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Perfect quantum-error-correction coding in 24 laser pulses
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An efficient coding circuit is given for the perfect quantum-error correction of a single quantum bit~qubit!
against arbitrary one-qubit errors within a five-qubit code. The circuit presented employs a double ‘‘classical’’
code, i.e., one for bit flips and one for phase shifts. An implementation of this coding circuit on an ion-trap
quantum computer is described that requires 26 laser pulses. Another circuit is presented requiring only 24
laser pulses, making it an efficient protection scheme against arbitrary one-qubit errors. In addition, the
performances of two error-correction schemes, one based on the quantum Zeno effect and the other using
standard methods, are compared. The quantum Zeno error correction scheme is found to fail completely for a
model of noise based on phase diffusion.@S1050-2947~97!03902-4#

PACS number~s!: 03.65.2w, 89.70.1c, 89.80.1h, 02.70.2c
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INTRODUCTION

Quantum-error-correction schemes@1–8# hold the prom-
ise of reliable storage, processing, and transfer of quan
information. They actively ‘‘isolate’’ a quantum system fro
perturbations, which would otherwise decohere the s
@9,10#. How quickly this decoherence occurs depends, t
large extent, on what degrees of freedom are involv
single- or many-body, electronic, nuclear, etc. In princip
however, the development of quantum-error correction
lows one to decouple a quantum state from arbitrary fe
particle perturbations.

The decoupling in quantum error correction schemes
achieved by unitarily ‘‘rotating’’ the state into one involvin
a larger number of degrees of freedom. In this larger sp
the information about the original state is recorded only
multiparticle correlations. Thus, if only a few particles u
dergo decohering perturbations, the multiparticle correlati
are not destroyed, but only mixed among each other. A
determining which few-particle perturbation has occurred
can unmix the multiparticle correlations and hence rec
struct the original state. If, by contrast, decohering pertur
tions accumulate over too many particles then the multip
ticle correlations are no longer isolated and the er
correction begins to break down.

In this paper an efficient coding circuit for arbitrar
single-quantum-bit~qubit! errors is given. Its efficiency is
quantified relative to a specific quantum computer mod
Cirac and Zoller’s ion-trap model@11#. Next, two schemes
designed to protect against single-qubit phase noise are
ied. One scheme relies on the quantum Zeno effect@12,13#
and uses two qubits to protect against ‘‘slow’’ perturbatio
of the system; the other is a more conventional quantu
error-correction scheme@6,7,14# that requires three qubits t
protect against arbitrary single-particle dephasing. The p
behavior of the Zeno schemes is discussed and explaine
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EFFICIENT CODING

Various authors@4,5,8# have presented circuits imple
menting five qubits that protects one qubit of quantum inf
mation. This code is described as ‘‘perfect’’ since it allow
for the complete correction of arbitrary single-qubit erro
~The term qubit@15# represents the amount of ‘‘quantum
information stored in an arbitrary two-state quantum s
tem.! In this section a simpler version of the Laflammeet al.
coding circuit @5# is presented. We discuss the structure
the circuit and consider its efficiency. The measure of e
ciency used@16# is the number of laser pulses required
implement the scheme on an ion-trap quantum compute
second circuit yielding a slightly different version of th
code was found by a computer search and is the most
cient circuit so far constructed for one-bit encoding.

Figure 1 shows our simplification of the five-bit codin
circuit of Laflamme et al. @5#. This circuit uses single-
particle rotations

FIG. 1. Efficient quantum five-qubit error correction circuit. Th
system starts at the left and is successively processed through
of the elementary gates proceeding from left to right. Here the q
uc& is rotated into a protective five-particle state by the unita
operations represented by the elements of this circuit. The th
qubit gates shown are simply pairs of controlled-NOT gates.
945 © 1997 The American Physical Society
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Û5
1

A2
S 1 21

1 1 D , ~1!

represented by the square ‘‘one-qubit’’ gates in the circ
and two-particle controlled-NOT gates

~2!

here the% notation is chosen because of the equality of
controlled-NOT operation and the mathematic
exclusive-OR operation. The conditionalŝz operation itself
is given by

~3!

Here these elements are represented in the basis w
u0&5(0

1),u1&5(1
0), and

u00&5~1,0,0,0!T ,

u01&5~0,1,0,0!T ,

u10&5~0,0,1,0!T , ~4!

u11&5~0,0,0,1!T ,

etc. Decoding is executed by running the coding circui
backward, finally recovering the original state after a fe
extra operations@5,17#.

The circuit in Fig. 1 has an interesting structure: The co
ing initially entangles four auxiliary particles and then e
ecutes a double ‘‘classical’’ code on the state to be protec
This ‘‘stores’’ the degrees of freedom ofuc& in the correla-
tions of a five-particle entangled state. The classical co
each consist of a simple triple redundancy of the qubit on
upper line of Fig. 1: The first classical code may be int
preted as protecting against random bit flips and the sec
against random phase shifts. This double code was motiv
by theorem 6 of Steane@6#. He found, however, that suc
double coding required a minimum of seven qubits for
linear quantum code. The circuit in Fig. 1 produces a co
that is not linear@5#.

To see that the above circuit reproduces the Laflam
et al. code it is sufficient to consider how this circuit acts
an arbitrary qubituc&5au0&1bu1&. With the auxiliary qu-
bits initially in the statesu0& the circuit generates the supe
position

a~ u00000&1u00110&1u01001&2u01111&1u10011&

1u10101&1u11010&2u11100&)1b~ u00011&2u00101&
it

e
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e

2u01010&2u01100&2u10000&1u10110&1u11001&

1u11111&)

5a~ ub2&u00&1ub5&u01&1ub7&u10&1ub4&u11&)

1b~ ub1&u11&2ub6&u10&1ub8&u01&2ub2&u00&), ~5!

where theubj& are the three-particle Bell states defined
Laflammeet al. @5#. Here we have dropped the normalizatio
constant. This code is clearly idential to the Laflammeet al.
code up to the relabeling of the Bell states.

How efficient is this coding scheme? One measure is
tained by asking how many ‘‘clock cycles’’ are required
execute the scheme on a quantum computer. The most p
ising device, at least for relatively small numbers of tw
state systems, is a linear ion-trap model suggested by C
and Zoller @11#. In this model the basic clock frequency
limited by that of the center-of-mass mode of the trapp
ions as they undergo coupled oscillations. This limitati
arises from the requirement that the laser linewidths be n
rower than the lowest vibrational mode of the ions, thus
suring that only the correct energy levels are addressed
the laser pulses. The energy-time uncertainty relation th
fore implies that the duration of the laser pulses must exc
the inverse frequency of this lowest vibrational mode. W
then conclude that for ion-trap computers the number of la
pulses required to complete a particular algorithm is a r
sonable measure of its efficiency@18#.

Rather than directly using the circuit in Fig. 1, we op
mize it for the particular primitive instruction set of the ion
trap quantum computer in the manner shown in Fig. 2.~Note
that the three-qubit operations, the controlled doubleŝz op-
erations, require only four laser pulses each, as demonstr
in the Appendix.!

A simple counting of the requirements for the circuit
Fig. 2 yields 26 laser pulses. By contrast the original circ
of Laflammeet al. @5# appears to require at least 41 las
pulses. Another scheme using six two-qubit controlled-NO
gates and five one-bit gates was mentioned in Ref.@8#; its
unoptimized form requires 35 laser pulses@19#.

FIG. 2. Circuit from Fig. 1 rewritten in terms of the gate prim
tives of an ion-trap quantum computer@11#. The single two-qubit

gate is the conditionalŝz operation defined in Eq.~2! and pairs of
them are drawn as three-qubit gates. Each single-qubit rotation
quires one laser pulse, the two-qubit gate requires three pulses
the three-qubit gates, if implemented as single elements, req
only four laser pulses each@16#. This circuit, therefore, uses a tota
of 26 laser pulses.
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It is worth noting here that short of trying all possib
circuits it is not known in general how to determine t
optimal circuit. Much of the optimization achieved here
actually hidden in the choice of the circuit in Fig. 1, where
number of rearrangements were tried by hand to yield
‘‘simplest’’ circuit. More efficient circuits than shown in Fig
2 can be found by computer search. In fact, we show
current best in Fig. 3, where we define two new one-bit
erations

V̂5
1

A2
S 1 2 i

2 i 1 D , Ŵ5V̂Û† . ~6!

As shown, it requires only 24 laser pulses, not counting f
ther speedups such as paralleling the operation of sever
its one-bit gates.

An alternative method of error correction has been s
gested by Vaidmanet al. @13#. Its operation involves a circui
that can provide only error detectionnot error correction;
however, by sufficiently rapid operation of the circuit th
quantum Zeno effect allows it to ‘‘turn off’’ the relatively
slow errors. Using the quantum Zeno effect it corrects
small single-particle perturbations of the system rather th
the arbitrary single-particle errors of the standard schem
Nonetheless, quantum Zeno error correction has the ad
tage of only requiring four qubits. Further, we find that t
coding and decoding may each be executed using as fe
16 laser pulses with possibly only one extra for the auxilia
qubit resetting. How effective are these error correct
schemes that rely on the quantum Zeno effect? We shall
evaluate their performance for correcting phase-diffus
noise.

ZENO VERSUS STANDARD QUANTUM-ERROR
CORRECTION

In this section we compare the performance of Zeno
standard methods for quantum-error correction. Rather t
considering the schemes discussed in the preceding sec
however, we study simpler schemes that protect only aga
one-qubit dephasing. In particular, we compare a comp
two-qubit code given by Chuang and Laflamme@12#, and
independently by Vaidmanet al. @13# versus a standard
three-qubit code@6,7,14#. The two-qubit scheme relies on th
quantum Zeno effect to correct forsmall deviations in the
system’s state, whereas the three-qubit code can correc

FIG. 3. Best known circuit for encoding a single qubit in
five-qubit error correction code. As shown, 24 laser pulses would
required to implement this circuit on an ion-trap quantum compu
e
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arbitrary one-qubit dephasing. How do these schemes c
pare?

Figures 4 and 5 show complete coding and decoding
cuits for both schemes. Clearly, the Zeno scheme uses fe
resources and requires fewer gates to operate so it h
distinct implementational advantage over the more conv
tional schemes.

Our model for dephasing assumes that the phase in e
qubit undergoes an independent random walk according

au0&1bu1&→au0&1beif~ t !u1& ~7!

~up to normalization!, where the perturbing phasesf(t) are
given by the Ito stochastic calculus@20# with

f~0!50,

^^df~ t !&&50, ~8!

^^df~ t ! df~ t8!&&52d~ t2t8!dt,

etc., wheredf(t) is the Ito differential and the doubled an
gular brackets represent stochastic averages. Equation~7!
therefore describes our model of the shaded regions in F
4 and 5.

How do each of the above error correction circuits work
applied only after the dephasing has acted for a timet? De-
laying the decoding circuit in Fig. 4 for a timet after the
coding yields

r̂0[S uau2 b̄a

āb ubu2D→S uau2 e2t b̄a

e2t āb ubu2 D , ~9!

wherer̂0 is the initial density matrix for the qubituc&; i.e.,
there is no improvement using the Zeno error correct
scheme for this model of noise even for short times. A sim
lar result was noted by Chuang and Laflamme@12#. By con-
trast, a delay for timet in circuit 5 before decoding yields

r̂0→~213e2t2e23t! r̂0/41~21e23t23e2t! ŝx r̂0 ŝx/4,
~10!

e
r.

FIG. 4. Quantum Zeno error correction scheme@12,13#. Both
coding and decoding circuits are shown.~The shaded region repre
sents one-qubit dephasing.!

FIG. 5. Standard quantum one-bit dephasing correction sch
@14#. Both coding and decoding circuits are shown.
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with ŝx5(1
0
0
1) being one of the standard Pauli matrices.

A measure of~relative! coherence between a pair of stat
is given by the absolute value of the off-diagonal terms in
density matrixr̂(t) @21#,

C~ t !U ^1ur̂~ t !u0&

^1ur̂0~ t !u0&
U . ~11!

The two-qubit Zeno error correction scheme yields

C2-qubit~ t !5e2t , ~12!

whereas the standard three-qubit scheme has a cohe
bounded by its worst case

C3-qubit~ t !>~3e2t2e23t!/2 . ~13!

Finally, we note thatn evenly spaced repetitions in a tim
t of an error correction scheme will yield an improved c
herenceC according to

Cn shot~ t !5@C~ t/n!#n . ~14!

The performances of the Zeno two-qubit scheme, conv
tional three-qubit scheme, and a tenfold repetition of the
ter are displayed in Fig. 6.

Why does the Zeno-error-correction scheme fail to wo
for the noise model of Eq.~7! even at short times? Put sim
ply, the random-walk model for dephasing implies that t
expected deviation of the phase grows asAt instead oft. The
error therefore accumulates too quickly for the Zeno sche

The random-walk model of noise really has two tim
scales: the typical time between random steps and the m
longer dephasing time. The stochastic calculus approach
sumes that the former of these time scales is so short as
negligible. This means that in this model of noise, no ma
how quickly we operate the Zeno-error-correction sche
many stochastic steps have occurred. The averaging
these many random steps in phase produces a pertuba
that overwhelms the linear correction to the state. Howe
the Zeno-error-correction schemes discussed above@12,13#
require that the change in the system’s state be dominate
linear terms. The implications are that phase diffusion isnot
corrected by these Zeno-error-correction schemes unless

FIG. 6. Measure of coherence for no error correction~solid
line!, the Zeno error correction scheme of Fig. 4 at timet ~solid
line!, the three-qubit scheme of Fig. 5 at timet ~dashed line, repre-
senting the lower bound!, and the tenfold repetition of the three
qubit scheme by timet ~dotted line, representing the lower bound!.
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are repeatedly used at a rate faster than the typical time
tween random steps of the phase: the phase-diffusion
itself is already much too slow. How fast does this need to
in practice? That depends on the detailed source of the p
diffusion: For instance, it might be relatively slow~though
still faster than the phase diffusion time! when the principle
source of noise is due to external mechanical noise. O
models, however, are very much faster: Unruh’s@9# study of
decoherence due to vacuum fluctuations in the electrom
netic field coupling to a qubit yielded a time scale comp
rable to x-ray frequencies.

It is worth mentioning two error ‘‘stabilization’’ scheme
that utilize the Zeno effect: Zurek@23# has outlined a schem
that averages several copies of a computation and Be
aumeet al. @24,25# have considered in some detail a sche
that projects several copies of a computation to the symm
ric state. Because these schemes evenly spread errors
several copies of a computation rather than attempt to cor
them it may be that they circumvent the problem w
dephasing discussed here. We leave this question open
further study.

Quantum-error correction of arbitrary single-qubit erro
is rather costly of computing resources: a minimum of fi
qubits and possibly 24 laser pulses for coding~decoding be-
ing only slightly more expensive@17#!. This might be com-
pared with the resources required to execute a moderate
protected calculation; Beckmanet al. @16# show that the Shor
algorithm could be implemented on 6 trapped ions us
only 38 laser pulses to factor the number 15@22#. Alternate
error correction schemes based on the quantum Zeno e
are much more efficient to implement. However, they fail f
simple models of decoherence, such as the model of ph
diffusion considered here.

CONCLUSION

In conclusion, because error correction is virtually as e
pensive as the simplest error-correction-free computation
appears unlikely that full quantum-error correction will b
implemented for computational purposes in the first few g
erations of quantum computers. Instead, quantum-error
rection will probably initially play an important role in the
long-term storage of quantum information: implementing
true quantum memory.
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APPENDIX: QUANTUM NETWORKS ON ION TRAPS

In this appendix we describe how controlled doubleŝz
operations may be performed in four laser pulses on a Ci
Zoller ion-trap quantum computer@11#. These operations ar
the three-qubitoperations seen in Fig. 2. Labeling the grou
and excited states of ioni asug& i andue& i , respectively, and
the Fock state of the center-of-mass vibrational mode of
trap asun&c.m., we summarize two important operations:
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suitably tunedp pulse on ioni yields the operation@11,16#

Ŵphon
~ i ! : 5

ug& i u0&c.m.→ug& i u0&c.m.
ug& i u1&c.m.→2 i ue& i u0&c.m.
ue& i u0&c.m.→2 i ug& i u1&c.m.
ue& i u1&c.m.→ue& i u1&c.m. ,

~A1!

whereas a differently tuned 2p pulse on ionj yields @11,16#

V̂~ j !: 5
ug& j u0&c.m.→ug& j u0&c.m.
ug& j u1&c.m.→2ug& j u1&c.m.
ue& j u0&c.m.→ue& j u0&c.m.
ue& j u1&c.m.→ue& j u1&c.m. .

~A2!

Finally, another appropriately tunedp pulse on ionj yields
@11,16#

V̂phon
~ j ! : 5

ug& j u0&c.m.→ug& j u0&c.m.
ug& j u1&c.m.→2 i ue8& j u0&c.m.
ue& j u0&c.m.→ue& j u0&c.m.
ue& j u1&c.m.→ue& j u1&c.m. ,

~A3!

whereue8& j is adifferentexcited state of ionj .
Using these operations and taking the trap’s vibratio

mode intially in the ground stateu0&c.m. we find

Ŵphon
~ i !† V̂~k!V̂~ j !Ŵphon

~ i ! : ue& i uh1& j uh2&k→~21!h1e

3~21!h2eue& i uh1& j uh2&k .
~A4!

This completes the construction of the controlled doubleŝz
operation. We note that this construction requires only f
laser pulses as opposed to the six required to perform the
controlledŝz operations separately.

In order to see how to generalize this approach let
introduce a different notation. We start by labeling the sta
to be acted on byue1 , e2 , . . . , h1 , h2 , . . . &, where thee j
represents thej th control bit andhk represents thekth con-
trolled bit. When only a single of either kind of bit occurs w
drop the corresponding subscript. Then we introduce
space-timediagram of events on the ion trap to replace t
usual circuit notation. In these space-time diagrams the h
zontal lines represent the world lines of the ions~in an ex-
actly analogous way that they do in the usual circuits!. Fi-
nally, we superpose on these world lines the eve
corresponding to an appropriately tuned laser on each ion
this way Eq.~A4! becomes

~A5!
l

r
o

s
s

a

ri-

ts
In

where h̄[(12h). Reading from left to right, this circuit
decomposes toŴphon

(1)†V̂(3)V̂(2)Ŵphon
(1) , where now we must ex-

plicitly add the numbers of the ions. Since these circuits o
involve conditional phase changes it is sufficient to ask w
phases accumulate as we operate the various pulses. W
that whenever there is aneven number of phases to b
flipped ~i.e., an even number ofV̂ pulses! the phases accu
mulated from pulses on the control bits are unwanted
need to be canceled by applying the inverse operation
second time around. In particular, here we applyŴphon

† the

second time since we appliedŴphon the first. Similarly, be-
low where we make use ofV̂phon for a second and furthe
control bit, we must useV̂phon

† the second time wheneve
there is an even number of bits to have their phases flip
~i.e., an even number ofV̂’s!.

We now give two more example constructions

~A6!

which correspond to the series of laser pulses

Ŵphon
~1!†V̂phon

~2!†V̂phon
~3!†V̂~5!V̂~4!V̂phon

~3! V̂phon
~2! Ŵphon

~1! , ~A7!

and as a final example

~A8!

which correspond to the series of laser pulses

Ŵphon
~1! V̂phon

~2! V̂~5!V̂~4!V̂~3!V̂phon
~2! Ŵphon

~1! . ~A9!
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