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Perfect Reconstruction versus MMSE
Filter Banks in Source Coding

Karine Gosse,Member, IEEE,and Pierre Duhamel,Senior Member, IEEE

Abstract—Classically, the filter banks (FB’s) used in source
coding schemes have been chosen to possess the perfect recon-
struction (PR) property or to be maximally selective quadrature
mirror filters (QMF’s). This paper puts this choice back into
question and solves the problem of minimizing the reconstruction
distortion, which, in the most general case, is the sum of two
terms: a first one due to the non-PR property of the FB and
the other being due to signal quantization in the subbands. The
resulting filter banks are called minimum mean square error
(MMSE) filter banks.

In this paper, several quantization noise models are considered.
First, under the classical white noise assumption, the optimal pos-
itive bit rate allocation in any filter bank (possibly nonorthogonal)
is expressed analytically, and an efficient optimization method of
the MMSE filter banks is derived. Then, it is shown that while in
a PR FB, the improvement brought by an accurate noise model
over the classical white noise one is noticeable, it is not the case
for MMSE FB. The optimization of the synthesis filters is also
performed for two measures of the bit rate: the classical one,
which is defined for uniform scalar quantization, and the order-
one entropy measure. Finally, the comparison of rate-distortion
curves (where the distortion is minimized for a given bit rate
budget) enables us to quantify the SNR improvement brought by
MMSE solutions.

I. INTRODUCTION

CLASSICALLY, in transform coding schemes, the signal
to be encoded is split into several decorrelated sub-

band components prior to quantization. This encoding process
(transform and quantization) performs lossy compression, and
a classical problem is to choose the quantization steps so that
the original signal is reconstructed with minimum distortion
for a given bit rate budget. Usually, the signal reconstruction
is done by means of the inverse transform applied to the
quantized coefficients, and in the case of filter banks, it thus
relies on their perfect reconstruction (PR) property. Since the
reconstruction error is cancelled, this is the best possible choice
in the absence of quantization in the subbands. However,
the presence of quantization puts this optimality back into
question.

In fact, taking the effects of noise into account in the
optimization of the system has been known to be successful
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elsewhere. In the communication area, the analysis FB is
equivalent to sending the input signal into a multichannel. The
quantization noise is equivalent to the channel noise, and the
synthesis PR FB thus corresponds to a zero-forcing equalizer
(ZFE), which is the equalizer that exactly inverts the channel
filters when no noise is present. Yet, in noisy channels, ZFE are
largely overcome by minimum mean squared error (MMSE)
equalizers. As another example, in the signal processing area,
minimizing the distortion due to additive noise has led to
the so-called Wiener filters [1]. Recently, such Wiener filters
have even been introduced in each subband of an orthonormal
wavelet filter bank (i.e., lossless PR FB) for the restoration
of fractal signals distorted by a transmission channel and
additive noise [2].

Focusing on -band FB-based systems, this paper proposes
solutions for obtaining the reconstruction FB’s that minimize
the mean squared (MS) distortion introduced by the quantizers.
These results are compared with the PR case in a situation
where the distortion is minimized for a given bit rate budget.

Note that previous works were related to such a problem.
The closest one can be found in [3], in which an optimization
of the synthesis window of an analysis/synthesis system using
the weighted overlap-add synthesis method is performed. Such
a scheme is a modulated filter bank (MFB). When quantization
noise is present, the authors also use a statistical model for
designing the optimal synthesis filter in the MSE sense. This
approach is further generalized by a study of matrix Wiener
filters for subband coders in [4], by a multirate Kalman
filtering formalism in [5], and by an MMSE design of two-
dimensonal (2-D) filters using a recursive pseudo-adaptive
algorithm [6]. Our work can be seen as an extension of these
studies since it addresses the tuning of both the synthesis
filters and the subband quantization steps in the general case
of filter banks, including orthogonal transforms and MFB’s.
The performances of various other analysis/synthesis systems
(including the discrete Fourier transform (DFT), quadrature
mirror filter (QMF), and pseudo-QMF filter banks) in the
presence of quantization have also been measured in [7].

Expressing the MSE to be minimized requires the choice of
a quantization noise model. Here, for the sake of simplicity,
we consider uniform scalar quantization, and this results
in a simple additive noise model. Uniform quantization is
widely used in subband coding because of its simplicity, but
other choices, such as pdf-optimized scalar quantization, are
also compatible with our approach. Previous work somewhat
related to ours was undertaken in this case. Westerink [8] uses
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Fig. 1. Compression system including an FB and a quantization stage.

a gain-plus-additive noise model [9] of the quantizer in order
to evaluate the amount of quantization error introduced by a
QMF filter bank in an image coding context. This work was
then extended by Uzun [10], Haddad [11], [12], and Kovačevíc
[13], [14]. They use the decomposition of the mean squared
distortion into a signal term and a random term emphasized
by Westerink. The signal distortion part can be cancelled by
the introduction of a compensation matrix in the synthesis part
of the bank. Then, the remaining random term is minimized
over the set of paraunitary or biorthogonal FB’s. Note that
this requirement sets heavy constraints on the filters. This
approach amounts to restoring the PR property by considering
the amount of noise correlated to the signal as part of the
signal. In our approach, the PR property is broken in order to
optimize the whole synthesis part for a given set of quantizers.

In practice, entropy coding is widely used in transform
coding schemes to perform a final lossless compression in
the subbands. When it is the case, uniform and optimized
quantization give similar performances to the overall system.
In theory, uniform quantization is even the optimal solution of
the entropy-constraint optimization of the quantization steps
[9]. Therefore, uniform scalar quantization is chosen here, and
synthesis filter banks that minimize the MSE under entropy
constraint (thus minimizing the ultimate performance of the
coder) are also presented.

This paper intends to remain as general as possible; thus,
the plain MSE criterion is chosen to optimize the filter banks.
No treatment corresponding to perceptual characteristics is
considered because it would depend on the desired application.
However, we provide simulations with various input signals
(synthetic AR processes, music samples) in order to illustrate
that this approach is not linked to specific properties of the
signal. Clearly, a practical use of these results would require,
for example, the use of other distortion measures; it would
also introducing perceptual criteria, as was done in a classical
subband coding context by Vandendorpe [15]. He expresses
the distortion as the weighted sum of the noise power in
the subbands, where the weights are function of the eye
sensitivity. Nevertheless, he restricted the optimization to the
bit rate allocation for a given set of filters, whereas our results
highlight the gain obtained by optimizing these filters. Other

criteria to be used when designing filters in a subband coding
context including quantization are proposed in [16].

Finally, we point out that our approach is compatible with an
optimization of the analysis FB, such as what was done in [17]
using orthonormal wavelet bases. The comparison between this
technique and an on-line optimization of both the MMSE filter
banks and the quantization steps is beyond the scope of this
work, but we give some results that should be useful for on-line
MMSE optimization purposes.

The paper is organized as follows. Section II states formally
the problem at hand in the most general case. Then, Section
III describes the bit rate constrained optimization of both PR
and MMSE FB’s under white and uniform quantization noise
assumption. This optimization is further improved by the use
of an accurate quantization noise model in Section IV. Section
V addresses the entropy-constrained optimization of the filter
bank. Finally, Section VI gives an estimation of the SNR
improvement obtained by optimizing the synthesis filters over
classical approaches on both synthetic and music signals.

II. A NALYTICAL FORMULATION OF

THE PROBLEM IN THE GENERAL CASE

In a subband coding frame, as depicted on Fig. 1, the
quantizers introduce some distortion in the subbands, whose
amount depends on the bit rate allocation. A relevant problem
for a system designer is to minimize the reconstruction error
under bit rate constraint. Here, the optimization criterion is the
MS distortion , where

mathematical expectation;
input signal;
reconstructed samples.

This paper intends mainly to compare the classical PR FB’s
having their quantization steps tuned to MMSE FB’s in which
both the quantization steps and the synthesis filters are tuned.
Note that the analysis filter bank is unchanged in our procedure
so that the comparisons remain reliable. The improvement in
terms of SNR achievable with MMSE FB’s is evaluated by
comparing the rate-distortion curves of both kinds of schemes.
Obtaining such curves in the PR FB case has been treated
elsewhere, usually in the lossless case, which simplifies the
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computations. In the MMSE case, this requires a solution of
the following problems.

1) When the analysis filters are known and for a given
choice of quantizers, what are the synthesis filters mini-
mizing the distortion? The resulting filter bank depends
clearly on the signal statistics. It does not keep its PR
property, but it is optimal in the sense of minimum
distortion, given the amount of quantization noise added
in the subband.

2) Once Problem 1 above has allowed to obtain theoptimal
distortion as a function of the quantization steps, what set
of quantizers minimizes this optimal distortion subject
to a channel bit rate constraint?

This section aims at presenting a formal statement of the
optimization problem by means of expressions of the MSE
criterion and of the bit-budget constraint. Note that the matrix
formulation of the input–output relation in a FB has been
reported elsewhere (see [18], for example), but here, we use
a polyphase description of the filtering process in presence
of quantization. The underlying assumptions are that the
quantization noise is additive and that the input signal is
stationary.

A. The Criterion to Be Minimized

The general structure of the subband coding scheme is
shown in Fig. 1. The analysis and synthesis filters are, re-
spectively, denoted by and

for . They are assumed to
have the same length, and a reconstruction delay
is introduced (it would be the delay of a lossless PR FB).
In the following, without loss of generality for
the proposed solutions. Choosing other values forwould
only lead to consider polyphase components of the filters with
various lengths.

The synthesis operation is not time invariant but has period
. The vector of consecutive output samples

is the filtering of the quantized
subband samples vector

by a matrix of synthesis coefficients

(with these notations, is the th quantized sample in
subband ; all other subband signal vectors are then defined
in the same way as ). Therefore, is built as in (1), shown
at the bottom of the page, and results from the quantization
of , where this
quantization is modeled by an additive noise .
Thus, .

The vector of the subband signals is provided
by the multiplication of the input signal vector

by , which is the analysis
filtering matrix. This matrix is block Toeplitz and contains

identical blocks of analysis coefficients (of size ),
each of them being located columns to the right of the
one above

...

and

...

...

(2)

The MSE is obtained by comparing the reconstructed signal
to the vector of corresponding input samples

and is given by

(3)

where is the input signal variance. By swapping the
mathematical expectation and the Trace operator and by using

as well as , which is the th line of (and
the th polyphase components of the synthesis filters), we have

(4)

where and are, respectively, the autocorrelation
matrices of the quantization noise (vector ) and the input
signal (vector ). As for , it is the intercorrelation
matrix of the noise and the subband signals. These correlation
matrices contain cross-correlation terms between the noise and
signals in various subbands.

The MSE is thus divided in two terms; the first error term
is due to the non-PR property of the FB. It vanishes if

the synthesis filters, which are represented here by vectors,
form with the analysis a PR filter bank. The second term

...
...

...
...

... (1)



GOSSE AND DUHAMEL: PERFECT RECONSTRUCTION VERSUS MMSE FILTER BANKS IN SOURCE CODING 2191

is due to additive quantization noise. At very high bit rates as
well as in absence of quantization, approaches , and
tends to zero. Therefore, at high bit rates, the optimized filter
bank converges to a PRFB.

Equation (4) can also be written in terms of the quantized
signals and their autocorrelation matrix as

(5)

where is the reconstruction error of the phase
of the input.

Transform-Based Schemes:Transform coding is a particu-
lar case of subband coding, and a square transform is a specific
filter bank of length . Hence, the polyphase components
of the FB are constants, and is a square synthesis matrix.
Equation (4) still holds, and the MMSE optimization can be
interpreted as follows: If the coding stage of a system involves
the DCT, using the inverse DCT on the decoding side does
not minimize the distortion in presence of quantization noise.

B. The Constraint

The optimization is undertaken under the constraint that
the sum of the bit rates in each subband is equal to some
given value . Classically, given , the dynamic range
in subband , which is defined as

, the bit rate and the quantization step are
related by

(6)

C. The MMSE Solutions

It is clear from (4) that computing the MMSE FB requires
the choice of a quantization noise model, thus enabling the
criterion to be written in terms of the variables to be tuned:
the quantization steps.

Then, for a given set of quantizers, the MSE is a quadratic
form in terms of the polyphase components of the optimal
synthesis filters. They are thus obtained by setting the deriva-
tive of with respect to to zero:

, which amounts to solving a set of linear
equations.

Once the optimal filters are obtained, the total distortion is
minimized with respect to the quantization steps. This second
optimization has no analytical solution. Depending on the
quantization noise model chosen, algorithms dedicated to this
problem are proposed below.

III. B IT-RATE CONSTRAINED OPTIMIZATION

UNDER WHITE NOISE ASSUMPTION

The purpose of this section is to make explicit the opti-
mization of both PR and MMSE FB’s under the classical

assumption of uniform and white additive input-independent
quantization noise (i.e., high-resolution assumption). In the
following, they are, respectively, denoted as PR-WN and
MMSE-WN FB’s. Optimization procedures providing the op-
timum bit rate allocation are developed for both systems. In
the PR case, assuming, in addition, that the FB is lossless
leads, classically, to a very simple form of the MSE, and we
shall stick with it.

A. Optimization of a PR-WN Filter Bank

In a lossless PRFB, defining , which is the distortion
introduced by the quantization in subband, and under the
classical assumption of uniform quantization noise, we have
[19]

(7)

(8)

with defined as in Section II-B.
The optimal rate in subband is a well-known result (see,

for example, [20]), which is found by Lagrangian techniques,
using the functional

(9)

the solution of which is given by

(10)

However, (10) does not ensure that the bit rates will be
nonnegative since no such constraint was considered.

Thus, we now establish the analytical expression of the
positive optimal bit rates . By expressing the bit rates as
the square of some quantity and minimizing the new
Lagrangian functional

(11)

with the constraint . The optimal bit rates
are then obtained classically in two steps. First, express the
minimizing for a given . Let denote
the corresponding minimum. Second, maximize

over .
1) First Step: is first found by canceling the deriva-

tive of with respect to , leading
to

for (12)
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Depending on the value of , the variables minimizing
are given by the first of the two expressions given at the

bottom of the page. In the second case ,
note that for any value of . Thus, is a
maximum of , and is our solution. It can be seen that
this minimization amounts to distributing the bit rate budget
among certain subbands only so that no bit rate is allocated
to subbands corresponding to a small. With the classical
optimization method, a negative bit rate would be attributed
to these very subbands.

2) Second Step:Given , the maximum of
occurs when its derivative with respect to

vanishes, and it is unique because is concave. The
corresponding thus determines precisely the subbands in
which some bit rate should be allocated. First, rearrange the
constants in decreasing order in vector .

is thus a permutation of . Note that is constant in our
optimization problem, depending only from the input signal
and the (given) analysis filters. If , the derivative
of reads

(13)

leading to the following possible forms for :

• For .
• For

.
• For

.

Due to the concavity of , the index characterizing
the interval where vanishes is easily
obtained by an evaluation of at the points

. Let be the lowest subscript
so that . If ,

is set to . Hence, ,
and the whole bit rate budget is distributed among the
subbands corresponding to constants . Using
the constraint and the expression of
enables us to find and the analytical expression of the
optimal bit rates in (14), shown at the bottom of the page. This
equation implies that the distortions are equal in all subbands
with nonzero bit rate.

3) Practical Use of the Algorithm:

• First, rearrange the into vector . In the case of audio
or image signals that are lowpass, the varianceof the
signal in subband decreases as increases. Since is

closely related to , this will often lead in these cases
to .

• Second, while , compare

and . Stop as soon as for
a value of denoted as .

• Finally, apply (14) in order to get the optimal bit rates.

In comparison to the classical iterative “greedy bit allocation
algorithm” [20], our procedure has the advantage of giving the
optimalnonnegative bit rate allocation in the subbands instead
of being a heuristic. MMSE FB optimizations got trapped
in local minima with the iterative method. However, our
algorithm does not provide an integer bit allocation. In terms
of complexity and speed, finding the subband with maximum
demand in the “greedy” algorithm may be computationally
expensive for a large number of subands (it requires
comparisons each time one bit is allocated).

B. Optimization of an MMSE-WN FB

Concerning the MMSE-WN FB, the whiteness of the quan-
tization error yields simplifications of (4). In fact, under this
assumption, is diagonal with nonzero terms given by
(8), and all crosscorrelation terms either between noise and
subband signals or noise and input signals vanish. thus
reads

(15)
Hence, the th polyphase component of the synthesis filters

minimizing the distortion (15) in the white noise model are

(16)

and the expression of the MSE on phaseof the reconstructed
signal reads

(17)

Numerical problems might occur while inverting matrix
in case of highly lowpass signals (this never

happened in our simulations). However, in this case, no bit rate
would be allocated to highpass subbands, and the remaining
synthesis coefficients could be obtained by extracting the
corresponding submatrix of .

In an MMSE FB, the output distortion cannot be directly
written as a sum of independent subband contributions as in
the lossless PR case. This makes the minimization of (17) over
the quantizers rather intricate. Generic nonlinear optimization

if and

otherwise
and

or and

for and verifying

otherwise
(14)
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methods should be implemented. A straightforward choice for
such an optimization procedure, using, for example, the Matlab
Optimization Toolbox, revealed difficulties of convergence.
This is why we propose here to proceed as a sequence of
independent optimizations: For a given set of quantizers, first
find the optimum filters minimizing the distortion. The solution
to this problem is given by (16). Then, given the set of
synthesis and analysis filters, find the quantizers minimizing
the distortion (15) for a given bit rate budget. The obtained
solution serves as an initialization to the first step, and the
whole procedure is iterated.

It is clear that this procedure provides a sequence of
decreasing distortions. If the underlying function is convex,
the procedure would converge to the global optimum. Despite
the fact that we could not prove such a property on the cost
function, we never obtained misconvergence of this procedure.

We show below that the second step of this procedure
simplifies to a problem of the same form as the one described
for the PR-WN case: The distortion follows (8) with another
set of constants instead of . In fact, while fixing the
synthesis filters, some components ofin (15), such as ,

or , become constants. As
a consequence, the bit rates minimizingalso minimize the
reduced criterion:

(18)

where is the quantized signal variance in subbandof
(8). It turns out that is of the form ,
exactly like the distortion in a PR-WN scheme. Therefore, for
a given set of synthesis filters, the optimal bit rate allocation
in an MMSE-WN FB verifies (14).

Cascading both steps of the algorithm results in an efficient
optimization method of the MMSE-WN filter banks under bit
rate constraint, and the corresponding algorithm is summed
up as follows:

1) Initialization: The procedure is initialized by a PR-
WN system: The optimized synthesis filters, which are
denoted as , are set to PR-
WN FB’s, the subband bit rates in the MMSE FB
are set to the optimal bit rate vector of the PR-WN
system, and the variable , which is the current
predicted distortion in the MMSE system, is thus the
corresponding minimum distortion.

2) Set . According to (16), compute
the optimum synthesis filters ,

, minimizing the distortion for the given bit rate
allocation.

3) Find the allocation of the bit rate budget in the sub-
bands for minimum distortion, given , using
the Lagrangian method detailed in the PR-WN case and
(18).

4) is the corresponding MSE at the output of an
MMSE-WN system using the synthesis filters

computed in Step 2 and the bit rate allocation computed
in Step 3.

5) Go back to Step 2 unless , where
depends on the desired accuracy.

On-Line Optimization, Nonorthogonality, and Additivity:
The previous section emphasizes the following property: The
subband distortions additivity is a well-known property of
orthogonal filter banks. In MMSE FB’s, which are not orthog-
onal, subband distortions are no longer additive. Nevertheless,
for a given set of synthesis filters, the overall distortion as a
function of the subband bit rates differs from a sum of subband
contributions by a constant. Therefore, minimizing the additive
criterion (18) leads to the same solutions as would be obtained
by minimizing the plain criterionas long as the analysis
filters remain fixed. Hence, the above approach is valid for
any bit rate estimation (entropy, Huffman, scalar or vector
quantization, uniform or optimized quantizer) using techniques
described, e.g., in [17]. This would require an estimation of
individual rate-distortion curves for each subband for each
synthesis filter bank in the iterations. However, note that
minimizing the additive criterion (18) leads to the optimal
bit rates but that its value does not give a correct estimation
of the distortion.

Such a procedure also emphasizes that if an MMSE FB has
been tuned beforehand on a large set of signals, the tuning
of the sole quantization steps remains a simple procedure (as
simple as in the classical PR case). This suggests that on-line
optimization could be performed by updating the filters very
infrequently, whereas the quantization steps could be varied
more often. We believe that such procedures could be very
close to optimum.

IV. BIT-RATE CONSTRAINED OPTIMIZATION

UNDER COLORED NOISE ASSUMPTION

For medium compression rates, and especially for lowpass
signals, quantizers minimizing the MSE allocate a small,
nonzero bit rate to high subbands in which the signal power
is also very small. Thus, the white and uniform noise model
does not accurately fit the quantization error since the corre-
lation between subband signal and quantization noise is not
negligible. Moreover, with this model, the signal variance is
sometimes smaller than the estimated noise variance, which is
clearly impossible.

A. Accurate Model of the Quantization Noise

It is therefore expected that more accurate noise models
could produce synthesis filters that more carefully match the
actual quantization noise. This section recalls an accurate
model of the quantization error based on the results presented
in [21]. It details the correlation terms needed to compute (4):

i) ;
ii) and ;
iii) ;
iv) and ( )

.
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These correlations are estimated [21] by making use of the
probability density and of the joint probability density of the
quantization noise, both of them being expressed in terms of

, which is the characteristic function of the input signal.
For example, the probability density of the quantization error
is expressed as

if
otherwise.

As an example of computation, according to [21], the
correlation between noise and subband signal [see
iii)] can be written as

(19)

where is the derivative of . Similar expressions provide
the second-order statistics required for computing the MSE at
the output of an MMSE FB.

Since the characteristic function of the input signal is
difficult to estimate for real signals, we decided to approximate
these various correlation matrices by the ones that would
be obtained with a Gaussian input signal having the same
correlation matrix as the real signal. Simulations show
that this approximation provides very accurate results, even
on real (music) signals (see Section VI).

Under this assumption, the expressions providing estimates
of the various correlation matrices are summarized below.
First, our noise model disregards the correlation between
signals and noises belonging to different subbands [see ii)
and iv)] because they are second-order terms if the frequency
bands of the filter bank overlap only reasonably. Otherwise,
simulations confirm that this approximation holds for FB’s
with overlapping between adjacent subbands (such as the ELT
[22]) for subband bit rates above 0.18 bits/sample/subband.
Therefore, this colored noise model improves significantly the
white noise one in most cases.

Hence, the corresponding coefficients of and are
set to zero. The remaining terms are obtained as

(20)

sinh (21)

(22)

(23)

Equation (23) is obtained by techniques similar to those in
[21] by using the joint characteristic function of . Finally,
the last correlation term with
can be rewritten as

(24)
if denotes the vector of theth polyphase coefficients of
the synthesis providing PR when associated with the analysis
of the considered MMSE filter bank.

B. Optimization of PR and MMSE Schemes
with Accurate Noise Model

Computing optimum quantizers and filters with the colored
noise model leads to a comparison of two other compression
schemes: a PR one (which is referred to as PR-CN FB) and
a MMSE one (which is known as MMSE-CN FB). They are
compared in Section VI with PR-WN and MMSE-WN systems
since only simulations can indicate the pertinence of either one
model or the other.

1) MSE Expression for a PR-CN FB:The purpose of intro-
ducing an error model valid at low bit rates in a PR FB is the
handling of a better prediction of the distortion level during
the optimization in order to find the quantizers that will be
optimum in practice. The MSE in a PR-CN filter bank is still
given by (7) (subband distortions additivity), and only is
now given by (20).

2) MSE Expression for an MMSE-CN Filter Bank:The
MSE at the output of MMSE-CN FB is given by (4), when
the correlation matrices are estimated using the colored noise
model. The optimal synthesis filters are obtained analytically
by :

(25)

where denotes the quantized subband signals.
3) General Optimization Method of the PR-CN and

MMSE-CN Cases:For both schemes using the accurate noise
model, the expression of the correlation terms is too complex
for using the optimization methods established in the WN
case. Finding the optimal bit rates requires us to set a general
procedure based on standard algorithms performing nonlinear
optimization.

Since unconstrained nonlinear optimization methods are
much more reliable, the constraints have been included in
the function to be minimized. First, we carry out the variable
change: that forces to be positive. Then, the
linear constraint relating the subband bit rates becomes, in
terms of , and describes a hypersphere. Its
parameterization can be done with

By means of this correspondence, we have transformed our
constrained minimization problem of a function of variables
into an unconstrained minimization of a function of
parameters .
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Among unconstrained optimization methods, gradient meth-
ods are generally more efficient than simple search methods
when the function to be minimized is continuous in its
first derivative. They require an analytical expression of the
gradient, which can easily be obtained from (4). We have
used the implementation of the quasi-Newton algorithm found
in the Matlab Optimization Toolbox. Unfortunately, we cannot
ensure that the general algorithm reaches the global minimum,
especially since the optimized functional is highly nonlinear
with respect to the . Only the comparison with the white
noise case and the shape of the obtained rate/distortion curve
(regular or not) give some confidence that we are close to
global convergence. Comments on the relative efficiencies of
the various methods are provided in Section VI.

V. ENTROPY-CONSTRAINED

OPTIMIZATION OF THE FILTER BANK

A main concern with the approach described above is the
precise definition used to estimate the bit rate for a given
quantization step: Equation (6) does not take into account
any entropy coding of the subband signals. The improvement
brought by this (simple) procedure is noticeable, as is shown
in Section VI, but the use of a more realistic bit rate evaluation
is certainly more convincing. A procedure for making use of
an actual coding such as Huffman has already been outlined in
Section III-B. This section provides further analytical results
for the optimization of the filters and the quantization steps in
an MSE sense under entropy constraint. It thus aims at giving
an upper bound to the SNR(dB) reachable by a filter bank (with
optimized or PR filters) followed by uniform quantization and
entropy coding. First, following the various steps of Section
II, we express the criterion to be minimized and the constraint
as a function of order-one entropies in the subbands; then,
an optimization solution dedicated to the problem is chosen
among the previously proposed ones.

The order-one entropy of the signal in subband, which
is defined below, is used as a bit rate measure

(26)

where denotes the occurrence probability of theth

quantizer output in subband. The constraint is
.

If the high-resolution assumption is met, i.e., if the probabil-
ity density of the quantization noise is supposed to be uniform
over a quantization step, the entropies are easily introduced
as parameters of the MSE criterion of relation (4) since the
noise variance is related to the order-one entropy of the
quantizer input [9] by

(27)

where is the differential entropy of , depending on
, which is the probability density of .

The situation would be much more complex in the colored
noise case; hence, only two systems will be optimized under
entropy constraint (EC), the PR-WN, and the MMSE-WN
schemes, which are denoted as EC PR-WN FB and EC
MMSE-WN FB. Since the simulations shown in Section VI
indicate that the performances of the MMSE-WN and MMSE-
CN systems are equivalent, we are confident that we are close
to the optimal situation. However, this is not the only required
assumption: Equation (27) shows that further assumption on
the probability density of the subband signals is required. This
probability is assumed to be Gaussian to remain consistent
with Section IV. Moreover, simulations show that entropy
evaluations made on actual subband signals of real signals are
very close to the estimate obtained with the above hypothesis.
Equation (27) applied to a Gaussian signal in subband

gives

(28)

A similar expression describes the distortion for subband
signals having a Laplacian probability density [9]; should
only be changed into .

At this point, the choice of optimization methods is straight-
forward since both expressions of the MSE as a function of
the subband entropies (28) or as a function of the subband
bit rates (8) are similar. All optimization procedures given in
Section III-A are valid after substituting the constant

for and the entropy for the bit rate .
A full procedure also requires an expression relating the

quantization steps to the subband entropy. It is derived from
the probability density of the signals. Given the quantities
defined by

with

(29)

the quantized signal entropy in theth subband is provided by

(30)

The optimal quantizers corresponding to a given subband
entropy are then computed with MATLAB by evaluating
the rate for a given value of (interpolation of the

reciprocal function of or table lookup).

However, when simulating the encoding process with the
analytically computed optimal subband quantizers, the mea-
sured order 1 entropies may differ slightly from the predicted
ones: In fact, our method does not take into account either
granular or overload noise and requires assumptions on sub-
band signal statistics. More details on the entropy estimation
error can be found in Section VI. Moreover, a general method
for designing the quantizers under entropy constraint on given
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training sequences but without any analytical calculation is
given in [23].

VI. SIMULATIONS

To summarize the various schemes that are compared, recall
that two different bit rate measures are used: the classical
measure relating quantization step and bit rate [which is shown
in (6)] and the order-one entropy of the signals. The first
one leads to the optimization of four schemes, consisting only
of a FB and a uniform quantization stage: the PR-WN, PR-
CN, MMSE-WN, and MMSE-CN filter banks. The simulations
corresponding to these four cases aim at quantifying the SNR
improvement brought by MMSE FB (compared with PR FB),
thus enabling the more relevant choice between the four
schemes, depending on the desired compression ratio.

As for the second bit rate measure, it is aimed at estimating
the asymptotic gains and checking that improvements with
MMSE FB’s are still there if entropy coding is performed. In
this case, two kinds of systems including uniform quantization
and entropy coding are considered: the EC PR-WN filter bank
and the EC MMSE-WN filter bank.

A. The Simulation Context

1) The Signals Tested:These schemes were run on syn-
thetic signals (order 1 AR processes, with correlation coeffi-
cient ranging from 0.1 to 0.9) as well as on an audio signal (the
beginning of Vivaldi’sThe Four Seasons: The Spring, having
CD quality, i.e., sampled at 44.1 kHz with 16 bits/sample).

2) The Filter Bank: The number of subbands varies be-
tween 2 and 32 (Layer I and II of MPEG involve a 32-band
filter bank), and the total channel rate lies between 0.5 and
8 bits/sample, corresponding to a compression ratio ranging
between 2 and 32 for CD quality signals. For comparison
purposes, transparent audio compression of CD quality signals
at 64 kbits/s would correspond to a compression ratio of 11,
but the use of masking characteristics of the human hearing
process is to be taken into account. Furthermore, a Huffmann-
like encoder would certainly be applied on the subband signals,
thus improving the compression ratio. A curve involving
Huffman coding is provided in Fig. 10.

The PR FB chosen as a reference is an extended lapped
transform (ELT) taken from [22] (lossless case) with filter
length . The analysis filters coefficients, for

and , are given by

with

(31)

The filters composing such a four-band filter bank are shown
on Fig. 2. However, the frequency selectivity of the analysis
filters can be improved by increasing the overlapping factor,
and we also consider 16 modulated filters of length 256
designed according to [24] in order to show the influence of

Fig. 2. Magnitude frequency response of Malvar’s ELT withM = 4 and
L = 16.

the reference analysis filter selectivity on the resulting MMSE
performances (the corresponding prototype has stopband at-
tenuation of 65 dB).

3) Autocorrelation Matrix of Input Samples:The MMSE
FB was computed from an estimate of over a large
number of samples . Depending on the simulations,
its performance in terms of distortion was estimated either on
these samples or on a much longer signal; this is specified
in the text. In order to estimate possible effects due to a
poor approximation of , MMSE FB’s were also computed
while modelizing the Vivaldi signal by an AR(2) process.

B. Rate-Distortion Curves Obtained
with Uniform Quantization

This section aims at providing the first analysis and con-
clusions on the improvement brought by MMSE filter banks
over PR banks with the classical bit rate measure. The various
schemes are optimized according to Sections III-A and IV-B.
In the case of the general optmization method of Section IV-
B, choosing, as a starting point, the optimal solution found in
the white noise case proved to be useful. Then, the optimal
quantizers are computed using (8) and the choice

such as . It turns out that 99.99% of
Vivaldi signal samples belong to this interval.

When the quantizers are found, the synthesis filters are set,
and the SNR(dB) is estimated using

. The segmental SNR measure was not elected in our study
simply because it is not the criterion minimized over the set of
filters and quantizers. Nevertheless, it has been checked that
segmental SNR curves have the same shape.

1) Comparison of Predicted and Observed Distortions:
Figs. 4–6 provide a comparison of the predicted and observed
distortions at the output of, respectively, a 16-band PR-WN,
PR-CN, and MMSE-CN system. Globally, they fit astonish-
ingly well, but this requires further explanation. First, in the
PR-WN case, the predicted curve is (at most) 4 dB under the
curve of observed distortion at low bit rates because of the poor
estimation of the quantization noise variance in this interval.
The plot corresponding to the PR-CN filter bank illustrates the
estimation improvement allowed by the colored noise model
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Fig. 3. Magnitude frequency response of optimized synthesis filters for
M = 4, Vivaldi samples, andR = [6:3; 1:7; 0; 0].

Fig. 4. Predicted and observed SNR versus channel bit rate for Vivaldi input
samples (16 bits/sample),M = 16, and PR-WN synthesis.

introduced in Section IV. Both estimated and measured curves
fit perfectly, and the approximation of the subband samples
being Gaussian seems accurate.

Concerning MMSE FB’s, only one out of both cases (WN
and CN) is presented since they behave exactly alike. This
time, the predicted curve fits the observed curve at low bit
rates. In fact, an error on the MMSE filters coefficients results
from the estimation error on the calculated quantization noise
statistics. For rates over 5 bits/sample, the predicted output
distortion is small compared with the obtained accuracy (due
to the error on the filters) and even becomes negative (the
circled last two points) over 7 bits/sample. Nevertheless, the
noises being very small, this does not influence the synthesis
FB optimization, whose result is close to a PR-WN filter bank
in this bit rate range.

2) Comments About Rate-Distortion Curves Estimated Over
Signal Samples:We give the rate-distortion curves for the

signal Vivaldi compressed by a four-band, a 16-band, and a
32-band filter bank, respectively, in Figs. 7–9. Whatever the
signals, the plots have these common characteristics:

1) The four curves merge above some bit rate (very high
quality coding) for the following reasons: The error

Fig. 5. Predicted and observed SNR versus channel bit rate for Vivaldi input
samples (16 bits/sample),M = 16, and PR-CN synthesis.

Fig. 6. Predicted and observed SNR versus channel bit rate for Vivaldi input
samples (16 bits/sample),M = 16, and MMSE-CN synthesis.

becomes too small to allow noticeable gains through
the optimization, and furthermore, the MMSE solution
tends to the PR solution as the bit rate increases [this
was shown in (4)]. Moreover, the white noise model
becomes accurate, explaining that the PR-WN and the
PR-CN curves merge before the other ones.

2) The PR-WN scheme show poor performances at low
rates due to an inaccurate estimation of the distortion
level, resulting in an unappropriate choice of the quan-
tization steps (emphasized in Fig. 4). Moreover, if the
classical equation (10) giving the optimal was valid
at all bit rates, the PR-WN curve would be a line of slope
6 dB per bit. Since this equation gives rise to negative
bit rates at low bit rates, (14) was substituted for it, but
this breaks the linearity of the rate-distortion curve in
the bit rate range where both solutions differ.

3) The MMSE-WN and MMSE-CN curves are almost
identical whatever the signals and the number of sub-
bands. This is explained as follows: In all schemes,
when the bit-budget increases, some subbands in which
the bit rate was null now obtain a certain bit rate
amount. In MMSE schemes, this amount is never small
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Fig. 7. Measured SNR versus channel bit rate for Vivaldi input samples
(16 bits/sample) andM = 4.

(this is a secondary effect of the filters optimization).
As a consequence, both white and elaborated noise
models give approximately the same estimation of the
noise variance. To illustrate this, consider the MMSE-
WN scheme with four subbands applied to the Vivaldi
signal. The bit rate allocation vector is
for a budget of bits/block and becomes

for bits/block. In the third
subband, for a bit rate of 2.5 bits/block, the variance of
the signal for both models.

4) Below 2 bits/sample, MMSE curves and PR-CN curves
are almost identical because only a few subband bit rates
are not set to zero, and thus, only a few filters of the
synthesis bank are optimized (the others ones are set to
zero!).

Observation of the curves for AR process and music samples
show that the improvement brought by MMSE FB compared
with PR-WN FB can reach 2 to 5 dB in a large range
of bit rates for all numbers of subbands. On the music
signal presented in Fig. 7 with , the improvement
is greater than 2.5 dB from 1 to 5.5 bits/sample; it reaches
5.5 dB for 3 bits/sample. For the 16- and the 32-band filter
banks, the improvement obtained with MMSE FB’s is slightly
smaller (the maximum is, respectively, 4.6 and 4.3 dB at 3
bits/sample). The main difference is that the four curves merge
later, respectively, about 7.5 bits/sample and over 8 bits/sample
versus 6 bits/sample for the case. This can be explained
by a better allocation of the available bit rate in the subbands
that really need it when the frequency band is split in smaller
intervals and the budget is increased. On the other hand, in
the four-band filter bank, the four solutions have the same
performances at very low bit rate (i.e., 0.5 bit/sample) because
the optimal quantizers found simply verify that “the whole
bit-budget is given to the low-pass subband.” Increasing the
number of subbands yields an improvement of the SNR of
approximately 4 dB from 4 to 16 subbands but is only 0.9
dB from 16 to 32 subbands. The relation between, which
is the number of subbands, and this improvement depends on
the signal spectrum.

Fig. 8. Measured SNR versus channel bit rate for Vivaldi input samples (16
bits/sample) andM = 16.

Fig. 9. Measured SNR versus channel bit rate for Vivaldi input samples (16
bits/sample) andM = 32.

An Huffman encoding stage after quantization has been
simulated for , and the resulting rate-distortion curves
are reported in Fig. 10. They give a more realistic estimation
of the bit rate budget needed in a source coding system
using MMSE filters. Their shapes are quite similar to the
ones in Fig. 9 but with a shrunk bit rate scale. Therefore,
the improvement brought by MMSE FB’s in this case is kept
but on a smaller bit rate range.

The tests on various AR processes show that the improve-
ment brought by MMSE FB is all the more important as the
input signal is correlated (see Fig. 11 for a Markov process

). Astonishingly, the best results have been obtained
on the real signals (Vivaldi music samples).

3) About the Optimized Synthesis Filters:Another point of
interest is the shape of the optimized synthesis filters. The
ones depicted in Fig. 3 are optimal in a four-band filter bank
with a bit rate budget of . The optimal bit rates in the
subbands are , and the optimal filters in subbands
3 and 4 are null. When compared with the ones of Fig. 2, the
filter corresponding to subband 1 has smaller sidelobes, and
filter 2 even presents a bandpass attenuation. The contribution
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Fig. 10. Measured SNR versus channel bit rate for Vivaldi input samples
(16 bits/sample), whereM = 32 after Huffman encoding.

Fig. 11. Measured SNR versus channel bit rate for AR1 (� = 0:9) input
samples, whereM = 16.

of the second subband in the final reconstruction of the signals
is thus reduced because the bit rate in this subband is small,
and the corresponding noise is large.

A related question is about how much distortion comes from
the quantization noise, compared with the reconstruction error
in the MMSE-FB. In our examples, it was found that more
than 40% the total distortion was due to the non-PR property
of the synthesis FB in the bit rate range [0.5–4] bits/sample.
This shows how the noise amplification can be lowered by
relaxing the PR constraint since the total distortion remains
smaller than the one only due to the noise in an optimized
PR-FB.

4) Concerning the Influence of Analysis Filter Selectivity
on MMSE Performances:Here, we consider a modulated
filter bank of subbands and filters of length

taken from [24]. The increased length improves the
stopband attenuation of the filters, which is now about 65 dB.
Corresponding performances are plotted in Fig. 12. Part of
the gain brought by MMSE solutions is due to a improvement
of the frequency selectivity in certain subbands (see Fig. 3).
Thus, if the analysis bank has better stopband attenuation, the

Fig. 12. Measured SNR versus channel bit rate for Vivaldi input samples
(16 bits/sample) andM = 16 filters of length 256.

Fig. 13. Measured SNR versus channel bit rate for6:6104 Vivaldi input
samples (16 bits/sample)M = 16.

gain of MMSE solutions over PR systems is reduced but still
present. At low bit rates, performances of PR-CN and MMSE
schemes are the same.

5) Variants for the Estimation of : In a first set of sim-
ulations, the optimal synthesis filters are calculated using

estimated over signal samples, and the SNR(dB) is
obtained by filtering six times more samples (13 s of signal)
with them. It is particularly promising that the improvement
brought by MMSE FB’s be kept under these new conditions.
Indeed, it allows us to think of an optimization method
involving on-line quantizer optimization thanks to (14) and
a much less frequent optimization of the filters, which remain
efficient because they correspond to an average situation.
Fig. 13 supports these comments.

In a second step, is computed as the autocorrela-
tion matrix of the AR(2) signal modelizing Vivaldi samples.
Fig. 14 is obtained by processing Vivaldi samples by
the resulting MMSE filters and quantizers. The improvement
brought by approximated MMSE filters remains unchanged
in the range [1–3] bits/sample and is still noticeable until 5
bits/sample, although estimation is simplified. Of course,
a modelization using an AR signal of higher order would yield
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Fig. 14. Measured SNR versus channel bit rate for Vivaldi input samples.
MMSE filters (M = 16) and quantizers are obtained with an AR(2) model
of the input.

better results. A practical use of such a technique would require
letting the coefficients of the AR(2) signal vary with time.

Results of same quality can also be obtained while cal-
culating optimal filters with the AR(1) matrix but with
the optimal bit rate allocation with the real subband signal
variances of “Vivaldi.” MMSE filters are less sensible to
poor estimation than MMSE quantizers. Indeed, optimal
quantizers obtained with the AR(1) approximation associated
with optimal filters for the “Vivaldi” signal yield poor perfor-
mances. Therefore, a fruitful strategy should be to calculate
MMSE filters over a certain number of “Vivaldi” samples
modeled by an AR process and then to update the quantizers
often by using actual information on subband signal variances.

C. Entropy-Distortion Curves Obtained
with Uniform Quantization

Here, the SNR is estimated over the samples used for
the estimation of . As in the previous subsection, the
efficient optimization methods developed in Section III were
used for both systems studied. In the EC PR-WN case, the
optimal entropy allocation corresponds to the optimal bit rates
of the PR-WN schemes for a same budget. Of course, this
comes from the similarity of the distortion expressions since
the sum of subband contributions in differ only by the
multiplicative coefficients . However, in the MMSE-WN
case, both optimal allocations are not similar because the role
played by the coefficients is more complex: They appear
in the autocorrelation matrix of the quantized subband signals,
which has to be inverted for the estimation of the theoretical
distortion.

1) Comparison of Predicted and Observed Distortions:
In order to verify the accuracy of the assumptions needed
to set the MSE expression as a function of the subband
entropies, the predicted and observed entropy-distortion curves
corresponding to both optimized schemes with are
plotted in Fig. 15. The Gaussian hypothesis concerning the
subband signals seems to be fairly correct since the difference
between prediction and observation is approximately of 0.5
dB. At low rates, however, the prediction error is closer to

Fig. 15. Predicted and observed SNR versus entropy bit rate for Vivaldi input
samples (16 bits/sample),M = 4, and with EC PR-WN or EC MMSE-WN
synthesis.

Fig. 16. Measured SNR versus entropy bit rate for Vivaldi input samples
(16 bits/sample)M = 16.

1 dB because the signals in the lowpass subbands are further
from Gaussianity than the other ones.

2) Comments About the Observed Entropy-Distortion
Curves: The improvement brought by the EC MMSE-WN
filter bank, when the bit rate measured is the order-one
entropy, can be observed in Figs. 15–17 for, respectively,
a 4-, 16-, and 32-band filter bank. Yet it has been reduced to
a maximum of 2.7 dB with , 2.1 dB with , and
to 1.8 dB with . This is not really surprising since we
consider an asymptotic bound of the performances.

The bit rate range in which the performances of the two
systems differ still widens when increases, starting from

, whereas and reaching [1]–[7] while .
Here, the curves merge at very low bit rates for and

, which was not the case with the classical bit rate
definition.

3) First Conclusions:The results obtained with entropy-
constrained systems confirm that SNR improvements can be
obtained while using optimized filter banks instead of PR FB’s
in a source coding scheme including quantization and entropy
coding. Moreover, we present three schemes allowing SNR
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Fig. 17. Measured SNR versus entropy bit rate for Vivaldi input samples
(16 bits/sample)M = 32.

improvements with respect to the classical PR solution under
white noise assumption. The choice among them should rely
on the following considerations. The PR-CN system allows
us to keep the interesting structure of lossless filter banks,
but its optimization is complex (general nonlinear procedure),
and the resulting improvement is the smallest in the most
narrow bit rate range. As for the MMSE-WN and the MMSE-
CN schemes, they have exactly the same performances, but
efficient optimization methods are established in the white
noise case. It thus seems useless to introduce a colored noise
model in the MMSE FB’s.

VII. CONCLUSION

This paper emphasizes the usefulness of relaxing the per-
fect reconstruction property of the synthesis filter bank; the
improvement that has been obtained with a SNR criterion
is noticeable, at least in a specific compression rate range.
Moreover, this improvement was observed for a source coding
scheme, including a uniform scalar quantization stage, in two
different situations: When the bit rate allocation is optimized,
and when the order-one entropy allocation is optimized (i.e.,
entropy-constrained optimization of the filter bank). Thus,
MMSE filter banks could increase the output SNR of any
source coding scheme involving scalar quantization and en-
tropy coding.

This paper also provides side results useful to designers of
source coding schemes: It gives an analytical expression of
the positiveoptimal bit rate allocation in any filter bank, un-
der high-resolution assumption, whereas the classical optimal
solutions in the lossless PR case can become negative. Based
on this result, an efficient method opening the way to on-
line optimization of the bit rates and fast optimization of the
synthesis filters in a MMSE FB is given.

A further work under consideration is the optimization of
the synthesis filters according to a specific source coding
application, taking into account perceptual characteristics such
as the variations of sensitivity of the ear at various frequencies.
Linear masking effects, such as the inverse absolute hear-
ing threshold, can be taken into account easily by using a

frequency-weighted psychoacoustic criterion. Corresponding
results are reported in [25]. Then, in a second additional step,
nonlinear frequency masking effects could also be introduced
in the criterion, and this is the subject of further studies.
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