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Many advanced optical functions, including spatial mode
converters, linear optics quantum computing gates, and
arbitrary linear optical processors for communications and
other applications could be implemented using meshes of
Mach–Zehnder interferometers in technologies such as silicon
photonics, but performance is limited by beam splitters that
deviate from the ideal 50∶50 split. We propose a new archi-
tecture and a novel self-adjustment approach that automati-
cally compensate for imperfect fabricated split ratios
anywhere from 85∶15 to 15∶85. The entire mesh can be both
optimized and programmed after initial fabrication, with
progressive algorithms, without calculations or calibration,
and even using only sources and detectors external to the
mesh. Hence, one universal field-programmable linear array
optical element could be mass fabricated, with broad process
tolerances, and then configured automatically for a wide range
of complex and precise linear optical functions. © 2015

Optical Society of America
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Advanced optical functions, such as arbitrary spatial mode con-
verters for telecommunications [1–5], linear optical quantum
computing gates and circuits [6–14], and other nontraditional
optics [15], are challenging to design and implement. Attempts
to make arbitrary unitary optical processors [8] have shown
notable successes in waveguide C-NOT gates, for example
[6,7,10,13,14]. Accurately setting the required calculated compo-
nent values is challenging, however, and both performance
and any increased functionality are limited by fabrication and
calibration precision [12].

Recent work [5,15–19] has, however, shown that, with meshes
of perfect Mach–Zehnder interferometers (MZIs) in technologies
such as silicon photonics, we could implement any spatial linear
optical function of a given dimensionality, including nonunitary
transformations. Furthermore, we could automatically design
or even adaptively self-configure such a mesh [17–19]. Such
self-configuration allows specific applications like self-aligning
beam couplers and laser beam power combiners [18]; polariza-
tion trackers [17]; spatial mode separators [17–19], combiners
[17–19], and add–drop multiplexers [5]; and systems that can

automatically find the best orthogonal channels through a linear
optical system [19].

Many design, calibration, and setup difficulties for arbitrary
finite-dimensional linear networks can be avoided using such
self-configuring approaches. Such approaches work by training
the network using desired optical inputs and outputs together
with a succession of simple single-parameter feedback loops that
set up component values one by one by minimizing or maximiz-
ing power on photodetectors. The photodetectors can be inside
the mesh [17,18] or external to it (see Supplement 1, Section 4
and [18] Appendix B). This training automatically designs
the network without component calibration, calculations, or
multiparameter iteration, and allows adaptation to the problem
of interest.

Unfortunately, actual beam-splitter ratios inside MZIs may
differ significantly from the perfect 50∶50 split [12,13], prevent-
ing large systems from working properly even when using these
self-configuring approaches. Here we show how to relax even that
requirement.

First, presuming we have some way of adjusting the beam
splitters, we show how to set them up using a “beam splitter
50∶50 setup algorithm” (BFSA) to be 50∶50 in a MZI based only
on maximizing or minimizing power on a detector; importantly,
this approach does not require that we have calibrated or balanced
photodetectors that directly measure the split ratio itself.

Second, we show that, with a double Mach–Zehnder interfer-
ometer (DMZI) configuration, we can use fixed fabricated split
ratios that can vary anywhere from 85∶15 to 15∶85; after an
automated setup, the DMZI operates as if it were a perfect
MZI with 50∶50 beam-splitter ratios.

Third, using a “mesh 50∶50 setup algorithm” (MFSA) we
show that this operation can be performed sequentially on an
entire connected interferometer mesh, even using only detectors
external to the mesh. After such a mesh setup process, we can
then use the self-configuring approaches [17,18] to program
the actual function we want the now-“perfect” interferometer
mesh to perform.

Hence, we can consider mass fabrication of complex linear
interferometer meshes, with relaxed tolerances and without pre-
cise calibration; the resulting devices can then be automatically set
up in the field as arbitrary field-programmable linear array (FPLA)
processors for any linear function. All of these adjustments and
programming use progressive, noniterative algorithms based only
on minimizing (or, alternatively, maximizing) power on detectors,
without calibration of any components.
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We now understand that arbitrary linear optical functions or
transformations of a given dimensionalityM—i.e., the equivalent
of an arbitrary M ×M matrix—can be implemented using inter-
ferometer meshes [17]. Figure 1 shows a mesh configuration for
an example 3 × 3 unitary operation [17,18].

The input is the vector of optical amplitudes at some wave-
length in the input waveguides WIi. (For mode converters,
the actual beam may be sampled in segments, e.g., by grating cou-
plers, into such waveguides [17,18].) The mesh multiplies this
vector by a unitary matrix defined by the split ratios and phase
shifts in the MZI blocks Bij, which can be set by training [17,18],
giving an output vector as the amplitudes in the channel wave-
guides WCj. For nonunitary operations, the channel waveguides
are fed through modulators to another such unitary block run
backwards [17,18] to give final outputs. Addition of optional
dummy MZI blocks, as shown in Fig. 1, means that all beams
interfering on the photodetectors used in feedback loops have
passed through the same number of MZIs; hence, if the loss is
the same in all the MZIs, the total loss is equal on all such paths,
giving a unitary transform that is “perfect” within an overall loss
factor.

Figure 2 shows example MZI block implementations (see also
Supplement 1, Section 1). These MZI blocks include phase shift-
ers of angle θ to control the split ratio of the MZI and ϕ to control
an additional phase. We expect now that the “left” (BSL) and
“right” (BSR) beam splitters inside the MZI have fabricated power
“reflectivities” RL � jrLj2 and RR � jrRj2, respectively (for field
“reflectivities” rL and rR , respectively), that possibly differ from
50%. (“Reflectivity” here means the fraction of the top left input
that appears at the upper right output for a given beam splitter
or MZI.)

We presume we have some physical way of adjusting the
split ratios of beam splitters BSL and BSR (both up and down)
after initial fabrication. This could be some trimming of the beam
splitters themselves (see Supplement 1, Section 4); alternatively,
we could use the DMZI configuration of Fig. 2(b) in which the
beam splitters are implemented with additional MZIs that may
themselves be made with imperfect beam splitters.

Now we construct an algorithm, based only on minimizing or
maximizing power in detectors DB or DR, that allows us to set
BSL and BSR to 50∶50 beam-splitting ratios, without calibrating
any component.

Defining the reflectivity differences compared to 50%, δRL �
RL − 1∕2 and δRR � RR − 1∕2, then, for unit input power in a
coherent beam into the “top” port T, the power emerging from
the “right” R port is, by a straightforward analysis of such a device,
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θ here includes all the phase differences between the two paths
inside the interferometer, and we presume the positive square
root. For simplicity, we presume that changing δRL (or δRR) does
not change the relative phase of the resulting beams in the inter-
ferometer arms (though we can handle such phases changes—See
Supplement 1, Section 2).

Note in Eq. (1), independent of δRL and δRR , that the power
in detector or monitoring point DR is minimized for the same
choice of phase θ—here a choice such that cos θ � 1 (e.g.,
θ � 0)—giving
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Such a choice also maximizes the power at output B, with
PB max � 1 − PR min; this choice of θ is therefore attempting to
put the interferometer in its best version of a “cross” state given
the actual values of δRL and δRR .

The power at output R is maximized by choosing a phase θ
such that cos θ � −1 (e.g., θ � π), giving
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The condition for maximum power in output R also corresponds
to minimum power PB min in output B, with PB min �
1 − PR max ; this choice of θ is therefore attempting to put the
interferometer in its best version of a “bar” state given the actual
values of δRL and δRR .

The function 1 − PR max � PB min (which is easier to visualize
than PR max) is graphed in Fig. 3(a), showing a minimum of zero
(so a maximum in PR max) along the line δRL � δRR . The graph

Fig. 1. Arbitrary 3 × 3 unitary transformer based on MZI blocks Bij as
described in Fig. 2, with input (WIi) and output or “channel” (WCj)
waveguides. The dashed boxes represent optional “dummy” blocks set
to the “bar” (straight-through) state that could be added for greater equal-
ity of loss or phase delay. The detectors D1–D3 are optional, depending
on whether detectors are included within the blocks.

Fig. 2. MZI block configurations. (a) “Top,” “Bottom,” “Left,” and
“Right” label waveguides in correspondence with the faces of a conven-
tional cube beam splitter. BSL and BSR are the nominally 50∶50 beam
splitters. The fabricated split ratios of all beam splitters may differ from
this ideal split ratio. DR and DB are optional detectors, which will be
mostly transparent, sampling a small amount of the power in their re-
spective waveguides to give the signal for the feedback loops used to
set up the block’s function. (b) shows those beam splitters themselves
implemented with additional MZIs that may also include beam splitters
with fabricated split ratios unintentionally different from 50∶50.
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of PR min�RL; RR� (Supplement 1, Fig. S2) is essentially identical
but rotated by 90° in the �RL; RR� plane, with its minimum of
zero along the line δRL � −δRR . These straight lines are sketched
in Fig. 3(b).

The extinction ratio for the “bar” and “cross” states can be
written as PR max∕PB min and PB max∕PR min, respectively. Note
that, for the interferometer to allow both extinction ratios to
approach the “perfect” condition of being arbitrarily large, we
require δRL � δRR � 0, i.e., 50∶50 beam splitters, which corre-
sponds to the point in the center of Fig. 3(b), where the straight
lines cross.

These lines and the convex properties of the functions
PR max�RL; RR� and PR min�RL; RR� allow an algorithm, based
only on minimizing and maximizing powers at DR, that sets both
δRL and δRR to zero, thereby making both beam splitters have a
50∶50 split ratio.

This BFSA proceeds as follows. We shine a constant power
only into the “top” T port throughout the algorithm.

(1) Set the phase shift θ to minimize the power at DR.
(2) Adjust δRL and δRR together, in the same sense (ideally by

equal amounts) to minimize the power at DR.

(3) Set the phase shift θ to maximize the power at DR.
(4) Adjust δRL and δRR together, but in the opposite sense

(ideally by equal but opposite amounts) to maximize the power
at DR.

(5) Repeat Steps (1)–(4) if necessary until the minimum
power in Step (2) is zero (or as small as can be attained) and the
maximum power in Step (4) is 1 (or as large as can be attained).

[We could also run this algorithm using detector DB, mini-
mizing power (PB min) at DB in Steps (3) and (4), and/or maxi-
mizing power (PB max) at DB in Steps (1) and (2).]

We can see why this works by looking at Fig. 3(b). In the ideal
case (solid straight arrows), where we can change δRL and δRR by
exactly equal amounts for Step (2) and by exactly equal and op-
posite amounts in Step (4), this algorithm will converge in one
pass through Steps (1)–(4). In a more general case (curved dashed
lines), as long as the sense of the relative changes is correct in the
simultaneous adjustments of δRL and δRR in Steps (2) and (4),
the algorithm can converge in multiple passes.

For the DMZI implementation, as long as we keep θL and θR
both within a range, such as 0 to π, so that cos θL and cos θR are
both monotonic in the same sense throughout, we would make
same-sense adjustments of θL and θR to change δRL and δRR in
the same sense for Step (2) and make opposite-sense adjustments
of θL and θR to change δRL and δRR in the opposite sense for
Step (4). So, δRL and δRR need not change by equal or equal-
but-opposite amounts as we correspondingly adjust θL and θR
by approximately equal or equal-but-opposite amounts; it is only
necessary that the sense or sign of the reflectivity changes is correct
for the algorithm to converge.

So far we have presumed that we can adjust the left and right
beam splitters BSL and BSR to be 50∶50 splitters; in the DMZI
implementation, we are presuming some values of θL and θR
allow us to achieve this. We can use our analysis of a MZI above
to understand just what range of fabricated beam-splitter ratios
we can tolerate while still allowing the resulting MZIs in the
DMZI configuration to function as 50∶50 beam splitters after
appropriate adjustment. Specifically, we can reuse the result
Eq. (2) above, applying it now to the MZI that constitutes either
BSL or BSR in Fig. 2(b).

Consider BSL for definiteness; now take δRL and δRR to refer
to the fixed fabricated beam splitters within BSL and θ to refer θL.
Our goal is to be able to set BSL to be overall a 50∶50 beam
splitter by adjusting θ (i.e., θL). So we want PR to be ½, and,
hence, from Eq. (1),

δRLδRR � f��1∕4� − δR2
L���1∕4� − δR2

R �g1∕2 cos θ: (4)

Squaring both sides and noting that cos2 θ ≤ 1 gives
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which can be rearranged to give
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Therefore, to impose a limit on the variation δR that can be tol-
erated in all fabricated beam splitters, we need δR2 ≤ 1∕8, which
in turn means

jδRj ≤ 1∕
ffiffiffi

8
p

≃ 0.35: (7)

So, as long as the fabricated power split ratio in the physical beam
splitters lies in the range of 15% to 85%, there is some setting of

Fig. 3. (a) 1 − PR max�RL; RR� [or, equivalently, PB min�RL; RR�].
(b) Convergence of 50∶50 alignment algorithm. The diagonal lines re-
present the expressions δRL � δRR and δRL � −δRR that correspond to
the minimums of 1 − PR max�RL; RR� and PR min�RL; RR�, respectively.
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the phase shifter in the MZI that allows the MZI overall to behave
as a 50∶50 beam splitter.

Hence, even with fabricated beam-splitter ratios anywhere
from 15∶85 to 85∶15, we can make an overall MZI block that
behaves as if it had “perfect” 50∶50 beam splitters, and we have
shown a simple algorithm based only on power maximization or
minimization that allows us to set this condition.

Finally, we can add a further progressive MFSA (Supplement 1,
Section 3) that allows us to set all the blocks in the mesh using
this approach. Versions of this algorithm can run using detectors
either embedded in each block or only externally at the outputs.

After running the MFSA, we are then ready to configure the
actual “perfect” mesh for its ultimate function using the “self-
configuring linear component algorithm” (SLCA) “training”
approach of Refs. [17,18]. Full versions of the above algorithms
and some auxiliary algorithms are described in Supplement 1,
Section 4.

Note the SLCA with embedded detectors can run continu-
ously [17,18] with live signals, though readjusting the 50∶50 split
ratios requires resetting the whole system from the beginning
again. Both the MFSA and SLCA are sequential, so an M ×M
MZI mesh requires ∼M 2 sequential minimization sequences for
each algorithm, which may limit scalability for systems that
drift in time. If adjustments each have a time constant τ, as in
heating a phase shifter, we expect times of multiple τ for each
such minimization in each MZI block, so for large meshes the
time to configure the system may not be negligible compared
to times for environmental drift.

To illustrate the range of linear operations such a FPLA
element could perform, in Supplement 1, Section 5 we show
various example designs that would result automatically.
Unitary examples include a three-way splitter, a C-NOT gate,
a Hadamard transform, a Fourier transform, and the equivalent
of a lens. Nonunitary examples include spatial differentiation and
integration, and power splitters.

We have shown how to set up the beam splitters in an MZI to
be 50∶50, and how to implement this using a DMZI configura-
tion with fixed fabricated split ratios anywhere in the range
85∶15–15∶85. We presented progressive algorithms to set up
entire meshes of MZIs in this fashion, thereby preparing them
for subsequent programming of the actual desired arbitrary linear
optical function for such a “perfect” mesh. All of these operations
can be completed progressively, based only on power maximiza-
tion or minimization in detectors that can even be external to the
entire mesh.

Hence we have established a procedure that allows us to use
mass-fabricated components with imperfect parameters to be set

up in the field for arbitrary spatial linear optical functions,
allowing fully FPLAs with relaxed manufacturing tolerances.
Such an approach therefore suggests that, by exploiting the com-
bination of relatively relaxed manufacture together with modest
and simple automatic run-time control, we may be able to imple-
ment linear optical systems of much greater complexity and so-
phistication than has previously been possible, and at low cost.

Funding. Air Force Office of Scientific Research (AFOSR)
(FA9550-09-0704, FA9550-12-1-0024).

See Supplement 1 for supporting content.
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