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ABSTRACT

Perfect reconstruction FIR filter banks are analyzed
both in z-transform and time-domain. A condition for equal
length analysis and synthesis filters is given in terms of
orthogonality constraints on overlapping parts of the filters.
If the further condition that the filters themselves form an
orthonormal basis set is met, one obtains a paraunitary (in
z-transform domain) or unitary solution (in time-domain).
For the restricted length case of L = 2N, solutions are
shown to exist (like the lapped orthogonal transform LOT
or the pseudo-QMF modulated filters) that allow perfect
reconstruction and lend to a fast algorithm implementation.
Therefore, there is a large class of computationally efficient
perfect reconstruction FIR filter banks where analysis and
synthesis have an identical frequency behavior.

I Introduction

Analysis/synthesis systems like the one depicted in fig.
1 and having the perfect reconstruction property can be
regarded as generalized transforms where the “window”
through which the input signal is seen is larger than
the block size. Instead of processing separately adjacent
blocks of the signal, such analysis/synthesis systems process
overlapping blocks of the signal, thus reducing in part
the problems inherent in a block transform scheme. Such
analysis/synthesis systems are used in sub-band coding
methods [2] for speech and image compression but, regarded
as generalized transforms, their use can be much broader [6].

The initial concern on analysis/synthesis systems was
focused on aliasing cancellation, since the multirate nature
of such systems can lead to undesired aliased versions of
the input signal in the output. Later, the attention moved
on to perfect reconstruction systems [7,9], and an excellent
overview of the subject can be found in [8]. In parallel to the
work on filter banks and associated perfect reconstruction
analysis/synthesis systems, research on extended transforms
lead to the development of the lapped orthogonal transform
(LOT) [1,3] which uses a window equal to twice the
transform size and guarantees perfect reconstruction. Under
the same constraint on the filter length, it turns out that
pseudo-QMF filters [4] can lead to perfect reconstruction as
well, similarly to time-domain aliasing cancellation in [5].

In the present paper, it is attempted to unify the
results from various perfect recomstruction schemes. Up
to now, various frameworks have been used, making
comparisons and generalizations sometimes difficult. Below,
the equivalence of several solutions is demonstrated, as

for example between paraunitary filter banks and LOT’s,
allowing to carry over results and interpretations from
one scheme to the other and vice versa. Conditions for
equal complexity analysis and synthesis are given, and
new schemes, especially in terms of low computational
complexity, are indicated.

II Analysis of Filter Banks and Transform Systems

When analyzing filter banks or transform systems, one
can use z-transform or time-domain methods. The former
leads to matrices of polynomials (in the FIR case) while
the latter gives rise to block-circulant or block-Toeplitz
matrices. The two approaches are complementary and
given the problem at hand, one or the other might be
better suited. We assume, following fig. 1, that the
analysis/synthesis systems have M channels (the number
of channels is equivalent to the transform size) and that the
channels are subsampled by N (the step size at which the
transform window advances over the signal). The case of
most interest appears when critical sampling is used, i.e.
the number of channels is equal to the subsampling factor
(M = N) and therefore the number of sample per unit of
time is conserved in the system.

Since we are concerned mainly with perfect reconstruc-
tion analysis/svnthesis systems where both the analysis and
the synthesis filters are FIR with length L, and L, respec-
tively, we will specifically look at the following problems:

- Is perfect reconstruction possible?

- Is the complexity of the synthesis equal to the complexity
of the analysis?

- Are the synthesis filters identical to the analysis filters
{within possible time reversal) ?

This will define classes of solutions as will be shown.

a) z-transform analysis

A filter with z-transform H,(z) followed by a subsam-
pling by N is best described by its decomposition into
polyphase components H; x(2) [2,9].

N-1
Hi(z) = Y Hyx(2V)z™* (1a)
Hi(zV) = fi Rijgnnz™ "N (18)

where h; , are the elements of the impulse response of the
i-th filter. For example, an unit impulse at time —k will
generate an output in the subsampled domain equal to the
k-th polvphase component, that is H;(z). We define the
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following polyphase component matrix for the analysis filter
bank:

go,ogz) gO,N—l EZ;
H,{2) = 1'? ‘ LN._I ¢ (240)
Har—1,0(2) Hpyo,nv-1(2)

and, with an inversion of the order of the polyphase
components, the polyphase matrix for the synthesis filter
bank:

gg,}v_lgzg gO,OEZ;
G=| "7 " (26)
Gp-1,n-1(7) Gam-1,0(2)

It can be verified that a sufficient condition so that the
analysis/synthesis system of fig. 1is a perfect reconstruction
system is that {7,8,9]:

[G,(2)]" - Hy(z) =27" T . (3)

Other solutions are obtained by cyclically permuting
the polyphase components and are therefore similar within
a delay to the solution in (3) [7]. Note that the delay given
by 2z~ on the right side of (3) is greater or equal to zero if
all filters involved are causal. From the input to the output,
there is an additional delay of N — 1 samples due to the
multirate nature of the system [9]. The design problem for
perfect reconstruction systems is to find pairs of analysis
and synthesis filter banks so that (3) is satisfied. Usually,
the analysis bank is chosen first and then the synthesis bank
is found so as to satisfy perfect reconstruction. Note that
invertibility of Hy(z) is not sufficient, since such an inverse
might lead to unstable filters and because one might expect
the synthesis filters to be FIR as well (assuming as we do
that the analysis filters are FIR). Three classes of perfect
FIR reconstruction systems can be defined.

(i) Perfect FIR Reconstruction

The necessary and sufficient condition for FIR perfect
reconstruction is that the determinant of H,(z) be a
monomial [93 An equivalent statement is that the Smith
form of Hy(z) is a diagonal matrix of increasing delays.
Then G,(z) can be obtained from the cofactor matrix of
H,(z) and will yield perfect reconstruction.

(ii)Perfect FIR reconstruction with equal length analysis and
synthesis filters.

A sufficient condition for this class will be given in the
next section.

(iii) Perfect FIR reconstruction with identical analysis and
synthesis filters

Note that the identity is within time reversal. A
necessary and sufficient condition for this class is that Hp{z)
satisfies:

[Hp(z7"))" -Hp(z) =1 (4)
Obviously in this case G;(#) can be chosen as:
Gylz) =27 - Hy(s7) (5)

where m is chosen so that G,(z) leads to causal synthesis
filters, and therefore, (3) is satisfied with [ = m. Conversely

if G,{z) satisfies (5), i.e. perfect reconstruction is achieved
with identical analysis and synthesis filter, then H,(z)
satisfies {4). In the case of critical sampling (M = N) a
matrix H,(z) that satisfies (4) is called a paraunitary matrix
[7,8] and the product in (48 is commutative since Hy(2) is
square.

Obviously, class (i) contains (ii) which in turn contains
(iii). While (iii) is most desirable, it is also most constrained.
Actually, we will see that certain design problem do not have
a solution in (iii). The other classes have more freedom but
also present more problems. In (i), the synthesis filter can be
much longer than the analysis filters and in (ii) the synthesis
filters can have a somewhat exotic frequency response even
if the analysis filters are a perfectly well behaved set of
bandpass filters.

b} Time domain analysis

The operation of a subsampled analysis filter bank can
be described in the time domain with block-Toeplitz or
block-circulant matrices (depending on how the boundaries
are treated). Assuming a M-channel filter bank with
subsampling by N, then the blocks are of size M by N.
The structure of one line of the block matrix is of the form
( A; being of size M by N }:

[Tg]bl=n~00A.o.A.1 ...AK-[O... (6)

and describes the transform of the inputs into the
subsampled channels (the subscript ¢ stands for analysis and
bl for block-line). The reconstruction in the synthesis bank
can be described by an inverse transform, again with block
structure and having one line as shown below ( B; is of size
M by N ):

[Ty =...0B%,_, ... BT BT 0 ... 7
K 1 0

where the subscript ¢ stands for synthesis. Now, we can
consider the three classes of perfect FIR reconstruction
systems in the context of the time-domain analysis.
We assume that T, in (6) is a banded block-circulant
matrix (circular extensions at boundaries). FIR perfect
reconstruction means that the left inverse of T, is also
banded {the inverse is block-circulant), and this corresponds
to class (i). Class (ii), equal length analysis and synthesis
filters (K = K’), can be achieved by the following sufficient
condition:
Condition C1: Orthogonality of overlapping blocks, that
" K—1

SNATLA =0, k=1,...

=0

K -1 (8)

is sufficient for pertect FIR reconstruction with equal length
filters given that there are N linearly independent analysis
filters; this condition is sometimes called “Orthogonality of
the tails of the transform” 4‘1,3].

Proof: the product T - T, is block diagonal because
of (8) and the diagonal element is a matrix of size N by &
equal to:

K-1
i=0

Since there are N independent filters, T4 has rank N
and can thus be inverted. Then, the synthesis matrix T,
has block lines of the form:
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[Tolor=... OT; - A%y ... T - AT ... (10)
The condition of orthogonality of the tails is not
necessary, because the assumption that the central term of
the matrix product (corresponding to {9) above) is different
from zero and all others are zero is too restrictive. When the
N by N matrix T, equals indentity, we have the property

™. T, =1 (11)

and the synthesis filter are equivalent to the analysis
filters, and we have a class (iil) solution. ~When the
analysis/synthesis is critically sampled (M = N}, it means
that the filters of the bank are mutually orthogonal and of
norm 1, and therefore, T, is a unitary matrix.
c) Relation between z-transform and time-domain analysis.

In order to see the exact relationship between the two
descriptions, it is convenient to express H,(z) and G,(z) as
polynomials with matrix coefficients (rather than matrices
with polynomial coefficients). We will call this the “sum
form” of the polyphase filter matrices.

K-1 )
H,(:) = Y Hyo o™ (12)

and a similar relation for Gp(2) with matrices Gp;. The
values of the matrices Hy; and Gy, follow from (2) by
inspection. Because of the time-reversal inherent to the
convolution, it is easy to verify that:

Av_g—1 =Hpe - Jn, Be=Gpe- Iy (13)

where J is the antidiagonal matrix of size V by N. As
a simple example, take the case of the block transform of
size N by N that advances by N samples at a time over the
signal. The matrix T, in (6) is therefore block diagonal
with block Ao of size N by N. Assume that Ay is a
unitary transform, then perfect reconstruction is achieved
with Ag = By and we have T;! = TT. In terms of z-
transform analysis, we have (from (13)) and since J% =I:

Hp(z) = Ao -In, Gp(2)=A¢-In (14)

Therefore replacing (14) in (3), we get

In AT Ay Iy =1 (15)

and perfect reconstruction is verified. Note that this simple
example shows also that block transform methods are a
particular case of analysis/synthesis systems with filter
length, number of channels and subsampling factors all equal
to N (see fig. 2). Now that the relationship between z-
transform and time-domain analysis has been shown, we
can draw some parallels between the two representations.
First, what is the meaning of condition C1 (orthogonality
of the tails) in the z-transform domain. Let us consider the
product:

K-t
[Hp(z_l)]T ‘Hy(z) = Z H;fz “Hp = T (18)

This is because of (8), the orthogonality of the tails.
Note that T! = Jy - T4 - Jy following (9) and (13).
Therefore, choosing G,(z) as:

Gp(z) = 27+ - Hp(71) - [T (17)

will yield perfect reconstruction and defines thus the class
(ii) solutions in the z-transform domain. Assume now that
T, = T4 =1, then (16) means that H,(z) is paraunitary
(see (4)). Therefore, the condition C1 together with Tyq =1
is equivalent with the fact that H,(2) is paraunitary. From
(11) and (16}, we have the equivalence:

T To=1 = [H() Hy(s)=1  (18)

Note thaf in the critically sampled case (M = N), all
matrices are square and left inverses are also right inverses.
Then, paraunitariness of Hy(z2) is equivalent to T, being a
unitary matrix.

III Solutions in the restricted length case L, = 2N

When the analysis filters are restricted to L, = 2N
(that is, the analysis window is twice the step size), the filter
design problem is simplified. Furthermore, this case is simple
enough and should therefore illustrate some of the results
from the previous section. Only the critically sampled case
(M = N) will be considered, and same length analysis and
synthesis filters are desired (L, = Ly = 2N).
a) Analysis of the case Ly, = 2N

From (6) and (7), we see that T, - T, = I can be met
by satisfying:

Bl A, +BT - A, =1

Bl A, =BT . A;=0

(19a)
(196)

Orthogonality of the overlapping blocks of the analysis
filters, that is, AT - A; = 0, is sufficient to satisfy (19b)
since one can choose B; = A;-[ATA, + ATA,]"T and
achieve perfect reconstruction. Now, if the normalization
equation is also satisfied, that is:

AT A +AT. A =1 (20)

then obviously, B; has to be chosen equal to A; and we have
a paraunitary solution. In that case, the matrix product
in (4) is commutative (recall that the system is critically
sampled and that therefore H,(z) is of size N by N):

H, (:")]"  Hy(z) = Hp(2) - [H, ()" =1 (21)

From (21) it follows that the following two relations
hold simiultaneously:

Al Ag+AT. A, =1, AT A, =0 (22)

Ay AT +A,-AT=1, A, Al =0 (23)
Note that (22) and (23) are absolutely equivalent. The
orthogonality condition in (22) means that the N columns
of Ag are each orthogonal to the N columns of A;, while
(23) means the same for the rows of Ay and A;. The
normalization in {23) means that the N filters form a size NV
orthogonal basis set.
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b) Lapped orthogonal transforms (LOT)

Lapped orthogonal transforms have been introduced in
[1] and further investigated in [3]. They are essentially
obtained by condition (23) and the additional constraints
that the number of channels is even and that the filters have
linear phase (N/2 symmetric and N/2 antisymmetric filters).
In that sense, LOT’s are a sub-class of paraunitary solutions
(linear phase and length constraint). Note that condition C1
together with T; = I is the extension of the LOT concept
to arbitrary filter lengths.

Design techniques have been developed for the LOT in
the case L = 2N [1,3], but they do not generalize well for
lengths greater than 2N (for example, some dependencies
which are linear for L, = 2N become non-linear for longer
filters). From a computational point of view, the LOT
can be based on a fast transform (a DCT typically) [3],
thus making the LOT computationally very efficient (two
fast transforms and N/2 rotations as a typical case). It
is interesting to note that two techniques that have been
developed independently, namely perfect reconstruction FIR
filter banks and lapped orthogonal transforms, lead to the
same solution characterized by paraunitary (in z-transform
domain) or unitary (in time domain) matrices.
¢)Modulated filter bank with perfect reconstruction.

Pseudo-QMF filters (PQMF) have been proposed as
an extension to N channels of the classical two-band
QMF filters (e.g. [4]). PQMF analysis/synthesis systems
achieve in general only the cancellation of the main aliasing
term. However, when the filter length is restricted to
L, = 2N, they can achieve perfect reconstruction under
certain conditions. The main advantages of PQMF filters
are their low computational complexity as well as the
fact that the window function can be tuned to satisfy
additional design constraints while maintaining the exact
reconstruction property.

Assume that N is even and that critical subsampling
is used. Then the i-th analysis and synthesis filters are
obtained by modulating a real prototype filter evenly over
the frequency spectrum. While the modulating frequencies
are easily obtained from the fact that the whole spectrum
has to be covered with real filters, the selection of a phase
term for the analysis and the synthesis is more delicate.
A family of PQMF filter bank that achieves main aliasing
cancellation has been designed in [4] and is of the form:

cos(&'%’;f—l) (n - (%)) + ¢,(,2)4)

for the analysis filter (hp,(n) is the impulse response of the
prototype filter). In the general case the main aliasing term
is canceled for the value of the phase:

hy(n) = hpr(n) -

™ T

ok 3 +k > (25)
and it can be shown that this property also holds for any
“non singular” value of the prototype filter. The synthesis
filters have the same modulation but with a negative phase
term equal to —§ — kZ.

In the case L, = 2N and assuming that hy,(n) = 1,n =
0,...,2N —1, it can be verified that eq. (19) and (22) hold,
leading to a paraunitary solution (class(iii)). The matrices
Ay and A of the unwindowed filter bank satisfy the relation

AT A =0, AT Ag+AT . A =1 (26a)

AT Ag=1/2-(1+3), AT A, =1/2-(1-3) (26})

While the two first relation are common to any L, = 2N
class (iii) solution, the relation (26b) is particular to the
modulated filter bank. The property that a filter bank
derived by a modulation of a window function can lead to
exact recomstruction in the case L, = 2N had appeared
in a in a slightly different context [5]. What condition has
the window hy,(n) to satisfy for exact reconstruction and
paraunitariness to be preserved?. Assume that a symmetric

window function or prototype filter is used. The new
matrices Aj and A are given by:
t=Ag-W, Al=A;-W (27)

Where W is a diagonal windowing matrix given by:
W = Diaglhyr(0), hpr(1), ... hpr(N/2 = 1)] (28)

and W' = Jn - W - Jy has the diagonal element of W
in reverse order. We can readily verify that the condition
Al - Al =0 is verified since

AT A=W AT -A; Iy W.-Jy=0. (29)

follows from (26a). If we compute the product A" - Ay +
A'T . A! and take into account eq.(26b) we find that:

'

AT AL+ AT AL = W24+ W72 (30)

The matrix W2 + W2 is a diagonal matrix with the i-th
diagonal element of the form

A2, (i) + B2, (Nf2—-1—1) (1)

This allows us to state the following result:

Result: The windowed modulated filter bank allows exact
reconstruction in the case L, = 2N if and only if the matrix
W2+ W2 is non singular, furthermore if the window meets
the condition

B2 (3) + hZ.(Nf2-1-1i)=1 (32)

then the solution is paraunitary. Some discussion of the
windowed PQMF scheme seems appropriate; first, we note
that windowing will never destroy the orthogonality of
overlapping blocks (the columns of A, and A, are simply
weighted by the window function, thus conserving their
mutual orthogonality). Therefore exact reconstruction with
filters of the same length is conserved over windowing. The
degree of freedom introduced by the window allows to trade
off frequency domain and time domain properties of the filter
bank, thus optimizing the design for a given application.

It is the particular form of the products AT - A in (26b)
that provides the “window independence”. For the sake
of illustration, we indicate an example on how to generate
matrices A; that will satisfy (26b). Assume an orthogonal
basis of size N given by the vectors Vo Vi -+ Vy_1, then
choose:

Ao = [y’o Vl e V%L_l Vg——l e V1 VQ] (330.)

A, = [V% V;;__H oo Vo =V - _V%L+l _V‘}] (33b)
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Then (26) is automatically satisfied. The PQMF filter bank
is a particular case of (33). Unfortunately such a technique
to design the L, = 2N filter bank excludes linear phase
solutions. The condition on the window given by eq.(32) is
quite important, if it does not hold, the synthesis filter bank
will be given by:

B, =A; (W2+W?)™! (34)

The inverse which has to be applied at the synthesis might
deemphasize any benefits introduced by the window.

IV Conclusion

After having set up the analysis framework both in
z-transform and time-domain, we have shown conditions
for perfect FIR reconstruction that guarantee also certain
constraints on the synthesis filters (equal complexity, same
amplitude frequency response as the analysis filters). The
concept of orthogonal overlaps has been shown to be
powerful in that context, and the equivalence of unitary
time-domain matrices and paraunitary z-transform domain
matrices has been demonstrated. In the restricted length
case (L = 2N), it has been shown that several schemes
exist that achieve both perfect reconstruction and low
computational complexity, as for example the modulated
PQMF filter banks. Note that the focus here was on
“sum” forms of polyphase matrices (see equ.(12)). Another
approach uses “product” forms instead [8] and a companion
paper {10] describes results on perfect reconstruction FIR
filter banks where the filters are constrained to some
symmetry conditions.
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Fig. 1: Analysis/synthesis system with M channels and
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Fig. 2: Size-N block transform interpretation as a filter
bank with N filters of length-N subsampled by N.
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