) : g ∈ G+} ∩ {(1,−g) : g ∈ G+} = ∅,
(iii) {(0, g) : g ∈ G+}∗ = {(1,−g) : g ∈ G+} and {(1,−g) : g ∈ G+}∗ =

{(0, g) : g ∈ G+},
(iv) Infinit(M) = {(0, g) : g ∈ G+} = Rad(M),
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(v) if g, h ∈ G+, (1,−g) + (1,−h) is not defined in M,

(vi) (0, g) ≤ (1,−h) for all g, h ∈ G+, and

(vii) M admits a unique state, s; namely s(0, g) = 0 and s(1,−g) = 1 for
all g ∈ G+.

We will show in Section 5 that if M is a symmetric GMV-algebra satis-
fying M = Rad(M) ∪ Rad(M)∗, then there exists an `-group G such that
G ∼= Γ(Z×lex G, (1, 0)).

Proposition 4.1 If M is a symmetric GMV-algebra such that Rad(M) =
Infinit(M), then Rad(M) is a semigroup with respect to + satisfying the
following properties.

(i) 0 is the neutral element Rad(M),

(ii) the cancelation law holds in Rad(M),

(iii) if a+ b = 0 for a, b ∈ Rad(M), then a = b = 0,

(iv) Rad(M) ∩ Rad(M)∗ = ∅,
(v) if a, b ∈ Rad(M)∗, then a+ b is not defined in M , and

(vi) if a ∈ Rad(M) and b ∈ Rad(M)∗, then a ≤ b.

Proof. Assume that a, b ∈ Rad(M). By the Riesz decomposition property,
there exist a1, b1, c ∈ M such that a = a1 + c, b = b1 + c, and a1 + b1 + c =
b1 + a1 + c ∈ M. Note that a1, b1, c ∈ Rad(M). The assumptions yield
a1 +b1 +c ∈ Infinit(M) = Rad(M), therefore, (a1 +b1 +c)+(a1 +b1 +c) ∈M
which gives a+ b is defined in M , consequently, a+ b ∈ Rad(M). Conditions
(i)–(iii) are now evident.

(iv) Assume a ∈ Rad(M) ∩ Rad(M)∗. Then a ∈ Rad(M)∗, so that
a− ∈ Rad(M). This gives 1 = a+ a− ∈ Rad(M), a contradiction.

(v) Assume a + b ∈ M . Then a ≤ b− ∈ Rad(M), which implies that
a ∈ Rad(M), a contradiction.

(vi) If b ∈ Rad(M)∗, then b− ∈ Rad(M), which implies that a + b− is
defined in Rad(M). Hence a ≤ (b−)− = b. 2

Proposition 4.2 For a symmetric GMV-algebra M , the following state-
ments are equivalent:

(i) Rad(M) ∪ Rad(M)∗ = M.
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(ii) Infinit(M) is an ideal of M and Infinit(M) ∪ Infinit(M)∗ = M.

(iii) M admits a state and Infinit(M) ∪ Infinit(M)∗ = M.

(iv) There exists a proper ideal A of M , such that A∪A∗ = M , A∩A∗ = ∅,
and a ≤ b whenever a ∈ A and b ∈ A∗. In such a case, A is the unique
maximal ideal of M .

(v) Infinit(M) ∪ Infinit(M)∗ = M and a ≤ b whenever a ∈ Infinit(M) and
b ∈ Infinit(M)∗.

If the preceding equivalent conditions are satisfied, then Rad(M) = Infinit(M),
Infinit(M) is the unique maximal ideal of M , and M admits a unique state,
s – defined by s(a) = 0 if a ∈ Infinit(M) and s(a) = 1 if a ∈ Infinit(M)∗.

In addition, conditions (vi)–(viii) below are equivalent, and are implied
by (i)–(v).

(vi) Radn(M) 6= M and Radn(M) ∪ Radn(M)∗ = M .

(vii) M admits only a two-valued state.

(viii) If I is a maximal and normal ideal of M, then M/I = Γ(Z, 1).

Proof. We can assume M = Γ(G, u), for some `-group G.
(i) ⇒ (ii). Assume that the inclusion Rad(M) ⊆ Infinit(M) is proper,

and let a ∈ Infinit(M) but a 6∈ Rad(M). Then a− ∈ Rad(M), so that
a− ∈ Infinit(M). Therefore, for any integer n ≥ 1, we have (n + 1)a− ≤ u,
i.e. (n + 1)(u− a) ≤ u. Since u is central, we have (n + 1)u− (n + 1)a ≤ u
and nu ≤ (n + 1)a ≤ u, which is impossible. (An alternative proof can
be obtained with the use of Proposition 3.6.) Therefore a ∈ Rad(M), i.e.,
Infinit(M) = Rad(M), and Infinit(M) is an ideal.

(ii) ⇒ (iii). We have that Infinit(M) = Rad(M) which, by Proposition
3.5, implies that M admits a state, say s. The state s is unique, since if
a ∈ Infinit(M) then s(a) = 0 and if a ∈ Infinit(M)∗, then s(a) = 1.

(iii)⇒ (iv). It is clear that M admits a unique state, s. Then Radn(M) =
Ker(s) ⊇ Infinit(M). If a ∈ Radn(M) \ Infinit(M), then a− ∈ Infinit(M),
s(a−) = 0 and a− ∈ Radn(M), which is a contradiction. Hence Ker(s) =
Radn(M) = Infinit(M) = Rad(M). If we set A = Rad(M), we obtain (iv) in
light of Proposition 4.1.

(iv) ⇒ (i). If a, b ∈ A, then a ≤ b−. Hence, a + b is defined in M and
a + b ∈ A. In particular, A ⊆ Infinit(M). Choose z ∈ Infinit(M) \ A. Then
z ∈ A∗, i.e., z− ∈ A and z− ∈ Infinit(M). Similarly, as in the proof of the
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implication (i) ⇒ (ii), we obtain a contradiction. Since A is an ideal and
A = Infinit(M),Rad(M) = A and (i) holds by Proposition 3.5.

(ii) ⇒ (v). It is clear that (ii) ⇒ (v). Suppose now (v). By Proposition
3.6, Infinit(M) ∩ Infinit(M)∗ = ∅. Let now a, b ∈ Infinit(M). Then a ≤ b−

and so a+b ∈M . We claim that a+b ∈ Infinit(M). If not then for any integer
n na, nb ≤ a + b; in particular, 2a ≤ a + b and a ≤ b. Likewise, 2b ≤ a + b
which implies b ≤ a and a = b. Therefore, 2a = a + b ∈ Infinit(M)∗, which
is a contradiction. We have shown that Infinit(M) is an ideal of M .

Let us assume now that the equivalent conditions (i)–(v) hold and let I
be a maximal ideal of M . Then I ⊇ Rad(M) = Ker(s) and s is a state-
morphism. Thus the maximality of I and Ker(s) imply that I = Infinit(M)
and that Infinit(M) is the unique maximal ideal of M .

Next, it is clear that (i)–(v) imply (vi). We complete the proof by estab-
lishing the equivalence of (vi)–(viii).

(vi)⇒ (vii). It is clear that M admits a unique state, s, namely, s(a) = 0
if a ∈ Radn(M) and s(a) = 1 if a ∈ Radn(M)∗. Hence Radn(M) = Ker(s).

(vii)⇒ (viii). Let s be only a two-valued state. Then Radn(M) = Ker(s)
and I = Ker(s) is a normal ideal such that M/I = Γ(Z, 1). Assume that J is
a normal ideal of M such that M/J = Γ(Z, 1). Since Γ(Z, 1) is a two-element
Boolean algebra, it has only a two-valued state, say µ. The mapping µ̂ on
M defined by µ̂(a) = µ(a/J), a ∈ M , is an extremal state on M . It follows
that s = µ̂ and I = Ker(s) = J.

(viii) ⇒ (vi). As in the preceding implication, M admits a state, s.
Then Ker(s) is a normal ideal such that M/Ker(s) = Γ(Z, 1), which yields
that s is the unique state on M and, moreover, s is two-valued. Whence
Ker(s) = Radn(M) and (vi) holds. 2

Remark 4.3 We note that all statements (i)–(viii) of Proposition 4.2 are
equivalent in the setting of MV-algebras. However, this is no longer the case
for GMV-algebras. Indeed, take M1 from Example 3.2 and let M2 = Γ(Z, 1).
Then M = M1×M2 is a symmetric GMV-algebra having only one two-valued
state, but (ii) of Proposition 4.2 does not hold.

We say a non-trivial symmetric GMV-algebra M is perfect if Rad(M) ∪
Rad(M)∗ = M.

It is clear that the class of perfect GMV-algebras is not closed under direct
products, but, as the next proposition shows, it is closed under subalgebras
and non-trivial homomorphic images.
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Proposition 4.4 If M is a perfect GMV-algebra, then so is any non-trivial
homomorphic image of M and any subalgebra of M .

Proof. Let h : M → N be a surjective homomorphism of GMV-algebras,
and assume that N is non-trivial. In light of of Proposition 4.2(v), if
x ∈ Infinit(M) then h(x) ∈ h(Infinit(M)); and if x− ∈ Infinit(M) then
h(x−) ∈ h(Infinit(M)) and h(x) ∈ (h(Infinit(M)))∗. Thus, h(Infinit(M)) =
Infinit(h(M)) and h(Infinit(M)∗) = (Infinit(h(M)))∗, showing that h(M) is
perfect.

Similarly, if N is a GMV-subalgebra of M , then N is perfect by Proposi-
tion 4.2(v). 2

5 The Categorical Equivalence of Perfect

GMV-algebras

In the present section, we establish that the category of perfect GMV-
algebras is categorically equivalent to the category of `-groups. An analogous
result was proved also by Leuştean [Leu] in a different way.

Let PGMV be the category whose objects are perfect GMV-algebras and
morphisms are homomorphisms of GMV-algebras. Let L be the category of
`-groups and `-group homomorphisms.

We define a functor E : L → PGMV as follows: If G is an `-group, let

E(G) := Γ(Z×lex G, (1, 0)), (5.1)

and if h is an `-group homomorphism with domain G, we set

E(h)(x) =

{
(0, h(g)) if x = (0, g),
(1,−h(g)) if x = (1,−g),

(5.2)

where g ∈ G+.

Proposition 5.1 E is a faithful and full functor from the category L of `-
groups into the category PGMV of perfect GMV-algebras.

Proof. Let h1 and h2 be two morphisms from G into G′ such that E(h1) =
E(h2). Then (0, h1(g)) = (0, h2(g)) for all g ∈ G+, and hence h1 = h2.
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To prove that the functor E is full, consider a GMV-algebra homomor-
phism f : Γ(Z ×lex G, (1, 0)) → Γ(Z ×lex G

′, (1, 0)). Then for each g ∈ G+

there exists a unique g′ ∈ G′+ such that f(0, g) = (0, g′). Define the
mapping h : G+ → G′+ by h(g) = g′ iff f(0, g) = (0, g′). Note that
h(g1 + g2) = h(g1) + h(g2) for all g1, g2 ∈ G+, and note further that h
preserves finite meets and joins. Assume now that g ∈ G is arbitrary. If
g = g1 − g2 = g′1 − g′2, for g1, g2, g

′
1, g

′
2 ∈ G+, then g1 + g′2 = g′1 + g2. This

shows that the assignment h(g) = h(g1) − h(g2) is a well-defined extension
of h to the whole `-group G.

We assert that the aforementioned map h preserves binary meets in G,
i.e., h(a ∧ b) = h(a) ∧ h(b), whenever a, b ∈ G. Let a, b ∈ G. We have
a = a+ − a−, b = b+ − b−, a = −a− + a+, and b = −b− + b+. Since
h((a+ + b−) ∧ (a− + b+)) = h(a+ + b−) ∧ h(a− + b+), subtracting h(b−) from
the right hand side and h(a−) from the left hand side, we obtain the assertion.

In conclusion, we have proved that h is a homomorphism of `-groups, and
that E(h) = f . 2

We recall that by a universal group for a GMV-algebra M we mean a
pair (G, γ) consisting of an `-group G and a G-valued measure γ : M → G+

(i.e., γ(a + b) = γ(a) + γ(b) whenever a + b is defined in M) such that the
following conditions hold: (i) γ(M) generates G; and (ii) if H is a group and
φ : M → H is an H-valued measure, then there exists a group homomor-
phism φ∗ : G→ H such that φ = φ∗ ◦ γ.

Due to [Dvu1], every GMV-algebra admits a unique, up to isomorphism,
universal group, and the group homomorphism φ∗ is unique. The universal
group for M = Γ(G, u) is (G, id) where id is the embedding of M into G.

Proposition 5.2 Let M be a perfect GMV-algebra. Then there is a unique
(up to isomorphism) `-group G such that M ∼= Γ(Z×lex G, (1, 0)).

Proof. Let M be a perfect GMV-algebra. Without loss of generality, we
can assume M = Γ(G0, u) for some unital `-group (G0, u). By Proposition
4.1, Rad(M) is a cancellative semigroup satisfying Birkhoff’s conditions [Bir,
Thm XIV.2.1; Fuc, Theorem II.4] for being the positive cone of a unique (up
to isomorphism) directed po-group G. Since Rad(M) is a lattice, we have
that G is an `-group.

Γ(Z×lexG, (1, 0)) is a perfect GMV-algebra. Let us define a mapping f :
M → Γ(Z×lexG, (1, 0)) by f(a) = (0, a) and f(a−) = (1,−a) if a ∈ Rad(M).
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Then f is injective, onto, and preserves −, +, ∨ and ∧. Consequently, f can
be extended to an injective group homomorphism f̂ : G0 → Z×lex G.

We show that f̂ is an `-group homomorphism. The proof will proceed in
several steps.

Step 1. Let a, b, u0 ∈ G+
0 . If f̂(a∧ b) = f̂(a)∧ f̂(b) and f̂(u0∧ (b− (a∧ b))) =

f̂(u0) ∧ f̂(b− (a ∧ b)), then

f̂((a+ u0) ∧ b) = f̂(a+ u0) ∧ f̂(b).

Indeed, we have

u0∧(b−(a∧b))+(a∧b) = (u0+a∧b)∧b = (u0+a)∧(u0+b)∧b = (u0+a)∧b,

which yields

f̂((a+ u0) ∧ b) = f̂(u0 ∧ (b− (a ∧ b))) + f̂(a ∧ b)
= [f̂(u0) ∧ (f̂(b)− (f̂(a) ∧ f̂(b)))] + (f̂(a) ∧ f̂(b))

= [(f̂(u0) + (f̂(a) ∧ f̂(b)))] ∧ f̂(b)

= (f̂(u0) + f̂(a)) ∧ (f̂(u0) + f̂(b)) ∧ f̂(b) = f̂(a+ u0) ∧ f̂(b).

Step 2. f̂(a ∧ b) = f̂(a) ∧ f̂(b), whenever a ∈ G+
0 and b ∈ Γ(G0, u).

Let a ∈ G+
0 and b ∈ Γ(G0, u). Since Γ(G0, u) generates G+

0 as a semigroup,
a can be written as a = a1 + · · · + an, for some a1, . . . , an ∈ Γ(G0, u). The
proof will proceed by mathematical induction on n.

If n = 1, the statement is trivial. Suppose now that the statement holds
for all a′ = a1 + · · · + ai, with 1 ≤ i ≤ n. Set a = a1 + · · · + an, u0 = an+1.
Then there exist v1, . . . , vk ∈ Γ(G0, u) such that b = (v1 + · · ·+ vk) + (a∧ b).
Since v := v1 + · · ·+ vk ≤ b ∈ Γ(G0, u), v ∈ Γ(G0, u). Hence v = b− (a ∧ b).
Since f̂ preserves meets in Γ(G0, u), we have f̂(u0 ∧ v) = f̂(u0) ∧ f̂(v).
Thus, by the induction hypothesis for a and b, we get f̂(u0 ∧ (b− (a∧ b))) =
f̂(u0)∧f̂(b−(a∧b)) = f̂(u0)∧(f̂(b)−(f̂(a)∧f̂(b))). By Step 1, f̂((a+u0)∧b) =
f̂(a+ u0) ∧ f̂(b), that is, f̂((a1 + · · ·+ an+1) ∧ b) = f̂(a1 + · · ·+ an+1) ∧ f̂(b)
for all n.

Step 3. f̂(a ∧ b) = f̂(a) ∧ f̂(b) whenever a, b ∈ G+
0 .

Let a = a1 + · · · + an, b = b1 + · · · + bk. The proof will follow complete
induction on k.

If k = 1, we apply Step 2. Suppose now that the assertion holds for all
j with 1 ≤ j ≤ k. Let B = a, A = b1 + · · · + bk and u0 = bk+1. By Step 2,

17



f̂(u0∧ (B− (A∧B))) = f̂(u0)∧ f̂(B− (A∧B)) and f̂(A∧B) = f̂(A)∧ f̂(B).
Therefore the conditions of Step 1 are satisfied, so that f̂((A + u0) ∧ B) =
f̂(A + u0) ∧ f̂(B), which proves f̂((a1 + · · · + an) ∧ (b1 + · · · + bk+1)) =
f̂(a1 + · · ·+ an) ∧ f̂(b1 + · · ·+ bk+1), for each n and each k.

Step 4. f̂(a ∧ b) = f̂(a) ∧ f̂(b) whenever a, b ∈ G0. Then a = a+ − a−,
b = b+ − b−, a = −a− + a+ and b = −b− + b+. Invoking Step 3, we get
f̂((a+ + b−)∧ (a− + b+)) = f̂(a+ + b−)∧ f̂(a− + b+). Subtracting f̂(b−) from
the right hand side and f̂(a−) from the left hand side, we obtain the claim.

We have verified that f is an MV-isomorphism of the GMV-algebras M
and Γ(Z×lex G, (1, 0)). 2

Proposition 5.3 The functor E : L → PGMV has a left-adjoint.

Proof. We show that given a perfect GMV-algebra M there is a universal
arrow (G, f). This means that f is a homomorphism from M into E(G) such
that if G′ is an object from L and f ′ is a homomorphism from M into E(G′),
then there exists a unique morphism f ∗ : G→ G′ such that E(f ∗) ◦ f = f ′.

We have, from Proposition 5.2 and its proof, that (Z×lexG, f) is a univer-
sal group for M , where f : M → Γ(Z×lexG, (1, 0)) is defined by f(a) = (0, a)
and f(a−) = (1,−a), for a ∈ Rad(M). Then it is straightforward to verify
that (G, f) is a universal arrow for M . 2

We define a functor P : PGMV → L as follows. If M is a GMV-algebra,
let P(M) := G where (Z×lex G, f) is the universal group for M . It is clear
that if f0 : M → N is a morphism of GMV-algebras, then it can be uniquely
extended to a homomorphism P(f0) from G into G1, where (Z×lexG1, f1) is
the universal group for the perfect GMV-algebra N .

Proposition 5.4 The functor P is the left-adjoint of the functor E .

Proof. It follows from the construction of the universal group. 2

We present now the main result of this section.

Theorem 5.5 The pair (P , E) of functors constitutes a categorical equiva-
lence between the category, PGMV, of perfect GMV-algebras and the cate-
gory, L, of `-groups.

In addition, if h : E(G) → E(H) is a homomorphism of GMV-algebras,
then there exists a unique homomorphism f : G→ H of unital `-groups such
that h = E(f), and f is surjective (respectively, injective) if so is h.
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Proof. According to [MaL, Thm IV.4.1], it is necessary to show that, for
a perfect GMV-algebra M , there is an object G in L such that E(G) is
isomorphic to M . To show that, we take a universal group (Z ×lex G, f).
Then E(G) and M are isomorphic. 2

Let M be a GMV-algebra. For any integer n ≥ 0 and any element x ∈M
we set n�x = x1⊕· · ·⊕xn and xn = x1�· · ·�xn, where x1 = · · · = xn := x.

Remark 5.6 In view of Theorem 5.5, any perfect GMV-algebra satisfies the
identity

2� x2 = (2� x)2. (5.3)

6 Variety of Perfect GMV-algebras

We have noted above that the class, PGMV , of perfect GMV-algebras is not
a variety. Let V(PGMV) denote the variety generated by PGMV . In this
section we present an equational basis for V(PGMV) and describe a single
algebra that generates it.

We introduce the following important example from [DvHo].
Let u ∈ Aut(R) be the translation tu = t+ 1, t ∈ R, and let

BAut(R) = {g ∈ Aut(R) : ∃ n ∈ N, u−n ≤ g ≤ un}.

Then (BAut(R), u) is a doubly transitive unital `-permutation group, and
according to [Gla2, Lem 10.3.1], the variety of GMV-algebras generated by
Γ(BAut(R), u) is the variety of all GMV-algebras.

It is worth mentioning, that if (G, u) is an arbitrary doubly transitive
unital `-group, then by [DvHo, Thm 4.11], the variety of GMV-algebras
generated by Γ(G, u) is the variety of all GMV-algebras.

We show below that V(PGMV) is generated by a perfect GMV-algebra,
thereby generalizing the result in [DiLe3, Thm 3.8] which states that
Γ(Z×lex Z, (1, 0)) is a generator for the variety generated by all perfect MV-
algebras.

Given any `-group G, we set V(E(G)) for the variety generated by the
perfect GMV-algebra E(G).

Theorem 6.1 If G is a doubly transitive `-group, then V(PGMV) = V(E(G)).
In particular, an identity holds in every perfect GMV-algebra if and only if
it holds in E(G).
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Proof. Let G be a doubly transitive `-groups, and define E(G) via (5.1).
Let M be any perfect MV-algebra. In view of Proposition 5.2, there exists
a unique `-group GM such that M = E(GM). Since every doubly transitive
`-group generates the variety L of `-groups, [Gla2, Lem. 10.3.1], and hence
all free `-groups are `-subalgebras of powers GI of G. Thus, there exist
an `-subgroup K of a power GI of G and a surjective `-homomorphism
f : K → GM . By Theorem 5.5 and condition (5.2), M = E(GM) =
E(f)(E(K)).

Define a mapping ρ : E(GI) → (E(G))I by ρ(0, (gi)i∈I) = {(0, gi)}i∈I

and ρ(1, (−gi)i∈I) = {(1,−gi)}i∈I , for gi ∈ G+ and i ∈ I. Then ρ is an
embedding, and E(GI) ∈ V(E(G)). Since E(K) is a subalgebra of E(GI), we
have E(K) ∈ V(E(G)) and M ∈ V(E(G)), since it is a homomorphic image
of E(K) ∈ V(E(G)). 2

We mention in passing that Aut(R) is a doubly transitive `-group that
satisfies the conditions of Theorem 6.1.

Proposition 6.2 If K is a nonempty family of GMV-algebras that admit
at least one state, then every non-trivial GMV-algebra in the variety, V(K),
generated by K admits a state. In addition, the class SGMV – consisting of
all GMV-algebras that admit a state or are trivial – is a variety.

Proof. If {0} 6= M ∈ V(K), then there exist an algebra F , which is a
subdirect product of a family (Mi : i ∈ I) of algebras in K, and a surjective
GMV-homomorphism h : F → M. It is clear that each of

∏
i∈I Mi and F

admits a state. Because there is a bijective correspondence between the set
of extremal states and the set of maximal ideals that are also normal, F has
a maximal filter that is also normal. It follows that h(I) is a maximal filter
of M that is also normal, and hence M admits a state. 2

An immediate consequence of Proposition 6.2 is that every non-trivial
GMV-algebra in V(PGMV) admits a state.

Motivated by the results of [DiLe1], we introduce the class, BP , of GMV-
algebras. A GMV-algebra M is a member of BP if M is trivial or each
maximal ideal I of it is normal and satisfies the equalities I− = I∼ and
I ∪ I∗ = M . We will show that BP is a variety, thereby generalizing the
corresponding result for MV-algebras [AmLe]. Our proof makes use of ideas
developed in [DvHo].
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Let M = Γ(G, u) be a GMV-algebra, where (G, u) is a unital `-group.
By a value of u in (G, u) we mean a convex `-subgroup V of (G, u) that is
maximal with respect to not containing u. Hence, φ−1(V ) is a maximal ideal
of M , where φ is defined by (2.1), and, conversely, if I is a maximal ideal of
M , then φ(I) is a value of u in (G, u).

For any value V of (G, u), we set

K(V ) =
⋂
g∈G

g−1V g

(we momentarily employ multiplicative notation for (G, u)). Then K(V ) is
a normal convex `-subgroup of (G, u) contained in V , and (G/K(V ), G/V )
is a primitive transitive `-permutation group, called a component of G.

Let V be a variety of GMV-algebras and let Γ−1(V) = {(G, u) : Γ(G, u) ∈
V}. Then, [DvHo, Thm 3.1], Γ−1(V) is an equational class of unital `-groups.
We point out here, as a word of caution, that Γ−1(V) is not a variety in
the usual sense of universal algebra, but rather a class of unital `-groups
described by equations in the language of unital `-groups.

Let

T (V) = {Γ(G, u) : Γ(G/K(V ), u/K(V )) ∈ V} ∪ {{0}}.

By [DvHo, Cor. 4.5], T (V) is a variety, referred to as a top variety of V .
Let VP be the variety of symmetric GMV-algebras satisfying the identity

(5.3). Then

V(Γ(Z, 1)) ⊆ V(PGMV) ⊆ VP .

Theorem 6.3 T (VP ) = BP , and hence BP is a variety. Moreover, it satis-
fies T (BP) = BP = T (V(Γ(Z, 1))) = T (V(E(Z))).

Proof. Let M = Γ(G, u) ∈ T (VP ) and let I be a maximal ideal of M .
Then V = φ(I) is a value of (G, u) and G/K(V ) ∈ Γ−1(VP ). Now G/K(V )
is transitive and primitive and hence we can invoke McCleary’s Trichotomy
Classification Theorem of primitive `-groups – [Gla2, Thm 7E], [Dar, Thm
33.10]. According to this theorem, G/K(V ) is either (1) Abelian, hence an `-
subgroup of the reals, (2) doubly transitive, or (3) periodic. Clearly G/K(V )
cannot be doubly transitive, since then VP = GMV , which is impossible.
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Similarly the third possibility is excluded because otherwise, there would ex-
ist an `-subgroup of G/K(V ) with a doubly transitive `-homomorphic image,
which again would imply the absurdity VP = GMV .

Consequently, (G/K(V ), u/K(V )) is an `-subgroup of the reals, and since
Γ((G/K(V ), u/K(V ))) satisfies (5.3), this yields (G/K(V ), u/K(V )) ∼= (Z, 1).
Hence, Γ(G/K(V ), u/K(V )) admits a two-valued extremal state, say s, such
that Ker(s) = φ−1(K(V )). Since Ker(s) is a maximal ideal of M , K(V ) is a
value of u in (G, u), so that K(V ) = V and V is normal. This implies that
I is normal, I− = I∼, and I ∪ I∗ = M, i.e., M ∈ BP.

Conversely, let M ∈ BP and let M = Γ(G, u). Then any value V of u in
(G, u) is normal, and V = K(V ), so that G/K(V ) is a subgroup of the reals.
Since φ−1(K(V ))∪ φ−1(K(V ))∗ = M , we have (G/K(V ), u/K(V )) ∼= (Z, 1).
It is clear that Γ(Z, 1) ∈ VP , i.e., M = Γ(G, u) ∈ T (VP ).

The equality T (VP ) = BP implies that BP is a variety, since, as noted
above, T (VP ) is a variety.

It is clear that BP ⊆ T (BP). Let now M = Γ(G, u) ∈ T (BP), and let I
be a maximal ideal of M . Then G/K(V ) ∈ Γ−1(BP), where V = φ(I). As in
the first part of the proof, we can show that G/K(V ) is an `-subgroup of the
reals. Then M admits an extremal state s such that Ker(s) = φ−1(K(V )) ⊆
I. The maximality of the normal ideal Ker(s) yields that Ker(s) = I, so that
K(V ) = V . Since G/K(V ) = G/V ⊆ R, {0/V } is a unique maximal ideal of
G/K(V ), (G/K(V ), u/K(V )) ∼= (G/K(V ), u/K(V ))/{0/V } ∼= (Z, 1), which
entails I− = I∼ and I ∪ I∗ = M, i.e., M ∈ BP.

In a similar manner we prove BP = T (V(Γ(Z, 1))). Let M ∈ T (V(E(Z))),
then as above, we have M/I ∈ V(E(Z)), and M/I is an MV-algebra for any
maximal ideal I of M which is an MV-subalgebra of Γ(R, 1). But due to
[DiLe2, Thm 18], this is equivalent to the statement (M/I)/Rad(M/I) ∈
Γ(Z, 1). Because Rad(M/I) is the zero ideal of M/I, we have M/I ∈ V(E(Z))
iff M/I ∈ V(Γ(Z, 1)). Therefore, T (V(E(Z))) = T (V(Γ(Z, 1))). 2

Let M be the set of GMV-algebras M such that either every maximal
ideal of M is normal or M is trivial. Proceeding as in the proof of Theorem
6.3, we can show that M is a variety such that

M = T (MV) = T (N ) = T (M), (6.1)

whereMV is the variety of MV-algebras and N is the class of normal valued
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GMV-algebras, which according to [Dvu2, Thm 6.8] is a variety. In addition,

M $ SGMV = T (SGMV). (6.2)

Combining Theorem 6.3 and (6.1), we have

V(PGMV) ⊆ VP ⊆ T (VP ) = BP ⊆M. (6.3)

Let SYM be the variety of symmetric GMV-algebras, and set SBP =
SYM∩ BP .

We recall for M ∈ SYM∩M, all conditions (i)–(viii) of Proposition 4.2
are equivalent.

In what follows, we show that

SBP = VP = V(PGMV).

Let M be a GMV-algebra. An element e ∈M is said to be an idempotent
(or Boolean) if e � e = e. According to [GeIo, Lem. 4.1, Prop. 4.2], the
following statements are equivalent:

(i) an element e ∈M is an idempotent;

(ii) e⊕ e = e;

(iii) e ∧ e− = 0;

(iv) e ∧ e∼ = 0;

(v) e ∨ e− = 1;

(vi) e ∨ e∼ = 0.

Let B(M) be the set of idempotents of M . Then (i) 0, 1 ∈ B(M); (ii)
e− = e∼, if e ∈ B(M); (iii) x ⊕ e = x ∨ e = e ⊕ x, x � e = x ∧ e = e � x,
for x ∈ M ; (iv) (B(M);∨,∧,− , 0, 1) is a Boolean algebra: and (v) B(M) is
the greatest GMV-subalgebra of M that is also a Boolean algebra (see [GeIo,
Cor. 4.4]). Moreover, if e ∈ B(M), then the interval [0, e] endowed with
⊕e,

−e ,∼e and 0, e is a GMV-algebra, where x ⊕e y = x ⊕ y, x−e = e � x−,
and x∼e = e� x∼, for x, y ∈ [0, e].

We say that a GMV-algebra M is (i) finitely subdirectly irreducible if
wheneverM is a subdirect product of finitely many GMV-algebrasM1, . . . ,Mn,
then M ∼= Mi for some i = 1, . . . , n; (ii) directly indecomposable if M is non-
trivial and whenever E ∼= M1 ×M2, then either M1 or M2 is trivial.

It is clear that if M is subdirectly irreducible, then M is finitely subdi-
rectly irreducible.
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Proposition 6.4 A GMV-algebra M is directly indecomposable if and only
if B(M) = {0, 1}. If M is finitely subdirectly irreducible, then B(M) = {0, 1}.

Proof. Let e be an idempotent of M . We define a mapping pe : M → [0, e]
by pe(x) := x ∧ e, x ∈ M. According to [Dvu3, Prop. 4.1 (vii)] and [Dvu4,
Cor. 4.3], pe is a surjective homomorphism of GMV-algebras. Moreover,
M ∼= [0, e]× [0, e−] under an isomorphism x 7→ (pe(x), pe−(x)), x ∈M . (Note
that x = pe(x) + pe−(x).)

If now M is directly indecomposable, then M ∼= [0, e] or M ∼= [0, e−], that
is, e ∈ {0, 1}.

Conversely, let B(M) = {0, 1} and let M ∼= M1 ×M2. If both M1 and
M2 are non-trivial, then (01, 12) and (11, 02) are non-trivial idempotents of
M1 ×M2, which is absurd.

Finally, if M is finitely subdirectly irreducible, the isomorphism M ∼=
[0, e]× [0, e−], for any idempotent e ∈ B(M), yields B(M) = {0, 1}. 2

Lemma 6.5 If M ∈ SBP is subdirectly irreducible, then either M is trivial
or M = 〈Rad(M)〉 ∈ PGMV.

Proof. Assume M = Γ(G, u) for a non-trivial unital `-group (G, u). In view
of Theorem 2.1, M is subdirectly irreducible iff G is subdirectly irreducible.
Hence, [Gla2, Cor. 7.1.3], G has a faithful transitive representation. By
[Gla2, Cor. 7.1.1], this is possible iff there is a prime subgroup C of G such
that

⋂
g∈G g

−1Cg = {1} (here, we use multiplicative notation for (G, u)). The
partially ordered set Ω := {Cg : g ∈ G} of right cosets of C – with respect to
the partial order defined by Cg ≤ Ch iff g ≤ ch, for some c ∈ C – is a totally
ordered set in this case. Further, G has a faithful transitive representation
on Ω, namely ψ(f) = Cgf , f ∈ G, with Ker(ψ) =

⋂
g∈G g

−1Cg = {1}.
Since the system of prime subgroups of G forms a root system, there is a

unique maximal ideal I of M such that C ⊆ φ(I) =: Î, where φ(I) is defined
by (2.1).

It is clear that x ∧ x− ∈ Rad(M) for any x ∈M.

Claim. If x ∈ I, then x = x ∧ x−.
There are two possibilities: (1) Cg = Cg(x∧x−) and (2) Cg 6= Cg(x∧x−).
(1) Let Cg = Cg(x ∧ x−). Then x ∧ x− ∈ g−1Cg ⊆ g−1Îg = Î . Because

g−1Cg is also prime, we have x ∈ g−1Cg. Hence, Cgx = Cg, and Cgx =
Cg = Cg(x ∧ x−) ≤ Cgx−.
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(2) Let Cg 6= Cg(x ∧ x−). The transitivity of G implies that there exists
an h ∈ G such that Cgh = Cg(x ∧ x−). Then gh = cg(x ∧ x−) for some
c ∈ C, and h = g−1cg(x ∧ x−) ∈ Î . Hence, Cgh = Cghh−1(x ∧ x−) and
h−1(x∧ x−) = (h−1x)∧ (h−1x−) ∈ (gh)−1C(gh). Since (gh)−1C(gh) is prime
and h ∈ Î, we get h−1x ∈ (gh)−1C(gh). Then h−1x = (gh)−1cgh for some
c ∈ C, and gx = ghh−1x = cgh, i.e., Cgx = Cgh. But Cgh = Cg(x ∧ x−) ≤
Cgx−.

Combining (1) and (2), we get Cgx ≤ Cgx− for all g ∈ G, i.e., x ≤
x ∧ x− ≤ x and x = x ∧ x− ∈ Rad(M). This completes the proof of the
claim.

Let now x− ∈ I. The claim above implies that x− = x ∧ x− ∈ Rad(M),
that is, M = 〈Rad(M)〉 and M ∈ PGMV . 2

The next theorem shows that V(PGMV) = VP = SBP . This result gen-
eralizes the corresponding result for MV-algebras, [DiLe1, Thm 5.11, Cor.
5.2], and implies, in particular, that M ∈ V(PGMV) iff it satisfies the iden-
tity identity (5.3).

Theorem 6.6 V(PGMV) = VP = SBP .

Proof. Take M ∈ SBP . Then M is a subdirect product of a family
(Mt : t ∈ T ) of subdirectly irreducible algebras in SBP. According to
Lemma 6.5, every Mt is a perfect GMV-algebras. Hence, M ∈ V(PGMV),
i.e., SBP ⊆ V(PGMV). Thus, (6.3) completes the proof of the theorem. 2

As a direct consequence of Theorem 6.6, we have the following result.

Corollary 6.7 T (V(PGMV)) ∩ SYM = V(PGMV).

Proof. It follows from Theorems 6.3 and 6.6 2

Corollary 6.8 Every non-trivial member of V(PGMV) is a subdirect prod-
uct of perfect GMV-algebras.

Theorem 6.9 If M ∈ SBP is non-trivial, then

M = 〈Rad(M) ∪B(M)〉.
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Proof. Due to Corollary 6.8, M is a subdirect product of a family,
(Mt : t ∈ T ), of perfect GMV-algebras. We can think of each x ∈ M
as an infinite vector x = (xt)t∈T , where xt ∈Mt for all t ∈Mt.

Claim 1. 2� x2 ∈ B(M).
Indeed, we have for all xt, 2 � x2

t = 0t if xt ∈ Rad(Mt), and 2 � x2
t = 1t

if xt ∈ Rad(Mt)
∗. Therefore, 2� x2 ∈ B(M).

Claim 2. x ∧ x− ∈ Rad(M).
This is evident.

Claim 3. x = (2� x2)− � (x ∧ x−)⊕ (2� x2)� (x ∨ x−) for all x ∈M.
If xt ∈ Rad(Mt), then xt = (2� x2

t )− � (xt ∧ x−t )⊕ (2� x2
t )� (xt ∨ x−t ).

Similarly, if xt ∈ Rad(Mt)
∗, then xt = (2�x2

t )−�(xt∧x−t )⊕(2�x2
t )�(xt∨x−t ).

In conclusion, if x ∈M , then x ∈ 〈Rad(M) ∪B(M)〉. 2

Corollary 6.10 A non-trivial GMV-algebra M ∈ SBP is perfect if and only
if B(M) = {0, 1}. Moreover, the class of perfect GMV-algebras is first order
definable in the variety M by

[(∀ x)(x− = x∼)],

[(∀ x)(2� x2 = (2� x)2)], [(∀ x)((x2 = x) −→ ((x = 0) ∨ (x = 1))].

Proof. The first part follows from Theorem 6.9. 2

7 Cardinality of Symmetric GMV-algebra Va-

rieties

The preceding sections demonstrate that symmetric GMV-algebras provide
an ideal environment for extending many fundamental properties of MV-
algebras. Thus the question arises as to how different symmetric GMV-
algebras are from MV-algebras. One way to phrase this question in math-
ematical terms is to ask how large is the subvariety lattice of symmetric
GMV-algebras. The primary purpose of this section is to show that this lat-
tice has the cardinality of the continuum, thereby demonstrating that there
exist uncountably many subvarieties of symmetric GMV-algebras exceeding
the variety of MV-algebras. Our proof makes extensive use of our results on
perfect GMV-algebras and uses the language of residuated lattices. As it is
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shown in [GaTs], there is an easy description of GMV-algebras within the
framework of residuated lattices. We start with some definitions.

A residuated lattice (abbreviated, RL) is an algebra L = (L;∧,∨, ·, \, /, e)
such that (i) (L;∧,∨) is a lattice, (ii) (L; ·, e) is a monoid, and (iii) the
operation · is residuated with \ and / as its residuals. This means that for
all x, y, z ∈ L, we have the equivalences

x · y ≤ z ⇔ x ≤ z/y ⇔ y ≤ x\z.

Throughout the remainder of this section we use the convention that, in
the absence of parentheses, · is performed first, followed by \, / and then ∨,∧.
We will also write xy = x · y. The class of RLs forms a variety, denoted by
RL. We refer the reader to [JiTs], and its predecessor [BlTs], for a systematic
discussion of residuated lattices.

An algebra (L;∧,∨, ·, \, /, e, v) is said to be a pointed residuated lattice
(abbreviated, pointed RL) provided it satisfies the following two conditions
(i) (L;∧,∨, ·, \, /, e) is a residuated lattice, and (ii) v is a distinguished ele-
ment of (L;∧,∨, ·, \, /, e).

We denote by pRL the variety of pointed RLs. One can identify RL with
the subvariety of pRL satisfying the law e = v.

For example, ifG is an `-group (written additively), then (G;∧,∨, ·, \, /, 0)
is a residuated lattice with respect to the operations x · y = x + y, x\y =
−x+y, and x/y = x−y. Similarly, if G− is the negative cone of an `-group G,
then (G−,∧,∨, ·, \, /, 0) is an RL with respect to · = +, x\y = (−x+ y)∧ 0,
and x/y = (x− y) ∧ 0.

Let (M ;⊕,− ,∼ , 0, 1) be a GMV-algebra. Then (M ;∧,∨, ·, \, /, 1, 0) is a
bounded pointed RL satisfying y/(x\y) = x ∨ y = (y/x)\y, where · = �,
x\y = x− ⊕ y, x/y = x ⊕ y∼, and 0 and 1 are the bottom element and
top element, respectively. Conversely, if (M ;∧,∨, ·, \, /, 1, 0) is a bounded
pointed RL satisfying y/(x\y) = x ∨ y = (y/x)\y, then (M ;⊕,− ,∼ , 0, 1)
is a GMV-algebra, where x ⊕ y = 0/((y\0) · (x\0)) (= ((0/y) · (0/x))\0),
x− = x\0, x∼ = 0/x, and x� y = x · y.

We denote by L := LRL, L− := L−RL, and GMV := GMVpRL the varieties
of `-groups, negative cones of `-groups axiomatized relative to RL, and the
variety of GMV-algebras axiomatized relative to pRL.

The following lemma can be found in [BCGJT] and [JiTs].

Lemma 7.1 (1) The variety of `-groups is term-equivalent to the subvari-
ety, L, of RL axiomatized, relative to RL, by the identities (e/x)x = e.
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(2) The variety L− is axiomatized, relative to RL, by the identities x\xy =
y = yx/x and y/(x\y) = x ∨ y = (y/x)\y.

(3) The variety of GMV-algebras is term-equivalent to the subvariety, GMV,
of pRL axiomatized, relative to pRL, by the identities y/(x\y) =
x ∨ y = (y/x)\y and x ∧ v = v.

If G is a variety of `-groups, according to [BCGJT, Thm 7.1], the mapping
G → G− is a lattice isomorphism between the subvariety lattices of L and
L−.

Theorem 7.2 The subvariety lattice of the variety of all symmetric GMV-
algebras has the cardinality of the continuum.

Proof. Given an `-group G, we define the perfect GMV-algebra E(G)
via (5.1). The GMV-algebra E(G) can be converted into a pointed RL
(E(G);∧,∨, ·, \, /, 1, 0), with ·, \ and / defined as above, and 1 = (1, 0)
and 0 = (0, 0).

The radical of E(G) is the set Rad(E(G)) = {(0, g) : g ∈ G+}; Rad∗(E(G)) =
{(1, g) : g ∈ G−} is a subalgebra of the the RL reduct of E(G) (we recall
that (0, g) < (1,−h) for all g, h ∈ G+.) Moreover, it is isomorphic to the RL
G−, and Rad∗(E(G)) = {x ∨ x\0 : x ∈ E(G)} = {x ∨ x/0 : x ∈ E(G)}.

If G is a variety of `-groups, then E(G) = {E(G) : G ∈ G} is a category,
and using the technique used in Section 5, Theorem 5.5, we can show that
also G is categorically equivalent to E(G) under the restriction of the functor
E to E(G). Let V(E(G)) be the variety of symmetric GMV-algebras generated
by E(G). This defines a mapping Φ that sends each G to V(E(G)). Φ is an
order preserving map from the subvariety lattice of L into the subvariety
lattice of GMV .

Claim. Φ is an order-embedding.

Let now G be an `-group variety, axiomatized relative to RL by a set Σ
of identities. Let Σ− denote the corresponding set of identities axiomatizing
G−, see [BCGJT, Lem. 7.4, Cor. 7.8, Thm 7.9]. Lastly, let Σ−

v be the set
of identities obtained from Σ− by replacing each variable x occurring in an
identity in Σ− by the term x ∨ v/x (= x ∨ x\v), where v is a variable not
occurring in Σ−, and we identify e with 0. Then, for each `-group G, G |= Σ
iff G− |= Σ− iff Rad∗(E(G)) |= Σ− iff E(G) |= Σ−

v . Equivalently, G ∈ G iff
E(G) ∈ Φ(G) = V(E(G)). Thus, Φ is an order-embedding.
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Finally, since the lattice of `-group varieties has the cardinality of the
continuum, the claim implies that so does the subvariety lattice of symmetric
GMV-algebras. This is, of course, the maximum possible, since the language
is finite. 2

Using results of [BCGJT], starting with a variety, G, of `-groups defined
by a set Σ of identities, we describe the set of identities which describes the
variety Φ(G) and which is derived from Σ.

Given a group term g(x1, . . . , xm) (written multiplicatively) and a variable
z distinct from x1, . . . , xm, let

ḡ(z, x1, . . . , xm) = g(z−1x1, . . . , z
−1xm).

Since `-groups are distributive, and since · and −1 distributes over ∨ and
∧, every identity can be reduced to a finite conjunctions of inequalities of
the form e ≤ g1 ∨ · · · ∨ gn. If G is an `-group, then according to [BCGJT,
Lem. 7.6], G |= e ≤ g(x1, . . . , xm) iff G |= x1 ∨ · · · ∨ xm ∨ z ≤ e implies
e ≤ ḡ(z, x1, . . . , xm). In view of [BCGJT, Lem. 7.7], for any group term g,
there is an RL term ĝ such that (g ∧ e)G|G− = ĝL−

. This can be done using
conjugation: xy−1 = y−1(yxy−1) = y−1(yx/y). In general, any group term
g can be written in the form g = p1q

−1
1 p2q

−1
2 · · · pnq

−1
n , where pi, qi ∈ G+. It

can be rewritten in the form

q−1
1 q−1

2 · · · q−1
n (qn(· · · (q2(q1p1/q1)p2/q2) · · · )pn/qn).

Thus we can take ĝ = s\t, where

s = qn · · · q2q1 and t = q−1
n (qn(· · · (q2(q1p1/q1)p2/q2) · · · )pn/qn.

Therefore, [BCGJT, Thm 7.9], let G be a variety of `-groups defined by a
set Σ of identities, which we may assume are of the form e ≤ g1 ∨ · · · ∨ gn. If

Σ− = {e = ˆ̄g1 ∨ · · · ∨ ˆ̄gn : e ≤ g1 ∨ · · · ∨ gn is in Σ},

then Σ− is an equational basis for G−. Changing e to 0 and each variable x
occurring in an identity in Σ− to x∨x/0, we obtain the equational base, Σ−

v ,
for Φ(G).

For example, the variety, R, of representable `-groups is axiomatized,
relative to the variety, L, of `-groups by the identity e ≤ x−1yx ∨ y−1. Ap-
plying the above procedure, we see that R− is axiomatized, relative to L−,
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by e = zx\(zy/z)z ∨ y\z. Lastly, Φ(R) is axiomatized, relative to GMV , by
the identity 0 = [(z ∨ z/0) � (x ∨ x/0)\((z ∨ z/0) � (y ∨ y/0)/(z ∨ z/0)) �
(z ∨ z/0)] ∨ [(y ∨ y/0)\(z ∨ z/0)].

Or if N is the variety of normal-valued `-groups, then is axiomatized,
relative to L, by the identity (x∧e)2(y∧e)2 ≤ (y∧e)(x∧e). The corresponding
identity for N− is x2y2 ≤ yx, and the identity for Φ(N ) is (x ∨ x/0)� (x ∨
x/0)� (y ∨ y/0)� (y ∨ y/0) ≤ (y ∨ y/0)� (x ∨ x/0).

It is worth recalling that if an `-group G is a generator of a variety G of
`-groups, then Φ(G) = V(E(G)), compare with Theorem 6.1. For example,
the variety of Abelian `-groups, A, has two important generators G = R
and G = Z, so that Φ(A) = V(E(R)) = V(E(Z)), and the variety G = L is
generated by any doubly transitive G, so that Φ(L) = V(E(G)).

8 Coproducts and Amalgamation of Perfect

GMV-algebras

In the final section of the paper, we study the amalgamation property for
the category of perfect GMV-algebras and for related varieties. In particular,
we prove that the variety SBP fails the amalgamation property. In fact, we
show much more, namely, that there exist uncountably many varieties of
symmetric GMV-algebras that fail the amalgamation property. En route, we
also consider the related concept of a coproduct.

If I is an ideal of M ∈ SYM∩M, then the GMV-subalgebra 〈I〉 of M
generated by I has underlying set

〈I〉 = I ∪ I∗.

Let M1 be a GMV-subalgebra of M2 ∈ SYM ∩M. We first claim that
if J is a maximal ideal of M2, then I = J ∩M1 is a maximal ideal of M1.
Indeed, I = J∩M1 is an ideal of M1 and it is normal and proper, since 1 /∈ J .
Now a normal ideal I is maximal iff given z /∈ I there is an integer n ≥ 1
such that (n � z)− ∈ I. Thus, if z ∈ M1 \ I, then z ∈ M2 \ J , J is normal,
and hence (n�z)− ∈ J and (n�z)− ∈ I. Consequently, I is a maximal ideal
of M1.

Conversely, if I is a maximal ideal of M1, there exists a maximal ideal J
of M2 such that I = J ∩M1. Indeed, let Î = {x ∈M2 : ∃ a ∈ I, x ≤ a}. Î is

30



a proper ideal of M2 (1 /∈ Î). There exists a maximal ideal J of M2 such that
Î ⊆ J. By the discussion of the previous paragraph, J ∩M1 is a maximal
ideal of M1, it contains I, and the maximality of I yields that I = J ∩M1.

The preceding observations yield that Rad(M1) = Rad(M2)∩M1. There-
fore, 〈Rad(M)〉 is the greatest perfect subalgebra of M ∈ SYM∩M.

Proposition 8.1 For any M ∈ SYM∩M, set

MSBP :=
⋂
{〈I〉 : I ∈M(M)}. (8.1)

Then MSBP ∈ SBP .

Proof. It is clear that MSBP ⊆ M ∈ SYM∩M. Let x ∈ MSBP and let J
be a maximal ideal of MSBP . There exists a maximal ideal K of M such that
J = MSBP ∩K. It is clear that x ∈ 〈K〉, therefore, x ∈ (K ∪K∗) ∩MSBP =
(K ∩MSBP) ∪ (K∗ ∩MSBP) = J ∪ J∗, i.e., MSBP ∈ SBP . 2

Proposition 8.2 Let M ∈ SYM ∩M and let N be a GMV-subalgebra of
M such that N ∈ SBP. Then N ⊆MSBP .

Proof. It is clear that N ∈ SYM ∩ M. If I is any maximal ideal of
M , then J := I ∩ N is a maximal ideal of N . Since N ∈ SBP , we have
N = J ∪J∗ = (I ∩N)∪ (I∗∪N) = 〈I〉∩N, which is true for any I ∈M(M).
Hence, N = MSBP ∩N ⊆MSBP , as stated. 2

Theorem 6.9 can be generalized as follows giving a GMV-analogue of
[DiLe1, Thm 5.8].

Theorem 8.3 If M ∈ SYM∩M, then

MSBP = 〈Rad(M) ∪B(M)〉.

Proof. It is clear that B(M) ⊆ MSBP and Rad(M) ⊆ MSBP . Accord-
ing to Proposition 8.2, MSBP is the largest subalgebra of M belonging to
SBP . Due to Theorem 6.9, 〈Rad(MSBP)∪B(MSBP)〉 = MSBP . On the other
hand, B(MSBP) ⊆ B(M) and Rad(MSBP) ⊆ Rad(M), proving that MSBP =
〈Rad(M) ∪B(M)〉. 2

Let V be a class of GMV-algebras and let (Mt : t ∈ T ) be a family
of algebras in V . A V-coproduct of this family is a GMV-algebra M ∈ V ,
denoted by

⊔V
t∈T Mt, together with a family of GMV-homomorphisms (ft :

Mt →M : t ∈ T ) such that
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(i)
⋃

t∈T Mt generates M ; and

(ii) IfN ∈ V and (gt : Mt → N : t ∈ T ) is a family of GMV-homomorphisms,
then there exists a (necessarily) unique GMV-homomorphisms h : M →
N such that gt = hft, for all t ∈ T .

It is clear that if a V-coproduct of a family exists, then it is unique up to
isomorphism. Further one can easily show with the use of universal algebraic
techniques that V-coproduct of any family exists whenever V is a variety.

If in the preceding definition we require that all the homomorphisms
ft (t ∈ T ) be injective, then we refer to this coproduct as the V-free product
of the family in question. It is clear that if a free product exists, so does
the corresponding coproduct, and are equal. The converse is not true. For
example, let M0 be the one-element MV-algebra and let M an arbitrary
GMV-algebra with 0 6= 1. Then M0 tGMV M = M0, but the GMV-free
product of M0 and M does not exist.

A class V of GMV-algebras is said to satisfy the amalgamation property
(AP) if given non-trivial GMV-algebras M,M1,M2 ∈ V and injective homo-
morphisms σi : M →Mi (i = 1, 2), there exists a GMV-algebra M ′ ∈ V and
injective homomorphisms τi : Mi →M ′ (i = 1, 2) such that τ1σ1 = τ2σ2. AP
is an exceedingly rare property. Of the classes of particular interest to us, the
variety of abelian `-groups is the only known variety of `-groups that satisfies
this property ([Pie1]; see also [PoTs2] for a direct proof of this result). On
the other hand, the variety of all `-groups fails AP ([Pie2]; see also [Gla2,
Thm 7.C], or [PoTs2]). We note further that the variety of MV-algebras has
AP [Mun1, Prop. 1.1], and, in fact, a variety of MV-algebras satisfies AP iff
it is generated by an MV-chain [DiLe3, Thm 13].

Lemma 8.4 Let V, U be two varieties of GMV-algebras such that V ⊆ U .
Assume that every GMV-algebra M ∈ U possesses a greatest subalgebra MV
contained in V. Then we have the following:

(1) For every family (Mt : t ∈ T ) of algebras in V,
⊔V

t Mt =
⊔U

t Mt.

(2) If given algebras M,M1,M2 ∈ V and injective homomorphisms σi :
M → Mi (i = 1, 2), there exists an algebra M ′ ∈ U and injective
homomorphisms τi : Mi →M ′ such that τ1σ1 = τ2σ2, then there exists
M ′′ ∈ V and injective homomorphisms τ ′i : Mi → M ′′ (i = 1, 2) such
that τ ′1σ1 = τ ′2σ2.
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Proof. (1) Let (Mt : t ∈ T ) be a family of GMV-algebras in V , let M =⊔U
t Mt, and let ft : Mt →M (t ∈ T ) be the associated homomorphisms. We

assert M ∈ V . Indeed, for every t ∈ T , ft(Mt) ∈ V and M = 〈
⋃

t ft(Mt)〉.
Since ft(Mt) ⊆ MV , where MV is the greatest subalgebra of M belonging
to V , we have MV = 〈

⋃
t ft(Mt)〉 = M, which proves that M ∈ V and⊔V

t Mt =
⊔U

t Mt.
(2) Let M1,M2,M σ1, σ2, M

′, and τ1, τ2 satisfy the assumptions of the
theorem. Then τi(Mi) ∈ V , for i = 1, 2, and hence τi(Mi) ⊆ M ′

V , i.e.,
〈τ1(M1) ∪ τ2(M2)〉 ⊆ M ′

V . Thus M ′′ = M ′
V and τ ′i = τi|M ′

V satisfy the
conclusion of the statement. 2

We note that, e.g., V = SBP and U = SYM∩M satisfy the conditions
of Lemma 8.4, due to Proposition 8.2.

Theorem 8.5
(1) If Mt ∈ SBP for all t ∈ T , then

⊔SBP
t Mt =

⊔M
t Mt.

(2) If Mt ∈ PGMV for all t ∈ T , then
⊔PGMV

t Mt =
⊔M

t Mt.

Proof.
(1) Let Mt ∈ SBP for every t ∈ T , let M =

⊔M
t Mt, and let ft : Mt →M

be the corresponding homomorphisms. Then M = 〈
⋃

t ft(Mt)〉. We assert
that M is symmetric. Indeed, if we set M ′ := {x ∈M : x∼ = x−}, then M ′

contains
⋃

t ft(Mt), and if x, y ∈M ′, then (x⊕ y)− = y∼ � x∼ = y− � x− =
(x⊕ y)∼ and x⊕ y ∈M ′, which yields M ′ = M. Therefore, M ∈ SYM∩M.

Define MSBP =
⋂
{〈I〉 : I ∈ M(M)}. According to Proposition 8.2,

MSBP is the greatest subalgebra of M that belongs to SBP. As in Lemma
8.4, MSBP = M ∈ SBP .

(2) We proceed as in (1). The final conclusion follows from the fact that
〈Rad(M)〉 is the greatest subalgebra of M that is a perfect GMV-algebra. 2

We recall that the free product of any family, (Gt : t ∈ T ), of `-groups
exists in the variety of `-groups L; we denote it by

⊔L
t∈T Gt.

Theorem 8.6 Let (Gt : t ∈ T ) be a family of `-groups and let G =
⊔L

t Gt.

Then E(G) =
⊔PGMV

t E(Gt).

Proof. By Theorem 8.5(2), the coproduct, M =
⊔PGMV

t E(Gt), exists, where
E is the functor defined in (5.1). For each t ∈ T , let ft : Gt → G be the
homomorphism guaranteed by the existence of

⊔L
t Gt, and let f̂t : E(Gt) →
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E(G) be defined by f̂t(0, gt) = (0, ft(gt)) and f̂t(1,−gt) = (1,−ft(gt)), for
gt ∈ G+

t .
If ψt : E(Gt)→ E(G′), then we can define a homomorphisms ψ′t : Gt → G′

such that ψt(0, gt) = (0, ψ′t(gt)) and ψ̂t(1,−gt) = (1,−ψ′t(gt)). Hence, there
is a unique homomorphism h : G → G′ such that hft = ψ′t. Consequently,
the mapping ĥ : E(G)→ E(G′) defined by ĥ(0, g) = (0, h(g)) and ĥ(1,−g) =
(1,−h(g)), for all g ∈ G+, is a homomorphism such that ĥf̂t = ψt, for all t.
The uniqueness of ĥ follows from Theorem 2.1, which proves E(G) = M. 2

Theorem 8.7 The category of perfect GMV-algebras fails AP. In particular,
the variety SBP fails this property.

Proof. As was noted earlier, the class of `-groups fails AP. Hence, there
exist `-groups G,G1, G2 and `-embeddings hi : G → Gi, i = 1, 2, such
that there is no `-group G′ with `-embeddings fi : Gi → G′ such that
f1h1 = f2h2. Let now M = E(G) and, for i = 1, 2, let Mi = E(Gi) and
let σi : M → Mi be the injective GMV-homomorphisms induced by hi

via (5.2). That is, σi(0, g) = (0, hi(g)) and σi(1,−g) = (1,−hi(g)), g ∈ G+.
Hence, by 5.5, there is no perfect GMV-algebra M ′ = E(G′) with embeddings
τi : Mi →M ′ such that τ1σ1 = τ2σ2.

If M ′ is a GMV-algebra in SBP , then 〈Rad(M ′)〉 is the largest perfect
subalgebra of M ′. Applying (2) of Lemma 8.4 and the first part of the present
statement, we have that SBP fails AP. 2

Proposition 8.8 Let G be a variety of `-groups. Then T (Φ(G)) = BP .

Proof. Since G ⊆ L, we have, by Theorem 6.1, that T (Φ(G)) ⊆ T (Φ(L)) =
T (BP) = BP . If now M ∈ T (Φ(G)) and I is a maximal ideal of M , then
Γ(Z, 1) ∼= M/I ∈ T (G) and Γ(Z, 1) ∈ T (G). Suppose now that M ∈ BP
and let I be a maximal ideal of M . Then M/I ∼= Γ(Z, 1) and that gives
M/I ∈ Φ(G). Hence BP ⊆ T (Φ(G)). 2

Before we state the next result, we note that if G of `-groups and (Gt :
t ∈ T ) a family of `-groups in G, then the G-free product

⊔G
t∈T (Gt) exists.

Theorem 8.9 Let G be a variety of `-groups.

(i) The category E(G) has AP if and only if G does.

(ii) If G fails AP, then so does the variety Φ(G).
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(iii) If Gt ∈ G for all t ∈ T , and G =
⊔G

t∈T Gt is the G-free product of the
family (Gt : t ∈ T ), then the free product of the family (E(Gt) : t ∈ T )

exists the the category E(G), and
⊔E(G)

t∈T E(Gt) = E(G).

Proof.
(i) Due to the categorical equivalence of G and E(G), one of the categories

satisfies AP iff the other does.
(ii) Let G,G1, G2 ∈ G, and let hi : G→ Gi be injections for which there

is no amalgam in G. Then E(G), E(G1), E(G) ∈ Φ(G), and let σi : E(G) →
E(Gi) be induced by hi, i = 1, 2. Suppose there exist M ∈ Φ(G) and GMV-
embeddings τi : E(Gi)→M such that τ1σ1 = τ2σ2. Then M ′ := 〈Rad(M)〉 is
the largest perfect subalgebra of M , and M ′ ∈ Φ(G). Therefore, there exists
G′ ∈ G such that M ′ = E(G′). Since τi(E(Gi)) are perfect subalgebras of M ,
τi(E(Gi)) ⊆ M ′ = E(G). The categorical equivalence of E(G) and G gives
that G,G1, G2 with the injections h1, h2 have an amalgam in G, which is a
contradiction.

(iii) It follows as in the proof of Theorem 7.6. 2

Question: Does Φ(G) has AP whenever G does?

The results below further confirm the scarcity of AP for varieties of GMV-
algebras.

Theorem 8.10 There exist uncountably many varieties of symmetric GMV-
algebras that fail AP.

Proof. There is an uncountable interval in the subvariety lattice of rep-
resentable `-groups each variety of which fails the amalgamation property
(refer to the comments following [PoTs1, Thm 4]). Thus the note prior to
Theorem 8.9 produces the desired result. 2

Now we show that the above mentioned result of [DiLe3, Thm 13], which
states that a variety of MV-algebras satisfies AP iff it is generated by an
MV-chain, does not have an analogue for varieties of GMV-algebras.

Theorem 8.11 There exist varieties of symmetric GMV-algebras generated
by a single GMV-chain that fail AP.
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Proof. Let Z be the `-group of natural numbers, and let Z wr Z be the small
(or restricted) wreath product. The elements of Z wr Z are written in the
form ((ai),m) := ((. . . , ai, . . .),m), where the support, supp(ai) = {i ∈ Z :
ai 6= 0}, of the vector (ai) is finite, and the group operation, ∗, on Z wr Z
is given by ((ai),m) ∗ ((bi), n) := ((ci),m + n), where ci = ai + bi+m. This
group admits two natural linear orders. The positive cone of one of these
orders is defined by ((ai),m) ≥ ((0), 0) if m > 0 or m = 0 and aj > 0,
where j is the largest index such that aj 6= 0. The second order is defined by
((ai),m) ≥ ((0), 0) if m > 0 or m = 0 and aj > 0, where j is the smallest
index such that aj 6= 0.

Let W+ := Z←−wr Z and W− := Z−→wr Z be the small wreath products
endowed with these two linear orders.

LetM+ andM− be the varieties of `-groups generated by W+ and W−,
respectively. They are subvarieties of the variety of representable `-groups
that cover the variety, A, of abelian `-groups, and according to [PoTs1, Thm
4], they fail AP. Now E(W+) and E(W−) symmetric GMV-chains, and gen-
erate the varieties V(E(W+)) = V(E(M+)) and V(E(W−)) = V(E(M−)).
According to the note preceding Theorem 8.9, these two varieties fail AP. 2

Acknowledgement. The authors are indebted to Prof. A.M.W. Glass for
useful discussions regarding `-groups.
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