
Perfect Hashing for Network Applications
Yi Lu, Balaji Prabhakar

Dept. of Electrical Engineering
Stanford University
Stanford, CA 94305

yi.lu,balaji@stanford.edu

Flavio Bonomi

Cisco Systems
175 Tasman Dr

San Jose, CA 95134
avio@cisco.com

Abstract— Hash tables are a fundamental data structure in
many network applications, including route lookups, packet
classication and monitoring. Often a part of the data path,
they need to operate at wire-speed. However, several associative
memory accesses are needed to resolve collisions, making them
slower than required. This motivates us to consider minimal
perfect hashing schemes, which reduce the number of memory
accesses to just 1 and are also space-efcient.

Existing perfect hashing algorithms are not tailored for net-
work applications because they take too long to construct and
are hard to implement in hardware.

This paper introduces a hardware-friendly scheme for minimal
perfect hashing, with space requirement approaching 3.7 times
the information theoretic lower bound. Our construction is
several orders faster than existing perfect hashing schemes.
Instead of using the traditional mapping-partitioning-searching
methodology, our scheme employs a Bloom lter, which is known
for its simplicity and speed. We extend our scheme to the dynamic
setting, thus handling insertions and deletions.

I. INTRODUCTION

Hash tables constitute an integral part of many network
applications. For instance, when performing IP address lookup
at a router, one or more hash tables are queried to determine
the egress port for an arriving packet. Hash tables are also
used in packet classication, per-ow state maintenance, and
network monitoring. Given the high operating speeds of to-
day’s network links, hash tables need to respond to queries in
few tens of nanoseconds.

Despite the advance in the embedded memory technology,
it is still not possible to accommodate a hash table, often with
hundreds of thousands of entries, in an on-chip memory [1].
Therefore, hash tables are stored in larger but slower off-chip
memories. It is very important to minimize the number of
off-chip memory accesses and there has been much work on
this recently. For example, Song et. al. [1] proposed a fast
hash table based on Bloom lters [2] and the d-left scheme
[3], while Kirsch and Mitzenmacher [4] proposed an on-chip
summary that speeds up accesses to an off-chip, multi-level
hash table, originally proposed by Broder and Karlin [5].

Our approach differs from the above in the construction
phase: we construct a perfect hash function on-chip without
consulting the off-chip memory. Moreover, the off-chip mem-
ory is a simple list storing each key and its corresponding
item; there is no additional structure to the list. Finally, the
space we use, both on-chip and off-chip, is smaller and our
scheme adapts well to the dynamic situation, allowing us to
perform insertions and deletions in constant time. A drawback
of our scheme (and, indeed of any perfect hashing scheme) in
the dynamic setting is that it requires a complete rebuild if

the set of keys changes drastically. We come up with various
heuristics for minimizing the probability of rebuilding.
A. Perfect Hashing

1) Denitions:
• Perfect Hash Function: Suppose that S is a subset of size

n of the universe U . A function h mapping U into the
integers is said to be perfect for S if, when restricted to
S, it is injective [6].

• Minimal Perfect Hash Function: Let |S| = n and |U | =
u. A perfect hash function h is minimal if h(S) equals
{0, ..., n − 1} [6].

2) Performance Parameters:
• Encoding size: The number of bits needed to store the

representation of h.
• Evaluation time: The time needed to compute h(x) for

x ∈ u.
• Construction time: The time needed to compute h.

Previous Work. Fredman and Komlós used a counting argu-
ment to prove a worst-case lower bound of n log e+log log u−
O(log n) for the encoding size of a minimal perfect hash
function, provided that u ≥ n2+ε [7]. The bound is almost
tight as the upper bound given by Mehlhorn is n log e +
log log u + O(log n) bits [8]. However, Mehlhorn‘s algorithm
has a construction time of order nΘ(nenu log u).

One often-used approach to search for a minimal perfect
hash function involves three stages: mapping, partitioning and
searching. Mapping nds an injective function on S with a
smaller range. Partitioning separates the keys into subgroups.
And searching nds a hash value for each subgroup so that
the resulting function is perfect. More details can be found in
[9], [7].

Fredman, Komlós and Szemerédi constructed a data struc-
ture that uses space n + o(n) and accommodates membership
queries in constant time [10]. Fox et. al. [9] constructed an
algorithm for large data sets whose encoding size is very
close to the theoretical lower bound, i.e., around 2.5 bits per
key. They also carried out experiments on 3.8 million keys
and the construction time was 6 hours on a NeXT station.
Separately, Hagerup and Tholey achieved n log e+log log u+
o(n + log log u) encoding space, constant lookup time and
O(n + log log u) expected construction time using similar
approaches [6].

The dynamic perfect hashing problem was considered by
Dietzfelbinger et. al. [11]. Their scheme takes O(1) worst-
case time for lookups and O(1) amortized expected time for
insertions and deletions; it uses O(n) space.

!"!#$%&&'($")*++,)($-".($/0,1$2$3$45($%&&'

!""#$%#!##%&'&#%$(&)(*!&+&&,-!&&),.///

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:31 from IEEE Xplore. Restrictions apply.

Fig. 1. Counting Bloom Filter and Unique Bits

B. Our Approach

Before setting out our approach, it helps to understand what,
precisely, is involved in obtaining a minimal perfect hash
function for a set S. Given U and S ⊂ U , there are many
(hash) functions which map S onto the set {0, 1, ..., n − 1}.
However, a very very small subset of these functions are in-
jective on S, and these are the minimal perfect hash functions
of interest1. Thus, most approaches to nding minimal perfect
hashes involve cleverly searching the set of all hash functions
and hence are very time consuming.

Our approach is fundamentally different. By using counting
Bloom lters (explained below), we recursively nd injections
for random subsets S1, S2, ... of S onto a set of integers which
is a constant factor larger than n. The key reason for our
algorithm’s simple construction is that it avoids searching.
While Fox et. al. compute a minimal perfect hash function
for 3.8 million keys in about 6 hours on a NeXT station, we
are able to nish in 7.7 seconds, on a Pentium4 machine for
the same number of keys. The construction time on the same
machine is 125 milliseconds for a typical Ethernet address
table with 100K entries.

We will rst describe the counting Bloom lter and our
particular way of using it.

Counting Bloom Filter and Unique Bits

Let U denote the universe of keys and let S =
{x1, x2, . . . , xn} be a subset of U .

A Counting Bloom Filter (denoted CBF) is a vector B of
m counters. Available to us are k (random hash) functions
h1(·), ..., hk(·) each of which maps an x ∈ U to a randomly
chosen element of the set {e1, ..., em}, where ei is an m-bit
vector with only its ith bit set to 1. Let h(x) be the sum of
h1(x), ..., hk(x). We refer to h(x) as the “signature” of x.

Training a CBF involves setting the vector B to the sum of
h(x1), ..., h(xn), x1, ..., xn ∈ S. An example of h(x) and the
resulting CBF are shown in Figure 1.

Let the value of each counter be c1, ..., cm. As in a random
ball-bin process, the distribution of ci approximately follows
a Poisson distribution. There is always a portion of positions
that only one key is hashed to. We call such a position a unique
bit for the key. A unique bit is illustrated in Figure 1.

Algorithm Overview

We use a sequence of CBFs of different sizes. The keys
without a unique bit in the previous lter are carried over

1Knuth [12] also notes the difculty in computing minimal perfect hash
functions. He estimates that to nd h for the list of 31 frequently occurring
English words, out of the universe of all English words, a search might need
to examine 1043 possibilities.

to the next. As a result of our construction, each key nds a
hash function hi(·) that puts it in a position that no one has oc-
cupied. Equivalently, the set of predetermined hash functions
h1(·), ..., hk(·) interpolate with one another to give a perfect
hash functions h. This is not unlike the results of traditional
approaches: Each subgroup of keys is assigned a hash value so
that together they form a perfect hash function for the group.
We do not explicitly split the keys into subgroups, but the
CBFs randomly produces a subgroup for each hash function
it uses.

Contributions

In Theorem 1, we show that as the number of CBFs goes to
innity, the encoding size goes to a minimum of 2en bits. This
is 3.7 times the information-theoretic lower bound n log e +
log log u − O(log n), without the requirement u ≥ n2+ε. A
practical construction with a nite number of CBFs gives 8.6n
bits as the encoding size.

More practical motivations for using CBFs include the ease
of implementation in hardware and the small encoding size,
which enables the use of a fast on-chip memory. Construction
is orders faster than existing schemes as veried by simulation.

In addition, we extend the algorithm to the dynamic situ-
ation where encoding size only doubles from the static case,
and remains O(n). Both insertions and deletions are handled
in constant time. Lookups consist of a single off-chip memory
access most of the time and two in the worst case.

II. MINIMAL PERFECT HASHING

Section II-A illustrates the architecture and algorithm of
the CBF-based perfect hash. In Section II-B, we show that
the minimum encoding size with the random approach goes to
2en as n becomes large. We also analyze the tradeoff between
encoding size and maximum evaluation time. In Section II-
C, we analyze the algorithm’s construction time and failure
probability. We complete the section with simulation results.

A. Description of Algorithm

1) Architecture: The perfect hash table includes an on-chip
structure and a simple off-chip list, as illustrated by Figure
2. The on-chip structure contains d CBFs, B1, ..., Bd, with
possibly different sizes, in the top layer. There is an indicator
layer in the middle, and an array of counters at the bottom. The
indicator layer is a series of bits, with ‘1‘ corresponding to a
value 1 in the CBF counter above, and ‘0‘ for all other values.
The purpose of the indicator layer is to denote the presence of
a unique bit. The counters in the bottom layer have range n,
and are placed beneath every (log n)th indicator bit. In Figure
2, n = 16. The off-chip list can accommodate exactly |S|
entries, where S is the set of keys we want to store.

2) Construction: Each CBF, Bi, is assigned ki hash func-
tions. We start by training the rst CBF, B1, with all keys
in S, as described in I-B. The indicator layer beneath the rst
CBF is updated accordingly, i.e., with a ‘1‘ indicating a unique
bit. A counter in the bottom layer records the number of ‘1‘s
present in the indicator layer up to its position.

All keys in S are hashed again with the k1 hash functions.
If a key nds a unique bit b in B1 belonging to its signature,

!"!#$%&&'($")*++,)($-".($/0,1$2$3$45($%&&'

!""'

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:31 from IEEE Xplore. Restrictions apply.

Fig. 2. Minimal Perfect Hash Function

it consults the closest bottom-layer counter before b and
determines that b is the jth unique bit. The key is hence
inserted into he jth slot of the off-chip list.

The keys without a unique bit in B1 continue to train the
CBF B2, and the procedure repeats sequentially over all CBFs
until all keys are accommodated. Once the construction is
complete, only the indicator layer and the bottom counters are
needed for subsequent lookups. The CBFs are only required
for construction.

In the event where some keys are not accommodated, we
denote it a “failure“ and repeat the entire construction with a
different set of hash functions. We will show in Section II-C
that the probability of failure can be made exponentially small
with a linear increase in the encoding size. A realistic appli-
cation can be designed to have a very low failure probability
and succeeds with one run of construction most of the time.

3) Lookup: Given a key x, we calculate its signature for
each CBF. Once we encounter a unique bit b belonging to its
signature, we consult the closest bottom-layer counter before
b and calculate the unique bit index j. We retrieve the item
from the jth slot of the off-chip list.

B. Encoding Size

Minimum Encoding Size

Theorem 1 The minimum number of bits needed to provide
n keys with one unique bit each, with random hashing, goes to
en as n becomes large. It is achievable with an innite number
of CBFs with geometrically decreasing size, each with a single
hash function.

Proof. Assuming that the hash outputs are perfectly random,
the counter value ci in a CBF converges to a Poisson distri-
bution as n becomes large.
We start with one CBF, and let the CBF contain m counters.
Recall that one counter in the CBF corresponds to one bit
in the indicator layer in the nal encoding. Assume k hash
functions are assigned to the CBF. Hence the proportion of
unique bits is f = (nk/m) exp (−nk/m). The proportion f
is maximized with nk/m = 1, and fmax = e−1.
Let the number of keys with a unique bit be s. When k = 1,
s = fm; when k > 1, s < fm, since more than one unique
bit might belong to the same signature in the latter case. For
a xed m, s ≤ fmaxm. Hence smax = fmaxm = m/e when
k = 1. This shows that using one hash function per CBF is
the optimal solution.

Since m bits can provide unique bits for at most m/e keys,
a minimum of en bits are required to accommodate n keys.
The proof also shows how to achieve the minimum encoding
size. With k = 1, setting n = m for each CBF achieves fmax.

2 3 4 5 6 7 8 9 10
5

6

7

8

9

10

11

no of sections

sp
ac

e

Fig. 3. Tradeoff between space and number of sections

Hence, letting mi = n(1 − e−1)i−1, i.e., each CBF having
a size equal to the number of keys remaining, achieves the
minimum. We can check that

∑∞
i=1 mi = en.

Based on the above theorem, the minimum size of the
indicator layer is en for n keys. The total size of the counters
in the bottom layer is also en since each counter contains logn
bits and the counters are logn bits apart. In total, the minimum
encoding size is 2en.

Maximum Evaluation Time vs. Encoding Size

While the innite sequence of CBFs provides the minimum-
space solution, it is impossible to evaluate an innite number
of hashes. This prompts us to look at the tradeoff between
encoding size and evaluation time in the nite case.

Since the sizes of CBFs in the innite sequence is geometri-
cally decreasing, the rst few CBFs provide most of the unique
bits. For this comparison, we distribute 95% of the entries
over the rst few CBFs, and over-provide in the last CBF to
accommodate the remaining 5%. We focus our attention on
the rst few CBFs, assuming the over-provision in the last
CBF works the same for all cases under comparison.

We consider the case where the number of hashes, k, in
each CBF is 1, following the same argument as in Theorem
1. Thus the number of CBFs is the same as the maximum
number of hashes to be evaluated. Also, we assume that the
load on each CBF is the same, that is, ni/mi = λ, where ni

is the remaining number of entries for CBF i and mi is the
number of counters in CBF i. We will nd the space needed
when l CBFs are used to accommodate 95% of the entries.

The total number of keys accommodated by the rst l CBFs
is tl = (1 − (1 − e−λ)l)n. Letting tl = 0.95n, we solve
λ = − ln (1 − l

√
0.05). Hence the proportion of unique bits

q = λ exp (−λ), and the total space needed is

2n/q = −2n[(1 − l
√

0.05) ln (1 − l
√

0.05)]−1

The tradeoff between space (2/q) and number of sections (l) is
plotted in Figure 3. Clearly, l = 4 is the optimal tradeoff point
between space and number of sections. l = 7 is the minimum-
space point, which is the same as the answer obtained by
equating (1−(1−e−1)l) to 0.95. In summary, a little increase
in space reduces the maximum number of hash evaluations by
almost half. A similar tradeoff can be exploited in general.

C. Construction Time and Failure Probability

Since we choose to over-provide in the last CBF to ac-
commodate all the remaining entries, we are interested in

!"!#$%&&'($")*++,)($-".($/0,1$2$3$45($%&&'

!"")

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:31 from IEEE Xplore. Restrictions apply.

the amount of space needed in the last section so that the
probability of failure is small.

Theorem 2 Let n be the number of keys remaining for the
last section, and m be the space assigned for the section. Then
the probability of failure can be made double-exponentially
small in m, and the optimal number of hash functions in this
section is k∗ = m

n ln 2.
Proof. Assuming the last section has k hash functions. For

one particular item, the probability of not nding a unique
position is

P = [1 − (1 − 1
m

)(n−1)k]k → (1 − e−
kn
m)k

A failure occurs when at least one key cannot nd a unique
position, so

Pfail = 1 − (1 − (1 − e−
kn
m)k)n → 1 − e−n(1−e− kn

m)k

k∗ = m
n ln 2 minimizes Pfail. The optimized Pfail = 1 −

exp (−n/2k∗
) = 1 − exp (−n(2(−ln2/n))m), hence doubly

exponential in m.
The average construction time is closely related to the fail-

ure probability. Construction successful in one pass requires
T = O(n). However, the actual construction time follows
a geometric distribution with parameter (1 − Pfail). So the
average construction time T = T/(1 − Pfail). The fast
construction of our algorithm requires Pfail to be small. An
actual value of Pfail is given in section II-D.

D. Simulation Results

The simulation is run on a Pentium4 machine with randomly
generated keys. We present a design example to illustrate
experimental failure probability, unique bits distribution and
average construction time for a large number of keys.

a) Design Specication: Since 4 CBFs give the optimal
tradeoff point for 95% entries (discussed in Section II-B), we
use a total of 5 CBFs. The corresponding proportion of unique
bits is 0.3375.

This gives a space ratio of 1.56 : 0.74 : 0.35 : 0.17 : 1.5,
with a total size of 8.6n. The number of hashes for the 5 CBFs
are 1, 1, 1, 1, 12 respectively.

b) Failure Probability: The experimental failure proba-
bility is obtained by running the algorithm with 1000 keys
over 105 runs. We get Pfail = 0.0012. This translates into an
average construction time T = T/0.9988 ≈ T , where T is the
duration of a successful construction with no repetition.

c) Unique Bits Distribution: The number of unique bits
in the rst four CBFs is very close to what it is designed to
be, i.e., 0.3375 of the size of the section. This veries the
correctness of the approximated Poisson distribution. Here are
data from arbitrary runs with different number of keys.

d) Construction Time: Fox et. al. performed experiments
on 3.8 million keys, and their algorithm completes in about
6 hours. We run our simulation on 3.8 million keys, with a
C program on a Pentium4 machine 100 times. The average
time for a successful construction is 7.73 seconds using the
“clock” command. It will be signicantly faster if implemented
in hardware.

For a typical Ethernet address table, the number of keys are
in the hundreds of thousands. For a 100K keys, the algorithm

Number of Keys 1000 1000000 3800000
Section 1 526 526286 2001952
Section 2 258 249887 948100
Section 3 107 118137 448368
Section 4 63 56810 215679
Section 5 46 48880 185901

TABLE I

UNIQUE BITS DISTRIBUTION FOR DIFFERENT NUMBER OF KEYS

Fig. 4. Dynamic Perfect Hash Function

completes on a Pentium4 machine in 125 milliseconds. Again
it can be reduced further in hardware.

III. EXTENSION: DYNAMIC PERFECT HASHING

A minimal perfect hash function is specically optimized
for one set S in order to achieve space efciency. The static
nature of the minimal perfect hash makes it perform poorly
when S is dynamically changing. We propose an extension
of the unique bits idea to the dynamic setting, replacing the
minimal perfect hash function with a non-minimal perfect hash
function. As a “perfect” hash, it retains an O(1) lookup time.

A. Description of Algorithm

1) Architecture: The architecture of a dynamic perfect hash
function is illustrated in Figure 4. The CBF layer and the
indicator layer are the same as in the static case. There is
no additional counter layer, and both CBF and indicator are
retained at all times. The major change is in the off-chip list:
Instead of size |S|, the list now contains as many slots as the
number of bits in the indicator layer. There is also a small
CAM for accommodating collisions in a relatively rare event
(not shown in gure).

2) Operations:
a) Insertion: At insertion, a key compares the non-

negative bits in its signature with the corresponding CBF
counter sequentially. At each comparison, it takes action
according to the counter value c at the position (illustrated
in Figure 4). Let the corresponding indicator bit be i.

Case 1: c = 0. This indicates that an empty slot in the off-
chip list is found. Change c = 1 and i = 1, and the item is
inserted into the corresponding slot.

Case 2: c = 1. This indicates the slot is occupied by another
entry and a collision has occurred. There is an option in the
algorithm to rehash, i.e., change c = 2 and i = 0. Both keys
are re-inserted into the CBF. If they meet other collisions in
the process, rehash happens recursively. A rehash is successful
if all keys involved nd a unique position.
To avoid non-deterministic time for insertion, we limit the
levels of rehash to 2. When a rehash fails, the item is entered
into the external CAM.

!"!#$%&&'($")*++,)($-".($/0,1$2$3$45($%&&'

!"""

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:31 from IEEE Xplore. Restrictions apply.

Case 3: c > 1. Increment c and move to the next CBF. If
this is the last CBF, the item is entered into the CAM.

b) Lookup: In normal situations, the index of the rst
unique bit for a key yields the correct index into the off-chip
list. When there was a collision, or no unique bits were found
for the key at insertion, the lookup is redirected to the CAM.

c) Deletion: A lookup is performed rst. The entry is
erased from the off-chip memory, or the CAM. Its signature
bits before its unique bit are subtracted from the CBF. And
the indicator for its unique bit is changed to 0.

d) Rebuild: If the CAM overows, the whole structure
is rebuilt just as in the construction process of the minimal
perfect hashing.

e) Load balancing: In order to distribute the load over
all CBFs, each key chooses a random CBF (using hashing) as
its rst CBF. The insertion process continues sequentially, and
wraps around until it covers all CBFs.

B. Performance Evaluation

1) Space: Both the counting Bloom lter and the indicator
layer have number of bits equal to a multiple of n. So the
space used is O(n). In the simulated design that follows, we
use 4 CBFs and each CBF has n counters with depth 4. It
consumes 20 bits per key.

2) Insertion: Due to limitation of space, we omit the
calculation and instead present numbers for the probability
of collision (Pc) and rehash failure (Pr). Both have analytical
formulae in terms of the load factor λ = nk/m, where n is the
number of currently active ows, k is the number of hashes in
one CBF, and m is the total space. Let the number of CBFs
be l.

For l = 5 and λ = 0.25, Pc = 0.2 and Pr = 0.1. Most of
the time, the system does not operate with peak load. At one-
fth the peak load, λ = 0.05, Pc = 0.047 and Pr = 0.005.

We design λmax = 0.25. Hence an empty slot in the off-
chip memory is found at least 90% of the time. For the rest
10%, the entry is inserted into the more power-consuming
CAM. In both cases, the insertion involves exactly one access
to the slower memory.

3) Lookup / Deletion: The complexity of deletion is the
same as that of lookup. In most cases, the process involves
one access to the off-chip memory or the CAM. The only case
where there is one access to the memory and the CAM is when
a collision occurred at insertion, and attempts at rehash failed.
Hence, with probability Pr, the process needs two accesses to
slower memory, and otherwise one access sufces.

One heuristic we use is moving an entry from the CAM
to the off-chip memory, when it nds a unique bit later. This
lowers the number of CAM lookups and the probability of a
CAM overow.

C. Trace-driven Simulation

A good application of the dynamic perfect hashing is the
ow lookup table in routers. Hence we run the algorithm on
a 5 million packet CAIDA trace collected at 9:20am, Aug
14, 2002. There are a total of 417931 ows. The number of
concurrently active ows reaches a maximum of 54853.

Since load balancing is used, each section is designed to
be the same size, 55000 bits, which is slightly more than
the maximum ow number. The total space for the encoding
is 1.1Mbits, and there are a total of 220, 000 off-chip slots.
The rst 3 CBFs have 1 hash, while the last one has 2
hashes. The CAM is assigned a size 2.5% of the maximum
ow number. The table below tabulates the experiment output:

Number Percentage
Total Insertion 417931
Total Lookup 4684091

Insertion into CAM 14799 3.54%
Lookups in CAM 67548 1.44%

Average Hash Check at Insertion 1.52
Average Hash Check at Lookup 1.57

Flows Moved from CAM 2729 0.65%

TABLE II

PERFORMANCE PARAMETERS OF DYNAMIC PERFECT HASHING ON TRACE

A rebuild is not necessary in this experiment. Note that
despite the use of 5 hashes, on average a unique bit is found
between the 1st and 2nd hashes.

IV. CONCLUSION

The paper presented a new approach to minimal perfect
hashing via counting Bloom lters. By generating random
subgroups for pre-determined hash functions, we avoid the
need of searching and as a result, speed up the construction.
In the limit, our encoding size is 3.7 times the information-
theoretic lower bound. The resulting construction is hardware-
friendly and ts the need of high-speed network applications
well.

REFERENCES

[1] H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood, “Fast hash
table lookup using extended bloom lter: An aid to network processing,”
SIGCOMM, (Philadelphia), Aug, 2005.

[2] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communication of the ACM, vol. 13, no. 7, pp. 422–426, July
1970.

[3] Andrei Broder and Michael Mitzenmacher, “Using multiple hash
functions to improve ip lookups,” Proceedings of IEEE Infocomd, 2001.

[4] A. Kirsch and M. Mitzenmacher, “Simple summaries for hashing with
multiple choices,” 43rd Annual Allerton Conference on Communication,
Control and Computing, Sep, 2005.

[5] A. Broder and A. Karlin, “Multilevel adaptive hashing,” Proceedings
of the 1st ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
43–53, 1990.

[6] Torben Hagerup and Torsten Tholey, “Efcient minimal perfect hashing
in nearly minimal space,” STACS 2001, LNCS 2001, pp. 317–326, 2001.

[7] M. Fredman and J. Komlós, “On the size of separating systems and
families of perfect hash functions,” SIAM J. Alg. Disc. Meth, , no. 5,
pp. 61–68, 1984.

[8] K. Mehlhorn, “Data structures and algorithms, vol. 1: Sorting and
searching,” 1984.

[9] Edward A. Fox, Qi Fan Chen, and Lenwood S. Heath, “A faster
algorithm for constructing minimal perfect hash functions,” 15th Ann
Int’l SIGIR Denmark, 1992.

[10] M. Fredman, J. Komlós, and E. Szemeredi, “Storing a sparse table with
o(1) worst case access time,” Journal of the ACM, vol. 31, no. 3, pp.
538–544, July 1984.

[11] Martin Dietzfelbinger, Annar Karlin, Kurt Melhorn, Friedhelm Meyer
auf der Heide, Hans Rohnert, and Robert E. Tarjan, “Dynamic perfect
hashing: Upper and lower bounds,” SIAM J. Computing, 1990.

[12] D. E. Knuth, “The art of computing programming. volume 3: Sorting
and searching,” pp. 506–507, 1973.

!"!#$%&&'($")*++,)($-".($/0,1$2$3$45($%&&'

!""0

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:31 from IEEE Xplore. Restrictions apply.

