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Perfect Simulation and Stationarity of a Class of

Mobility Models
Jean-Yves Le Boudec and Milan Vojnović

Abstract— We define “random trip", a generic mobility

model for independent mobiles that contains as special

cases: the random waypoint on convex or non convex

domains, random walk with reflection or wrapping, city

section, space graph and other models. We use Palm

calculus to study the model and give a necessary and

sufficient condition for a stationary regime to exist. When

this condition is satisfied, we compute the stationary regime

and give an algorithm to start a simulation in steady state

(perfect simulation). The algorithm does not require the

knowledge of geometric constants. For the special case of

random waypoint, we provide for the first time a proof and

a sufficient and necessary condition of the existence of a

stationary regime. Further, we extend its applicability to

a broad class of non convex and multi-site examples, and

provide a ready-to-use algorithm for perfect simulation.

For the special case of random walks with reflection or

wrapping, we show that, in the stationary regime, the

mobile location is uniformly distributed and is independent

of the speed vector, and that there is no speed decay.

Our framework provides a rich set of well understood

models that can be used to simulate mobile networks with

independent node movements. Our perfect sampling is

implemented to use with ns-2, and it is freely available

to download from http://ica1www.epfl.ch/RandomTrip.

I. INTRODUCTION

A. Mobility Models and Stationarity

Our goal is to provide a class of mobility models

(1) that is rich enough to accommodate a large variety

of examples and (2) whose simulation can easily be

mastered. The latter point is motivated by recent findings

about the random waypoint, an apparently simple model

that fits in our framework. The simulation of the random

waypoint poses a surprising number of challenges, such

as speed decay, a change in the distribution of location

and speed as the simulation progresses [16], [12], [14],

[8]. All of these observations are related to the existence

of a stationary regime. Camp, Navidi and Bauer [14]

point out that if the model has a stationary regime, it is
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important to simulate it in this regime; otherwise, if the

initial configuration is not sampled from the stationary

regime, the performance evaluation of a system under

study may be biased and non reproducible.

B. Perfect Simulation

A standard method for avoiding such a bias is to

(1) make sure the used model has a stationary regime

and (2) remove the beginning of all simulation runs in

the hope that long runs converge to stationary regime.

However, as we show now, the length of transients may

be prohibitively long for even simple mobility models.

Our example is the space graph explained in Figure 1.

There are a little less than 5000 possible paths; in

Figure 1 we show the distribution of the path used by the

mobile at time t, given that initially a path is selected

uniformly among all possible paths (i.e. the mobile is

initially placed uniformly among all nodes). This was

obtained analytically (see Appendix for details). Figure 1

illustrates that the transient period may be long compared

to typical simulation lengths (for example 900 sec in

[5]). A major difficulty with transient removal is to

know when the transient ends; if it may be long, as

we illustrated, considerable care should be used. An

alternative, called “perfect simulation", is to sample the

initial simulation state from the stationary regime. For

most models this is hard to do, but, as we show, this is

quite easy (from an implementation viewpoint) for the

random trip model. Perfect simulation for the random

waypoint was advocated and solved by Navidi and

Camp in [13] who also give the stationary distribution

(assuming location and speed are independent in the

stationary regime, an issue later resolved in [10] using

the Palm techniques in this paper).

C. The Palm Calculus Framework

The derivations in [13] involve long and sophisticated

computations. We use a different approach, based on

Palm calculus, a set of formulas that relate time averages

to event averages. Palm calculus is now well established,

but not widely used or even known in applied areas.

For a quick overview of Palm calculus, see [11]; for
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Fig. 1. Top: “Space Graph", a model proposed by Jardosh et al

[9]. A mobile starts from a randomly chosen circle and goes along

a shortest path towards another randomly chosen circle. Numerical

speed is constant = 1.25 m/s. Bounding area 1 km ×1 km. Bottom:

Probability distribution of the path used by a mobile at time t.

Initially, the path is chosen uniformly among all possible paths. x-

axis: path index, sorted by path length; y-axis: probability that this

path is used at time t for t = 50,100,300,500,1000,2000 seconds of

simulated time. Horizontal solid line: initial distribution; other solid

line: time-stationary distribution. The transient lasts for a long time.

a full fledged theory, see [1]. This framework allows

us to generalize the results in [13] to a broad class

of models, as discussed next. Incidentally, even for

the original random waypoint model, we provide new

elements: a proof that a stationary regime exists when

vmin > 0 and a sampling algorithm that, for complicated,

non convex areas, does not require a priori computation

of geometric integrals. More fundamentally, the Palm

calculus framework allows us derive simple sampling

algorithms for the generic random trip model – a task

that would be formidable without this tool.

D. Contributions of This Paper

As a first step towards our goal, we give a model

for independent mobiles (leaving group mobility models

for further study). The model is called “random trip".

In the absence of established properties of real mobility

patterns, it is not yet clear today what the require-

ments on a mobility model should be [6]. We focus

here on a model that is able to synthesize an a priori

assumed mobile behaviour. This leads to examples such

as city driving models (“Space Graph" [9], “City section"

or “Hierarchical random waypoint", called “restricted

random waypoint" in [3]), simple airplane circulation

models (“Random Waypoint on Sphere"), or the special

purpose “Fish in a Bowl" and “Swiss Flag". In some

cases, it is desirable to assume that node location is

uniformly distributed in steady-state; this is provided

by the two “Random Walk" examples and by “Random

Waypoint on a Sphere". We give a definition of the model

and a non exhaustive list of examples in Section II.

Our main contributions are:

• a generic model and a framework to analyze it;

• a proven necessary and sufficient condition for

a stationary regime to exist; a proof that when the

stationary regime exists it is unique. This appears to be

new even for the classical random waypoint;

• a generalization of random waypoint perfect simu-

lation to non convex areas;

• a sampling algorithm that does not require the

computation of geometric integrals;

• the proof that for three examples (random walk on a

rectangle with wrapping or reflection, random waypoint

on sphere) the node location is uniform. For the random

walk examples, the steady state is essentially the same

as the naive initialization (with uniform node placement)

and there is no speed decay. In contrast, there is speed

decay for random waypoint on a sphere.

We focus on perfect simulation and leave for a further

paper the study of convergence (and its rate) to the sta-

tionary regime when it exists. Due to space limitations,

we exhibit our results with most of the proofs delegated

to the appendix of the full version [4]. A notation list is
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given in the next section. Related work is described at

the end of the paper.

II. A GENERAL MOBILITY MODEL

We consider a generic family of models, defined by

the following framework.

1) The domain A is a closed, bounded, connected (not

necessarily convex) subset of R
2 or R

3.

2) P is a set of paths on A . A path is a continuous

mapping from [0,1] to A that has a continuous derivative

except maybe at a finite number of points (this is

necessary to define the speed).

For p ∈ P , p(0) is the origin of p, p(1) is its

destination, and p(u) is the point on p attained when

a fraction u ∈ [0,1] of the path is traversed.

3) Trip Selection Rule: A trip is the combination of

a duration and a path. The position X(t) of the mobile at

time t is defined iteratively as follows. There is a set Tn ∈
R, n ∈ Z of transition instants, such that T0 ≤ 0 < T1 <
T2 < .... At time Tn, a path Pn ∈P and a trip duration Sn ∈
R+ are drawn according to some specified trip selection

rule, specific to the model. The next transition instant is

Tn+1 = Tn +Sn and the position of the mobile is X(t) =
Pn(

t−Tn

Sn
) for Tn ≤ t ≤ Tn+1.

The trip selection rule is constrained to choose a path

Pn such that Pn(0) = Pn−1(1). Further, we assume that,

with probability 1, the duration of the trip Sn is positive

(instantaneous transitions are not allowed).

4) Default Initialization Rule: at time t = 0, the

initial position, path, position on path, and remaining

time until the next transition are drawn according to

some specified default initialization rule. A common

default rule considers that time 0 is the first transition

instant (T0 = 0), and selects a path and trip duration

according to the trip selection rule. However, as shown

in Section I, this causes some problems, that are fixed by

using the perfect simulation initialization rule, described

in Section VI-B.

In addition, we do the following assumptions. They are

essential for our model to be tractable, while supporting

a very broad class of mobility models.

(H1) The trip selection rule depends on all past only

through the current mobile location Mn and the state of

a Markov chain In. Further, In depends on all past only

through the last state In−1. More precisely, In (the phase)

is defined on some enumerable set I ; it changes its value

at transition instants Tn. Given that the phase selected at

Tn is In = i, and given the mobile location Mn = m at

time Tn, the path Pn and the trip duration Sn are drawn

independently of all past until time Tn, with a distribution

that may depend on m and i but not on n; the new value

Notation List

• A (⊂ R
2 or R

3): model domain, connected and bounded

• d(m,n) length of shortest path in A from m ∈ A to n ∈ A ;

if A is convex d(m,n) = ‖m−n‖
• Tn: nth transition time, at which a new trip is defined

• In ∈ I ,Mn ∈ A ,Pn ∈ P ,Sn ∈ (0,∞): phase, starting point,

path, trip duration for the nth trip

• I(t)∈ I ,M(t)∈ A ,P(t)∈ P ,S(t)∈ (0,∞),X(t)∈ A : phase,

starting point, path, trip duration for the trip used by mobile

at time t, location at time t. X(Tn) = Mn and if Tn ≤ t < Tn+1

then I(t) = In, M(t) = Mn and S(t) = Sn.

• U(t) ∈ [0,1]: fraction of the current trip that was already

traversed. Thus U(t)S(t) is the time elapsed on the current

trip and the location of the mobile at time t is X(t) =
p(U(t)), with p = P(t). We assume that the trip is done

at a speed proportional to the default speed of the path, i.e.

if Tn ≤ t < Tn+1 then U(t) = t−Tn
Tn+1−Tn

= t−Tn
Sn

• It follows that the speed vector of the mobile at a time

t that is not an end of trip is ~V (t) = 1
S(t)

∂
∂u

p(U(t)), with

p = P(t) and the numerical speed is V (t) =
∥

∥

∥

~V (t)
∥

∥

∥
.

• For some random variable Z, IE0(Z) is the “Palm ex-

pectation", which can be interpreted as the expectation,

conditional to the event that a transition occurs at time 0,

when the system has a stationary regime. IE0 denotes the

event average viewpoint [1], [11]. For example IE0(S0) =
IE0(S(0)) is the average trip duration; in contrast, when

the system has reached steady-state, IE(S(0)) = IE(S(t)) is

the average duration of a trip, seen from an observer who

samples the system at an arbitrary point in time. Both are

usually different because the observer is more likely to

sample a large trip duration.

of the chain In+1 is drawn in a way that depends only

on i.

(H2) Either of the following is true:

(H2a) (i) The distribution of location Mn+1 at time

Tn+1, conditional on all past phases until Tn, depends

only on the phase In and not on n. (ii) Moreover, there

exist renewal points defined as follows. The chain of

phases In has a set of selected transitions I∗ ⊆ I2 such

that the distribution of location Mn+1, given all past up

to time Tn and given (In, In−1) ∈ I∗, depends only on In;

or

(H2b) The distribution of location Mn at time Tn does

not depend on n, Mn is independent of In, and (Sn, In+1)
depends on all past only through In.

(H3) The Markov chain In is positive recurrent. For

example, this is true if I is finite and the graph of the

chain In is connected.

As we show next, these assumptions are verified by a

very large class of mobility models.

3



-1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

Mn

Mn+1

M(t)

I

JK

L
Mn-1

Mn-2

Fig. 2. Random Waypoint on a non convex domain (Swiss Flag). A

trip is the shortest path inside the domain from a waypoint Mn to the

next. Waypoints Mn are drawn uniformly in the domain. On the figure,

the shortest path Mn,Mn+1 has two segments, with a breakpoint at

K; the shortest paths Mn−1,Mn and Mn−2,Mn−1 have one segment

each. M(t) is the current position.

III. EXAMPLES

We give a non exhaustive catalog of examples and

show that they all fit in our framework.

A. Classical Random Waypoint With Pauses.

This is the classical random waypoint model. A is

assumed to be convex (A is a rectangle or a disk in [8],

[6]). Paths are straight line segments: p(u) = (1−u)m0 +
um1 for the segment with endpoints m0 and m1. Pauses

are special cases of paths, when endpoints are equal:

p(u) = m0. There are two phases I = {pause,move}.

At a transition instant, the trip selection rule alternates

the phase from pause to move or vice versa. If the

new phase is pause, the trip duration Sn is picked

according to the density f 0
pause(s); the path Pn is a

pause at the current point. If the new phase is move,

the trip selection rules picks a point Mn+1 at random

uniformly in A , and a numerical speed Vn according to

the density f 0
V (v). A classical choice (uniform speed)

is f 0
V (v) = 1

vmax−vmin
1{vmin<v<vmax}. The trip duration is then

Sn = ‖Mn+1−Mn‖
Vn

and the path Pn is the segment [Mn,Mn+1].
The default initialization rule starts the model at the

beginning of a pause, at a location uniformly chosen

in A .

The trip selection rule makes its choices only based

on the current phase and location, thus H1 holds. The

conditions (i) in H2a are indeed true; the condition (ii)

is true for the selected phase transitions pause → move.

Hence, H2a is verified. Further, the Markov chain In

alternates between the two states {pause,move}, thus

hypothesis H3 is satisfied.

A
1

A
2

A
3

A
4

M
n
 

M
n+1

 

Fig. 3. Restricted random waypoint on a plane with four squares

as subdomains. This model was introduced in [3] to simulate a

wide-area routing protocol. It was used as an idealized view of

four towns represented by squares. A mobile moves according to

random waypoint within a square for a random number of visits and

then picks a point uniformly at random in another randomly chosen

square as a destination. The figure shows a sample path of the mobile

movement. The speed on the trip is chosen according to a distribution

that depends on the origin and destination squares.

This model is well known; its stationary properties

are studied in [14], [8], [10]. However, even for this

simple model our framework provides two new results:

the proof of existence of a stationary regime, and a

sampling algorithm for the stationary distribution over

general areas that does not require the computation of

geometric integrals.

B. Random Waypoint on General Connected Domain.

This is a variant of the classical random waypoint

(Example III-A), where we relax the assumption that

A is convex, but assume that A is a connected domain

over which a uniform distribution is well defined. For

two points m,n in A , we call d(m,n) the distance from

m to n in A , i.e. the minimum length of a path entirely

inside A that connects m and n. P is the set of shortest

paths between endpoints. The trip selection rule picks a

new endpoint uniformly in A , and the next path is the

shortest path to this endpoint. If there are several shortest

paths, one of them is randomly chosen according to some

probability distribution on the set of shortest paths. The

set of phases is I = {pause,move}. This model fits in our

framework for the same reasons as the former example.

1) Swiss Flag: The model is random waypoint on par-

ticular non-convex domain defined by the cross section

as in Figure 2.

2) City Section: This is a special case of random

waypoint on a non convex domain. The domain is the
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Fig. 4. Fish in a Bowl, a particular restricted random waypoint. A is

the volume of the sphere comprised between two horizontal planes.

Waypoints are in the subset A1 equal to the boundary of the spheric

part of A . For perfect sampling we do not need to know average

Euclidean distance between two random points on the surface of the

bowl. It suffices to know that the distance is at most 2R.

union of the segments defined by the edges of the space

graph (e.g. Figure 1). Arbitrary numeric speeds can be

assigned to edges of the graph. The “distance" from one

location to another is the travel time.

C. Restricted Random Waypoint.

This model was originally introduced by Blažević et

al [3]; see Figure 3 for a description. We define it slightly

more generally as follows. As before, the domain A is

connected, but not necessarily convex.

There are L subdomains Aℓ ⊂ A , ℓ = 1,2, . . . ,L. (In

the original model [3], Aℓ is a square, ℓ = 1,2,3,4, the

subdomains are disjoint and A is the convex closure

of
⋃

ℓ Aℓ). The mobile executes a number of trips with

endpoints in the same subdomain, then picks a new

endpoint in some other subdomain ℓ′ and goes there

along a shortest path. ℓ′ is chosen according to the

transition matrix Q(ℓ,ℓ′), assumed to be irreducible and

such that Q(ℓ,ℓ) = 0. There is a pause between trips.

More precisely, a phase is a quadruple In = (ℓ,ℓ′,r,φ)
with ℓ,ℓ′ ∈ {1, ...,L} (origin and destination subdo-

mains), r ∈ N (residual number of trips in the same

subdomain, including this one) and φ ∈ {pause,move}.

If ℓ 6= ℓ′ then r = 0 else r ≥ 1. The trip selection rule is

executed at the end of a trip as follows. If φ = move

then φ is set to pause, a pause is executed at the

current location, for a duration drawn from a distribution

that depends on the current subdomain, and ℓ,ℓ′,r are

unchanged. Else φ is set to move, and ℓ,ℓ′,r are updated

as follows. If r ≥ 1, r is decremented by 1. If r ≥ 2, ℓ
and ℓ′ are unchanged (they must be equal). If r = 1 (the

previous trip was the last with endpoints in the current

subdomain), ℓ′ is set to a new destination subdomain

chosen according to the transition matrix Q(ℓ,ℓ′). If r = 0

Fig. 5. Random waypoint on a sphere.

(the previous trip was between subdomains) ℓ is set to

the value of ℓ′ and a new value of r is drawn from

a probability distribution that depends on ℓ′. Then a

new endpoint is selected uniformly in Aℓ′ and the next

trip is a shortest path from the current endpoint to this

endpoint. For every trip, the numerical speed is selected

according to a density that may depend on the origin and

destination subdomains of the trip endpoints.

In addition to the model in Figure 3, we give two

particular examples of the restricted random waypoint

model.

1) Fish in a Bowl: The model is restricted random

waypoint on the domain defined by the volume of the

bowl, as in Figure 4. The waypoints are restricted to the

subset A1 of the domain A , where A1 is the set of the

points on the bowl’s surface (see Figure 4). The set of

phases is I = {pause,move}.

2) Space Graph: We defined this model in Section I.

It is a special case of restricted random waypoint with

A = the space graph and A1 = the set of vertices. Note

that it differs from the City Section graph in that the

waypoints are restricted to be vertices. The set of phases

is I = {pause,move}.

Note that all models III-A to III-C.2 and III-D are

special cases of the restricted random waypoint, with

L = 1, r = 0, and A1 = A for examples III-A to III-

B.2, A a strict subset of A for examples III-C.1 and

III-C.2. Note that the subdomains Aℓ may be convex as

in Figure 3 or not as in Figure 4.

D. Random Waypoint on Sphere.

Here A is the unit sphere of R
3. P is the set of

shortest paths plus pauses. The shortest path between two

points is the shortest of the arcs on the great circle that

contains the two points. If the two points are on the same

great circle diameter, the two arcs have same length (this

occurs with probability 0). The trip transition rule picks

5
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Fig. 6. Definition of Random Walk (Random Direction) with wrapping (left) or billiard-like reflection (right) at the edge of the domain.

a path endpoint uniformly on the sphere, and the path is

the shortest path to it (if there are two, one is chosen with

probability 0.5). The set of phases is I = {pause,move}.

The numerical speed is chosen independently. Initially,

a point is chosen uniformly.

This model is in fact a special case of the random

waypoint on a connected, non convex domain. However,

we mention it separately as it enjoys special properties

(the stationary location is uniform, unlike for the random

waypoint models described earlier).

E. Random Walk with Wrapping.

This model is viewed as a random waypoint on a torus

in [12]. It has similarity with the Random Direction in

[6]. It is used primarily because of its simplicity: unlike

for the random waypoint, the distribution of location and

speed at a random instant are the same as at a transition

instant, as we show later.

The domain A is the rectangle [0,a1]× [0,a2]. Paths

are wrapped segments, defined as follows. The trip se-

lection rule chooses a speed vector ~Vn and a trip duration

Sn independently, according to some fixed distributions.

Choosing a speed vector ~Vn is the same as choosing

a direction of movement and a numerical speed. The

mobile moves from the endpoint Mn in the direction and

at the rate given by the speed vector. When it hits the

boundary of A , say for example at a location (x0,a2),
it is wrapped to the other side, to location (x0,0), from

where it continues the trip (Figure 6). Let w : R
2 → A

be the wrapping function:
(

x

y

)

7→ w

(

x

y

)

=

(

x mod a1

y mod a2

)

.

The path Pn (if not a pause) is defined by (Mn, ~Vn,Sn),

such that Pn(u) = w
(

Mn +uSn
~Vn

)

. Note that wrapping

does not modify the speed vector (Figure 6). After a

trip, a pause time is drawn independent of all past from

some fixed distribution. Initially, the first endpoint is

chosen uniformly in A . As we show next, this implies

that all endpoints are in turn uniformly distributed (when

sampled at transition instants).

This model obviously satisfies assumptions H1 and

H3 with set of phases I = {pause,move}. We now show

that it satisfies H2.

Lemma 1: Let X be a random point, uniformly dis-

tributed in A = [0,a1]× [0,a2]× ...[0,ad]. For any non

random vector ~v ∈ R
d , the distribution of w(X +~v) is

also uniform in A .

Theorem 1: The distribution of points M1,M2, ..., is

uniform in A .

Proof. M0 is uniform by assumption. By Lemma 1,

the distribution of M1 is also uniform, and recursively,

so is the distribution of Mn. ✷

This shows H2b. Note that this is true regardless of the

distribution with which ~Vn and Sn are chosen.

F. Random Walk with Reflection.

This is similar to example III-E, but with billiard-like

reflections instead of wrapping (Figure 6). It enjoys some

of the same final simplicity, but the intermediate steps

are more elaborate. The definition is identical to example

III-E, with the three following differences:

1) The wrapping function is replaced by the billiard

reflection function b : R
2 → A , defined by

(

x

y

)

7→ b

(

x

y

)

=





a1 b1

(

x
a1

)

a2 b1

(

y

a2

)



 ,

where b1 : R → [0,1] is the 2-periodic function:

b1(x) = |x|, for −1 ≤ x ≤ 1.
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2) Unlike the wrapping function, the billiard reflection

may alter the speed vector (Figure 6). Therefore we

differentiate the unreflected speed vector ~Wn from the

instantaneous speed vector ~V (t) at time t. The path Pn

(if not a pause) is defined by (Mn, ~Wn,Sn), such that

Pn(u) = b
(

Mn +uSn
~Wn

)

.

3) We assume that the distribution of the unreflected

speed vector ~Wn chosen by the trip selection rule has

a density and is completely symmetric. We say that

a random vector (X ,Y ) has a completely symmetric

distribution iff (−X ,Y ) and (X ,−Y ) have the same

distribution as (X ,Y ). This is true for example if the

direction of ~W is uniformly chosen on the unit circle, or

if the two coordinates of ~W are independent and have

even distributions.

This model obviously satisfies assumptions H1 and H3

with set of phases I = {pause,move}. It also satisfies H2:

Lemma 2: Let X be a random point, uniformly dis-

tributed in A = [0,a1] × [0,a2] × ...[0,ad]. Let ~V be

a random vector in R
d with a completely symmetric

density. The distribution of the reflection b(X +~V ) is

also uniform in A .

Proof. Follows from Lemma 5 in Section VII. ✷

Theorem 2: The distribution of points M1,M2, ..., is

uniform in A .

Proof. Similar to Theorem 1, using Lemma 2. ✷

IV. EXISTENCE AND UNIQUENESS OF STATIONARY

DISTRIBUTION

Theorem 3: With the model defined in Section II, there

is a time-stationary regime if and only if the expected

trip duration IE0(S0) is finite. If it exists, the stationary

regime is unique.

Proof of the theorem in Appendix is outlined as

follows. First, under assumptions H1-H3, it follows

that there exists a unique stationary distribution for the

mobility state embedded at trip transition instants (aka

event-stationary distribution). Second, we show that the

so called Slivnyak’s conditions hold [1], which guarantee

existence of a time-stationary distribution. Lastly, when-

ever a time-stationary distribution exists, its uniqueness

follows from the Palm inversion formula [1].

Corollary 1: For examples III-A to III-D, there is a

stationary regime if and only if the pause time and

inverse speed (sampled at a transition) have a finite

expectation. For examples III-E and III-F the condition

is that the pause time and trip duration (sampled at a

transition) have a finite expectation.

Comment. These conditions are known to be necessary

for the classical random waypoint to be “harmless".

However, it appears to be the first time that the link to

the existence of a stationary regime is made rigorously.

V. TIME STATIONARY DISTRIBUTIONS

For a perfect simulation, all we need is to sample from

the time stationary distribution of the process state. The

state of the process is the phase (I(t), the path P(t), the

trip duration S(t) and fraction of time elapsed on the trip

U(t). In this section we derive the fundamental relation

between the parameters of the random trip model and its

stationary distribution. In the next section we apply it to

the various examples introduced earlier.

Theorem 4: Assume the condition for existence and

uniqueness of a stationary distribution in Section IV is

satisfied. The time stationary distribution of the process

state at an arbitrary time t is defined as follows.

1) Phase:

IP(I(t) = i) =
π0(i)τ̄i

∑ j π0( j)τ̄ j

where τ̄i = IE0(S0|I0 = i) is the mean trip duration

for phase i.

2) Path and trip duration, given the phase:

dIP(P(t) = p,S(t) = s|I(t) = i)

=
s

τ̄i

dIP0(P0 = p,S0 = s|I0 = i).

3) Fraction of time elapsed on the trip:

U(t) is independent of (I(t),P(t),S(t)) and is

uniform on [0,1].

Note that the factor 1/∑i π0(i)τ̄i in item 1 is precisely

the intensity of the point process of trip transitions [1].

Special Case. In many examples (III-A to III-C.2 and

III-D) the set of phases is reduced to {pause,move} and

the model alternates between these two. Then π0(i) = 0.5
for i = pause or move and item 1 simplifies to P(I(t) =
pause) =

τ̄pause

τ̄pause+τ̄move
and P(I(t) = move) = τ̄move

τ̄pause+τ̄move
.

VI. APPLICATION TO EXAMPLES III-A TO III-C

In all of this section, we assume that the condition

for stationarity in Section IV is satisfied. We focus on

restricted random waypoint on general connected area,

since examples III-A to III-C are special cases of it.

A. Time Stationary Distributions

A direct application of the Theorem 4 gives the

time stationary distribution of the process. Due to its

description complexity, we give it in three pieces, in the

following theorems. Special notation local to this section

is given below.
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Notation Used in Section VI

• Q(ℓ,ℓ′): probability that next subdomain is Aℓ′ given

current subdomain is Aℓ, with Q(ℓ,ℓ) = 0. q∗(ℓ) is the unique

stationary probability of Q (q∗Q = q∗).

• For r ∈ N, Fℓ(r) is the probability that the number of

consecutive sojourns in subdomain Aℓ is ≥ r. R̄ℓ = ∑r Fℓ(r)
is the average number of consecutive sojourns in subdomain

Aℓ.

• ∆̄ℓ,ℓ′ is the average distance in A for two points chosen

uniformly in Aℓ and Aℓ′ . ∆ℓ,ℓ′ is some upper bound on the

distance in A between two points in Aℓ and Aℓ′ .

• f 0
V |i(v) is the Palm (= at a transition instant) distribution

of speed, given that phase is i = (ℓ,ℓ′,r,move); ωℓ,ℓ′ =

IE0
(

1
V0
|In = (ℓ,ℓ′,r,move)

)

is the event average of the in-

verse of the speed chosen for a trip from subdomain Aℓ to

Aℓ′ . We have ωℓ,ℓ′ =
∫ ∞

0
1
v

fV |ℓ,ℓ′,r,move(v)dv, assumed to be

independent of r.

• f 0
S|i(s) is the Palm (= at a transition instant) distribution

of pause time, given that phase is i = (ℓ,ℓ′,r,pause); τℓ,ℓ′ =
IE0 (S0|I0 = (ℓ,ℓ′,r,pause)) is the average pause time that

follows a trip from subdomain Aℓ to Aℓ′ . We have τℓ,ℓ′ =∫ ∞
0 s fS|ℓ,ℓ′,r,pause(s)ds, assumed to be independent of r.

The first theorem generalizes known statements for the

classical random waypoint (Example III-A) [15], [14].

It relates the time average speed to the distribution

of the speed selected at a waypoint, and contains an

exact representation of the time stationary distribution

of location.

Theorem 5: Under the time stationary distribution,

conditional to phase I(t) = i = (ℓ,ℓ′,r,move):

1) The numerical speed is independent of the path

and the instantaneous location of the mobile at

time t. Its density is

fi(v) =
Ci

v
f 0
V |i(v)

where f 0
V |i(v) is the density of the numerical speed

sampled at a transition instant and Ci is a normal-

izing constant.

2) The path endpoints (P(t)(0),P(t)(1)) have a joint

density over Aℓ ×Aℓ′ given by

dIP(P(t)(0) = m0,P(t)(1) = m1|I(t) = i)

= Kℓ,ℓ′d(m0,m1)

where Kℓ,ℓ′ are normalizing constants and d() is

the distance in A .

3) The distribution of X(t), given P(t)(0) = p and

P(t)(1) = n, is uniform on the segment [p,n].

Proof. Apply Theorem 4 to obtain the joint distribu-

tion of the path, location and speed V (t), by noting that

V (t) = d(P(t)(0),P(t)(1))/S(t). ✷

Comment 1. As we show later, there is no need to

know the value of the constants Kℓ,ℓ′ to use the theorem

in a simulation. 1

Comment 2. The distribution of path endpoints

P(t)(0) and P(t)(1) is not uniform, and the two end-

points are correlated (they tend to be far apart), contrary

to what happens when sampled at transition instants.

This was found already for Example III-A in [13].

Comment 3. The relation between time stationary

and event stationary distribution of speed is sometimes

interpreted as “speed decay" since it is more likely to

produce low speed values than the density f 0
i (v). If one

desires a uniform speed distribution in time average,

then the density of speed at transition instants should

be f 0
i (v) = K′

i v1{vmin<v<vmax}. Note that such a speed

distribution satisfies the stability condition in Section IV

even if vmin = 0.

Theorem 6: Under the time stationary distribution,

conditional to phase I(t) = i = (ℓ,ℓ′,r,pause):

1) the location X(t) and the time R(t) until end of

pause are independent

2) X(t) is uniform in Aℓ′

3) R(t) has density

fi(r) =
1

τ̄i

∫ ∞

r

f 0
S|i(s)ds

where f 0
S|i(s) is the density of the pause time

selected at a transition.

Proof. Similar to (but simpler than) Theorem 5. ✷

We next show time-stationary distribution for phase,

but only for the special case L = 1, i.e. one sub-domain.

The general case for arbitrary L bears some notational

complexity and is for this reason deferred to Appendix.

Theorem 7: The time stationary distribution of phase

π is given by is

π(pause) =
τpause

τpause + ∆̄ω

and π(move) = 1−π(pause), where τpause is the average

pause time, ∆̄ the average distance in A between two

points in A1, and

ω = IE0

(

1

V0

|I0 = move

)

.

1However, in the special case of convex domains where d(m,n) is

the usual Euclidean distance, it is worth noting that there are known

formulae: K−1
ℓ,ℓ′ = vol(Aℓ)vol(A ′

ℓ)∆̄ℓ,ℓ′ where vol(Aℓ) is the area or

volume of Aℓ (in square or cubic meters) and ∆̄ℓ,ℓ′ is the average

distance in A between two points drawn uniformly in Aℓ and Aℓ′ .

For ℓ = ℓ′ and Aℓ = a square of a size a, K−1
ℓ,ℓ ≈ 0.5214a5; for a

disk of radius a, K−1
ℓ,ℓ ≈ 0.9054π2a5 [8]. For an arbitrary case, it is

generally not possible to obtain either vol(Aℓ) or ∆̄ℓ,ℓ′ in closed form,

but K−1
ℓ,ℓ′ can be obtained directly by Monte Carlo simulation.
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is the event average of the inverse of the speed.

As with Theorem 5, we show later that we do not

need to know ∆̄ to use this theorem for sampling. The

special case of one sub-domain accomodates examples

III-A, III-B.1, III-B.2, III-C.1, III-C.2, and III-D.

B. Perfect Simulation Without Computing Geometric In-

tegrals

A straightforward application of the previous section

poses the problem of how to sample (m0,m1) from the

density in Theorem 5. Further, in order to sample the

phase in Theorem 7 one needs to compute the geometric

integrals ∆̄ℓ,ℓ′ ; for simple cases (L = 1 and A1 is a

rectangle or disk) there exist closed forms, as mentioned

in Comment 1 after Theorem 5. Otherwise, one needs

to compute them offline by Monte Carlo simulation.

For cases like Figure 3, this is time consuming (see an

analysis in Appendix). There is generally more efficient

procedure, which avoids computing the geometric inte-

grals when they are not known. The solution of these

two problems is based on the following lemma.

1) Rejection Sampling Lemma: Let (J,Y ) be a ran-

dom vector, where J is in a discrete set J and Y ∈ R
d .

Assume that IP(J = j) = λµ( j)ϖ j and the distribution of

Y conditional to J = j has a density
f j(y)
ϖ j

The problem

is to sample from (J,Y ) without having to compute the

normalizing constants of the densities ϖ j for all j.

Assume we know factorizations of the form f j(y) =
k j(y)g j(y) where g j(y) is a probability density2 Assume

also that we know upper bounds κ j such that 0≤ k j(y)≤
κ j.

Lemma 3: Let ν be the probability on J defined by: if

ϖ j is known ν( j) = αµ( j)ϖ j else ν( j) = αµ( j)κ j, where

α is a normalizing constant, defined by the condition

∑ j ν( j) = 1. The following algorithm draws a sample

from (J,Y ):
do forever

draw j with probability ν( j)
if ϖ j is known

draw y from the density f j(y)/ϖ j;leave

else

draw y from the density g j(y)
draw U ∼ Unif(0,κ j)

if U ≤
k j(y)

κ j
leave

end do

Comment. The lemma follows by the structure of

the distribution of J and conditional density of Y . The

structure is: IP(J = j) is proportional to ω j, while the

2That is,
∫

g j(y)dy = 1, or in other words there is no normalizing

constant to compute for g j(y).

conditional density of Y , given J = j, is inversely pro-

portional to ω j. By this structure, twisting the original

distribution of J and conditional density of Y , by replac-

ing ω j with κ j, indeed results in the original joint density

of (J,Y ). The lemma is a general result. However, it may

be helpful to note that the general form was suggested

by particular distributions in Theorem 4. Therein, phase

I(t) acts the role of J, while (P(t),S(t),U(t)) acts the

role of Y .

2) The Sampling Method: The following theorem

gives the sampling method. The details for the general

case have some description complexity, and is for this

reason deferred to Appendix. We show all details here

for the case L = 1.

Theorem 8: (Perfect Simulation of Restricted Random

Waypoint) The following algorithm draws a sample of the

time stationary state of the restricted random waypoint:

1) Sample a phase I(t) = i = (ℓ,ℓ′,r,φ) from the

algorithm in Figure 7 (simple case) or in Appendix

(general case).

2) If φ = pause

• Sample a time t from the distribution with

density fi(t) = 1/τ̄i

∫ ∞
t f 0

S|i(s)ds.

• Sample a point M uniformly in Aℓ′ .

• Start the simulation in pause phase at location

M and schedule the end of pause at t.

3) If φ = move

• Sample a speed v from the distribution with

density proportional to 1
v

f 0
V |i(v).

• Set M0,M1 to the value returned by the algo-

rithm in Figure 7 (simple case) or in Appendix

(general case).

• Sample u uniformly in (0,1).
• Start the simulation in move phase, with initial

position (1− u)M0 + uM1, next trip endpoint

= M1, and speed = v.

Note that the algorithm in Figure 7 solves both prob-

lems mentioned in the introduction of this section. If

∆̄ is known with little computational cost (i.e. when

A is a rectangle or a disk) it is always preferable to

use the former case (“∆̄ is known"). Else there are

two options: (1) compute ∆̄ offline by Monte-Carlo

simulation and use the case "∆̄ is known", or (2) use

the case (“∆̄ is not known"). Apart from unusually long

simulation campaigns with the same model, the optimal

choice, in terms of number of operations is to use the

latter case (see Appendix). Furthermore, using the latter

case simplifies the overall simulation code development.

Figure 8 illustrate the sampling method on Examples III-

B to III-C.
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Fig. 8. Perfect sampling of node position from time-stationary distribution for swiss flag (1000 samples), fish in a bowl (5000 samples),

four-town-restricted random waypoint (5000 samples) and space graph (10000 samples). Densities are not uniform, with bias towards central

areas and interior corner points.

VII. APPLICATION TO EXAMPLES III-D TO III-F

In all of this section, we assume that the condition for

stationarity in Section IV is satisfied.

A. Random Waypoint on Sphere (Example III-D)

This model is a special case of restricted random

waypoint over a non convex area, with L = 1 and A1 = A .

Thus all findings of Section VI apply, in particular, the

time stationary speed is independent of location and is

given by Theorem 5.

Theorem 9: For the random waypoint on a sphere,

the time stationary distribution of the mobile location is

uniform.

Proof. Apply Theorem 5. The distribution of X(t) is

invariant under any rotation of the sphere around an

axis that contains the center of the sphere, and any

distribution that has such an invariance property must

be uniform. ✷

Note that, with the same argument, we can show that,

given we are in a move phase, the time stationary

distribution of each path endpoint (previous and next)

separately is also uniform, but the two endpoints are

correlated (it is more likely that they are far apart).

This is because, from Theorem 5, a typical path seen in

time average is drawn with a probability proportional to

path length. This implies that, though the time stationary

distribution of points is uniform, it is not sufficient for

perfect simulation to draw an initial position uniformly

on the sphere and start as if it would be a path endpoint

(we need in addition to sample a path and where on path

according to Theorem 5).

B. Random Walk with Wrapping (Example III-E)

Let f 0
pause(t) [resp. f 0

move(t)] be the density of the pause

[resp. move] duration, sampled at a transition time. Both

densities are model parameters. Also let τ̄pause, τ̄move be

the corresponding averages (thus for example τ̄pause =
IE0(S0|I0 = pause) =

∫ ∞
0 t f 0

pause(t)dt). Finally, let f 0
~V
(~v)

be the density of the distribution of the speed vector

(sampled at trip endpoints).
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If ∆̄ is known

q0 = τpause/(τpause +ω∆̄)
Draw U1 ∼U(0,1)
if U1 ≤ q0 I(t) = pause

else

I(t) = move

do

Draw M0 ∼ Unif(A1),M1 ∼ Unif(A1)
Draw U2 ∼ Unif(0,∆)

until U2 < d(M0,M1)

else (i.e. ∆̄ is not known)

q0 = τpause/(τpause +ω∆)
do forever

Draw U1 ∼U(0,1)
if U1 ≤ q0 I(t) = pause; leave

else

Draw M0 ∼ Unif(A1),M1 ∼ Unif(A1)
Draw U2 ∼ Unif(0,∆)
if U2 < d(M0,M1)
I(t) = move; leave

end do

Fig. 7. Sampling algorithm for restricted random waypoint with L =
1, supporting both cases where the average distance between points

in A1 is known or not. τpause is the average pause time, ∆̄ the average

distance in A between two points in A1, ∆ an upper bound on the

distance in A between two points in A1 and ω = IE0(1/V0|I0 = move)

Theorem 10: For random walk with wrapping, under

the time stationary distribution:

1) the process state at time t is fully described by the

phase I(t), the location X(t), the speed vector ~V (t)
(=~0 if phase=pause) and the residual time until

end of trip R(t)
2) the location X(t) is uniform

3) P(I(t) = pause) =
τ̄pause

τ̄pause+τ̄move
and P(I(t) = move) =

τ̄move

τ̄pause+τ̄move

4) conditional to phase=pause:

• the residual pause duration R(t) has density

fpause(r) = 1/τ̄pause

∫ ∞
r f 0

pause(s)ds

• X(t) and R(t) are independent

5) conditional to phase=move:

• ~V (t) has density f 0
~V
(~v)

• the residual trip duration R(t) has density

fmove(r) = 1/τ̄move

∫ ∞
r f 0

move(s)ds

• X(t),~V (t) and R(t) are independent

Thus, contrary to random waypoint on sphere, perfect

simulation of this model is very simple. Pick a phase

in proportion to the average time spent in the phase.

Pick a point and, for move phase, a speed vector as if

at a transition point, and pick a remaining trip duration

according to the general formula for the density of the

time until next transition, in any stationary system. Also,

there is no speed decay [16] as with random waypoint

on a sphere.

C. Random Walk with Reflection (Example III-F)

There is a similar result for random walk with billiard

reflection, but its proof if more elaborate. We use con-

tinue with the same notation, with the difference that the

instantaneous speed ~V (t) may differ from the unreflected

speed ~Wn chosen at the beginning of the trip. Let f 0
~W
(~w)

be the density of the distribution of the non reflected

speed vector (sampled at trip endpoints).

The following lemma expresses that, in order to con-

tinue a path from an intermediate point m it is not needed

to know the unreflected speed vector, the instantaneous

speed is enough (proof in Appendix):

Lemma 4: For any non random point m ∈ A and

vector ~v ∈ R
2: b(m+~v) = b(b(m)+∇bm+~v~v).

The following lemma says that, at the end of trip that

starts from a uniform point M and a completely sym-

metric initial speed vector ~W , the reflected destination

point M′ and speed vector ~W ′ are independent and have

same distribution as initially (proof in Appendix).

Lemma 5: Let M be a random point, uniform in A .

Let ~W be a random vector in R
2 independent of M and

with completely symmetric distribution under reflections.

Let M′ = b
(

M + ~W
)

and ~W ′ = ∇bM+~W
~W. M′ and ~W ′ are

independent and have the same distribution as M and ~W.

Theorem 11: For the random walk with reflection, the

same holds as in Theorem 10 after replacing f 0
~V
(~v) by

f 0
~W
(~v) in the first bullet of item 5.

Proof. Item 1 follows from Lemma 4. The rest follows

from Theorem 4 and Lemma 5, in a similar way as for

Theorem 10. ✷

Remark. The location X(t) and the path

M(t), ~W (t),S(t) are not independent. For example, given

that the unreflected speed vector is ~W (t) = (0.5a1,0) and

the trip duration is S(t) = 1, it is more likely that X(t)
is in the second right half of the rectangle. However,

independence is true if, instead of the path descriptor,

we take as simulation state the current position, speed

and time to next endpoint, as justified by the theorem.

Perfect simulation of this random walk is similar to the

random walk with wrapping.

VIII. RELATED WORK

For a survey of existing mobility models, see the work

by Camp, Boleng, and Davies [6] and the references

therein. Bettstetter, Hartenstein, and Pérez-Costa [8]

studied the time-stationary distribution of a node position

for classical random-waypoint model. They observed

that the time-stationary node position is non-uniform and

it has more mass in the center of a rectangle. A similar

problem has been further studied by Bettstetter, Resta,
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and Santi [2]. A closed-form expression for the time-

stationary density of a node position is obtained only

for random-waypoint on a one-dimensional interval; for

two dimensions only approximations are obtained. Note

that in Theorem 5 we do have an exact representation

of the distribution of mobile location as a marginal of

a distribution with a known density. Neither [8] nor

[2] consider how to run perfect simulations. It is the

original finding of Yoon, Liu, and Noble [15] that the

default setting of the classical random-waypoint is in fact

ill-defined. The default random-waypoint assumes the

event-stationary distribution of the speed to be uniform

on an interval (0,vmax]. The authors found that if a node

is initialized such that origin is a waypoint, the expected

speed decreases with time to 0. This in fact corresponds

to an infinite event-average time between two waypoints,

which as we show in Section IV, corresponds to the

absence of stationary regime. In a subsequent work [16],

the same authors advocate to run sound mobility models

by initializing a simulation by drawing a sample of the

speed according to its time-stationary distribution. We

remark that speed is only a partial state of a node; in

this paper, we look at the complete state of the node

mobility. For the last reason, the authors in [16] do not

completely solve the problem of running perfect simu-

lations. Another related work is that of Lin, Noubir, and

Rajaraman [12] that studies a class of mobility models

where travel distance and travel speed between transition

points can be modeled as a renewal process. The renewal

assumption was also made in [15], [16]. We note that this

assumption is not verified with mobility models such as

classical random-waypoint on any non-isotropic domain,

such as rectangle, for example. The renewal assumption

has been made largely to make use of a “cycle” formula

from renewal theory. An elementary knowledge of Palm

calculus tells us that “cycle” formula is in fact Palm

inversion formula, which we used extensively throughout

the paper, and that applies more generally; this renders

the renewal assumption unnecessary. Perhaps the work

closest to ours is that of Navidi, Camp, and Bauer in

[14], [13]. As discussed in Section I-C, we provide a

systematic framework that allows to formally prove some

of the implicit statements in [13] and generalize to a

broader class. Further, our perfect sampling algorithm

differs in that it works even when geometric constants

are not a priori known.

IX. CONCLUSION

Our perfect sampling algorithm is implemented to use

with ns-2 to produce perfect simulations for a broad

set of random trip mobility models. The code is freely

available to download from:

http://ica1www.epfl.ch/RandomTrip

This web page contains also further pointers to random

trip mobility models.
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APPENDIX

A. Proof of Theorem 3

The mobility state is (I(t),P(t),S(t),U(t)).

Step 1. We first show that if the condition of the

theorem is true, there exists a stationary distribution.

Step 1a. Distribution of (In,Mn): Let π0 be the station-

ary distribution of the Markov chain In. By assumption

H3, π0 exists and it is unique. If H2b holds, then Mn

has a distribution independent of n and is independent

of In. Since (In,Mn) is Markov (H1) it follows that the

distribution of (In,Mn) is independent of n if we pick In

in steady state.

Else H2a holds. By a Markov renewal argument, for

any bounded function φ:

IE0(φ(In,Mn))|I0 = i)

= ∑
j∈I

Pn−1(i, j)IE0(φ(In,Mn)|In−1 = j, I0 = i)

= ∑
j∈I

Pn−1(i, j)IE0(φ(In,Mn)|In−1 = j)

= ∑
j∈I

Pn−1(i, j)G( j)

where Pn(i, j) = IP0(In = j|I0 = i) and G( j) =
IE0(φ(I1,M1)|I0 = j). Assume that the distribution of

I0 is steady-state distribution. Hence, IE0(φ(In,Mn)) =
π0Pn−1GT = π0GT = IE0(φ(I0,M0)). Thus (In,Mn) has a

distribution independent of n.

Step 1b. (In,Pn,Sn) can be made stationary. By H1,

(In,Pn,Sn) is Markov renewal with respect to In,Mn =
Pn(0) thus, by Step 1a, it is a stationary sequence.

Step 1c. We use Slivnyak’s inverse construc-

tion [1], which says that a stationary regime exists for

(I(t),P(t),S(t)) if the following conditions hold:

(S1) 0 < IE0(T1) < ∞
(S2) IP0(T1 > 0) = 1

(S3) IE0(N(0, t]) < ∞, for all t < t0, for some t0 > 0,

where N(s, t] is the number of transitions in (s, t]. S2 is

assumed by the model, which also implies 0 < IE0(T1);
the rest of S1 is hypothesis of the theorem. It remains

to verify S3.

If H2b holds, then (In,Tn) is a Markov renewal pro-

cess (Chapter 10, [7]). If H2a holds, then we construct an

embedded Markov renewal process as follows. Denote

the instants of the selected transitions of In in I∗ with

T ∗
n and let S∗

n = T ∗
n+1 − T ∗

n , I∗n := I(T ∗
n ). From H3, In

is a positive recurrent Markov chain, so is I∗n . Define

S̃∗
n = S(T ∗

n ), which is time until next transition as seen at

T ∗
n . Introduce the auxiliary point process T̃ ∗

n+1 = T̃ ∗
n + S̃∗

n,

n > 1, T̃ ∗
1 = T ∗

1 . If (I−1, I0) = (i−1, i0) ∈ I∗, then (Zn, T̃
∗

n )
is a Markov renewal process with Zn = (I∗n , I∗n−1). Indeed,

let Fn = (I∗n , I∗n−1, . . . , I
∗
0 = i0, I

∗
−1 = i−1; T̃ ∗

k ,k ≤ n), and

note that

IP0(I∗n+1 = j, S̃∗
n ≤ t|Fn)

=
∫

A

IP0(I∗n+1 = j, S̃∗
n ≤ t|Mn = x,Fn)dIP0(Mn = x|Fn)

=
∫

A

IP0(I∗n+1 = j, S̃∗
n ≤ t|Mn = x, I∗n , I∗n−1)×

×dIP0(Mn = x|I∗n , I∗n−1)

= IP0(I∗n+1 = j, S̃∗
n ≤ t|I∗n , I∗n−1)

where the second equality is by H1 and H2a. Else, if

(I−1, I0) ∈| I∗, then (Zn, T̃
∗

n ) is a delayed Markov renewal

process ( = the event-distribution of T̃ ∗
1 different from

the event distribution of S̃∗
n, n > 1). If for the auxiliary

process (Zn, T̃
∗

n ), S3 is true, in view of the positive re-

currence H3, the expected number of transitions between

any two selected transitions is finite, so S3 is true for the

original transitions Tn.

It suffices to show that S3 is true under H2b. Note

that

IE0(N(0, t]) = ∑
n≥1

nIP0(N(0, t] = n) = ∑
n≥1

IP0(Tn ≤ t). (1)

We next bound IP0(Tn ≤ t). From Markov’s inequality,

for an arbitrary fixed s > 0,

IP0(Tn ≤ t) ≤ estIE0
(

e−sTn
)

. (2)

For any s > 0 let

H
(n)
i, j (s) = IE0

(

e−sTn1{In= j}|I0 = i
)

.

Condition with respect to S0 = s0. By the Markov re-

newal property, we have:

H
(n+1)
i, j (s) = ∑

i, j

Q̃i,k(s)H
(n)
k, j (s)

where Q̃i,k(s) = IE0
(

e−sS01{I1= j}|I0 = i
)

. In matrix nota-

tion, H(n+1)(s) = Q̃(s)H(n)(s) and thus H(n)(s) = (Q̃(s))n.

Note that for any s > 0, Q̃(s) is non-negative and

∑
j

Q̃i, j(s) = IE0(e−sS0 |I0 = i) < 1, any i.

Thus, by the Perron-Frobenius theorem, the spectral

radius of Q̃(s) is < 1. Hence, the series ∑n≥0(Q̃(s))n

is absolutely convergent. Now IE0
(

∑n≥0 e−sTn
)

=
π0 ∑n≥0(Q̃(s))n1IT where 1I = (1,1, ...,1), and thus it is

finite. In view of Equation (2), this shows that

∑
n≥1

IP0(Tn ≤ t) < ∞.

It follows from Equation (1) that S3 is verified.

Step 1d. We showed that (I(t),P(t),S(t)) has a

stationary regime; in other words, there exists a sta-

tionary marked point process ((In,Pn),Tn). It remains to
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see that (I(t),P(t),S(t),U(t)) also has. Define T−(t) =
sup{Tn : Tn ≤ t} and T +(t) = inf{Tn : Tn > t}. The

events {t − T−(t) > s} and {T +(t)− t > s} are equal

to {N[t−s, t] = 0} and {N(t, t +s] = 0}; these events are

determined by (I(u),P(u),S(u), u ∈ R) in a way that is

invariant by a shift of time origin; thus if (I(t),P(t),S(t))
is stationary, so is (I(t),P(t),S(t), t −T−(t),T +(t)− t).

Now U(t) = t−T−(t)
(T +(t)−t)−(t−T−(t)) thus (I(t),P(t),S(t),U(t))

is stationary, too.

Step 2. The condition is necessary by the intensity

formula in [1].

Step 3. If a stationary regime exists, then by the

inversion formula and the proof of Theorem 4, it is

entirely defined by the Palm distribution, which is unique

by step 2.

B. Proof of Theorem 4

We use the inversion formula of Palm calculus [1]. Let

λ be the intensity of the point process Tn, i.e. the average

number of transitions per time unit. For any bounded

function φ of the process state:

IE(φ(I(t),P(t),S(t),U(t)))

= λIE0

(∫ S0

0
φ(I0,P0,S0,

τ
T1

)dτ
)

= λIE0

(

S0

∫ 1

0
φ(I0,P0,S0,u)du

)

where the latter is by the change of variable τ = S0u in

the integral. Take φ( j, p,s,u) = 1{ j=i} and obtain

IP(I(t) = i) = λIE0
(

S01{I0=i}

)

= λπ0(i)τ̄i.

The condition ∑i IP(I(t) = i) = 1 gives λ = 1/∑i π0(i)τ̄i,

which shows item 1. Now take φ( j, p,s,u) =
ψ(p,s)ξ(u)1{ j=i} and obtain

IE(ψ(P(t),S(t))ξ(U(t))1{I(t)=i})

= λIE0

(

S0ψ(P0,S0)
∫ 1

0
ξ(u)du1{I0=i}

)

= λπ0(i)IE0

(

S0ψ(P0,S0)
∫ 1

0
ξ(u)du|I0 = i

)

= λπ0(i)
∫ 1

0
ξ(u)duIE0 (S0ψ(P0,S0)|I0 = i)

= IP(I(t) = i)
∫ 1

0
ξ(u)duIE0

(

S0

τ̄i

ψ(P0,S0)|I0 = i

)

.

Thus

IE(ψ(P(t),S(t))ξ(U(t))|I(t) = i)

=
∫ 1

0
ξ(u)du

1

τ̄i

IE0 (S0ψ(P0,S0)|I0 = i)

which shows items 2 and 3.

C. Proof of Theorem 8

First note (Theorem 5) that we need only to consider

path and location. Then apply Theorems 5,6 and 7.

When ∆̄ℓ,ℓ′ is known, we solve the first problem of

sampling m0,m1 from the density in Theorem 5 by

applying Lemma 3 with J = {1}, y = (m0,m1), ϖ1 =
∆̄ℓ,ℓ′ , f1(m0,m1) = d(m0,m1)unifAℓ

(m0)unifAℓ′
(m1), κ1 =

∆ℓ,ℓ′ . The second problem (∆̄ℓ,ℓ′ not known) is solved by

setting J = I and ϖi = τ̄i.

D. Proof of Theorem 10

Item 1 follows from the fact that the speed vector is

not altered by wrapping. Item 3 directly follows from

Theorem 4 and the discussion after it. We now show

item 5. Recall P(t)(0) is the start position of the current

path. By Theorem 4, the time stationary joint density

of P(t)(0) = m,~V (t) =~v,S(t) = s, conditional to a move

phase is s
τ̄move

f 0
~V
(~v) f 0

move(s)unif(m), where unif(m) is the

uniform density on A . Now X(t) = w(Mn +U(t)Sn
~Vn),

Tn ≤ t < Tn+1, and R(t) = (1−U(t))S(t). Take any three

bounded functions φ,ψ,ξ. By Theorem 4 we have:

IE
(

φ(X(t))ψ(~V (t)))ξ(R(t))|I(t) = move
)

=
∫ 1

0

∫
~v,s

∫
m

φ(w(m+us~v))unif(m)dm×

×ψ(~v)ξ(us)
s

τ̄move

f 0
~V
(~v) f 0

move(s)d~vdsdu

=
∫

A

φ(m)dm×

×
∫ 1

0

∫
~v,s

ψ(~v)ξ(us)
s

τ̄move

f 0
~V
(~v) f 0

move(s)d~vdsdu.

The last equality is because by Lemma 1, the interior

integral with respect to m is
∫

A
φ(m)dm. Thus

= IE
(

φ(X(t)),ψ(~V (t),ξ(R(t))|I(t) = move
)

=
∫

A

φ(m)dm×

×
∫

R2

ψ(~v) f 0
~V
(~v)d~v

∫ 1

0

∫ ∞

0

s

τ̄move

ξ(us) f 0
move(s)dsdu

=
∫

R2

ψ(~v) f 0
~V
(~v)d~v

∫ ∞

0
ξ(r) fmove(r)dr

where the last equality is by the change of variable (s,u)
to (r = us,s). This shows item 5. Item 4 is analog. Now

conditional to the phase being either move or pause, the

location X(t) is uniform. Item 2 follows.

E. Proof of Lemma 1

First we show the lemma for d = 1. It is also sufficient

to show this for a1 = 1. We have
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X ′ = X + v mod 1 (3)

Since X ′ is limited to the interval [0,1], its distribution

is entirely defined by its Fourier coefficients for n ∈ Z:

c′n = IE
(

e2iπnX ′
)

. By Equation (3) c′n = e2iπnvcn, where cn

is the nth Fourier coefficient of the distribution of X .

Now X is uniform over [0,a] thus cn = 0 for n 6= 0 and

c0 = 1. It follows that c′n = cn for all n.

Now back to the general case, we have shown that all

coordinates are uniformly distributed. Further, they are

independent because X is uniform and ~v is constant.

F. Proof of Lemma 3

Let Ik be the phase drawn at the k iteration of the loop

and T be the number of iterations when we exit the loop

(if ever). Assume first that ω̄i is unknown for all i. We

have IP(T = k) = q1(1−q1)
k−1 with

q1 = ∑
i

∫
Rd

ki(y)

κi

gi(y)dy = ∑
i

ν(i)
ω̄i

κi

= α∑
i

π0(i)ω̄i.

Note that 0 < q1 ≤ 1 thus the loop terminates with

probability 1. IT is the value of i when we exit the loop

and

IP(IT = i) = ∑k≥1 IP(IT = i and T = k|T ≥ k)(1−q1)
k−1

= ∑k≥1 ν(i) ω̄i

κi
(1−q1)

k−1 = 1
q1

ν(i) ω̄i

κi
= µ(i)ω̄i

∑ j µ( j)ω̄ j

which shows the result in this case. Second, consider

some i for which ω̄i is known. Let gi = fi/ω̄i, ki(y) =
ω̄i and κi = ω̄i. When I = i is drawn, it is kept with

probability 1. Thus the case ω̄i is a special case of the

previous one.

G. Proof of Lemma 4

It is enough to show the lemma in dimension 1 and

for a1 = 1. In this case, the result to prove is

b1(x+ v) = b1 (b1(x)+b′
1(x)v)

for any x ∈ R\Z,v ∈ R. Both sides of the equation are

2-periodic in x, thus we can restrict to −1 < x < 0 and

0 < x < 1. In the former case, the equation is trivial. In

the latter, it becomes b1(x + v) = b1(−x− v), which is

true because b1() is even.

H. Proof of Lemma 5

It is sufficient to consider the case a1 = a2 = 1. The

mapping that transforms (M = (x,y), ~W = (u,v)) into

(M′ = (x′,y′), ~W ′ = (u′,v′)) is such that x = ε1(x
′−u′)+

2n1, y = ε2(y
′− v′)+ 2n2, u = ε1u′ and v = ε2v′, where

ε1,ε2 ∈ {−1,1} and n1,n2 ∈Z. It is differentiable almost

everywhere and its Jacobian is 1. Thus, the joint density

of (M′, ~W ′) is

fM′,~W ′(x
′,y′,u′,v′) = ∑

ε1,ε2∈{−1,1},n1,n2∈Z

f~W (ε1u′,ε2v′)×

×1{ε1(x′−u′)+2n1∈(0,1)}

×1{ε2(y′−v′)+2n2∈(0,1)}.

Since f~W is completely symmetric:

= f~W (u′,v′)∑ε1,ε2∈{−1,1},n1,n2∈Z 1{ε1(x′−u′)+2n1∈(0,1)}

1{ε2(y′−v′)+2n2∈(0,1)}

=
(

∑ε1∈{−1,1},n1∈Z 1{ε1(x′−u′)+2n1∈(0,1)}

)

(

∑ε2∈{−1,1},n2∈Z 1{ε2(y′−v′)+2n2∈(0,1)}

)

Now for any x ∈ R\Z:

∑
ε1∈{−1,1},n1∈Z

1{ε1x+2n1∈(0,1)} = 1.

It follows that for all u′,v′ and x′,y′ ∈ (0,1) except on a

set of zero mass fM′,~W ′(x′,y′,u′,v′) = f~W (u′,v′).

I. Perfect Sampling for Restricted Random Waypoint

The model is defined in Section III-C. The next

theorem shows the time-stationary distribution of phase.

The theorem generalizes Theorem 7 in Section VI, which

is for L = 1, to hold for an arbitrary number L of sub-

domains Aℓ.

Theorem 12: The time stationary distribution π(i) to

be in phase I(t) = i = (ℓ,ℓ′,r,pause) is















π(ℓ,ℓ′,0,pause) = λq∗(ℓ)Q(ℓ,ℓ′)τℓ,ℓ′

π(ℓ,ℓ,r,pause) = λq∗(ℓ)Fℓ(r)τℓ,ℓ for r ≥ 1

π(ℓ,ℓ,r,move) = λq∗(ℓ)Q(ℓ,ℓ′)∆̄ℓ,ℓ′ωℓ,ℓ′

π(ℓ,ℓ,r,move) = λq∗(ℓ)Fℓ(r)∆̄ℓ,ℓωℓ,ℓ for r ≥ 1

where λ is a normalizing constant, defined by the above

equation and ∑i π(i) = 1.

Proof. By substitution in the balance equations, we

can verify that the event-stationary distribution of the

phase In is given by







π0(ℓ,ℓ′,r,pause) = π0(ℓ,ℓ′,r,move)
π0(ℓ,ℓ′,0,move) = αq∗(ℓ)Q(ℓ,ℓ′)
π0(ℓ,ℓ,r,move) = αq∗(ℓ)Fℓ(r) for r ≥ 1

(4)

with α a normalizing constant. The rest follows from

Theorem 4. ✷

The perfect sampling algorithm, which generalizes

that in Figure 7 to arbitrary number of subdomains, is

displayed in Figure 9.
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• L = is the set of (ℓ,ℓ′) for which ∆̄ℓ,ℓ′ is known in

advance. For (ℓ,ℓ′)∈L , Kℓ,ℓ′ = ∆̄ℓ,ℓ′ and otherwise

Kℓ,ℓ′ = ∆ℓ,ℓ′ .

• The following four distributions are used:














E1(ℓ,ℓ
′) = q∗(ℓ)Q(ℓ,ℓ′)τℓ,ℓ′/e1

E2(ℓ) = q∗(ℓ)R̄ℓτℓ,ℓ/e2

E3(ℓ,ℓ
′) = q∗(ℓ)Q(ℓ,ℓ′)Kℓ,ℓ′ωℓ,ℓ′/e3

E4(ℓ) = q∗(ℓ)R̄ℓKℓ,ℓ′ωℓ,ℓ/e4

where e1,e2,e3,e4 are normalizing c

do forever

Draw U1 ∼U(0,1)
if U1 ≤

e1+e2

e1+e2+e3+e4
// decide φ(t) = pause

if U1 ≤
e1

e1+e2+e3+e4

Draw (ℓ,ℓ′) from the distribution E1(ℓ,ℓ
′)

I(t) = (ℓ,ℓ′,0,pause); leave

else

Draw ℓ from the distribution e2(ℓ)

Draw r ∈ Z with probability
Fℓ(r)

R̄ℓ

I(t) = (ℓ,ℓ,r,pause); leave

else // try φ(t) = move

// first sample ℓ,ℓ′

if U1 ≤
e1+e2+e3

e1+e2+e3+e4

Draw (ℓ,ℓ′) from the distribution E3(ℓ,ℓ
′); r = 0

else

Draw ℓ from the distribution E4(ℓ), ℓ′ = ℓ

Draw r ∈ Z with probability
Fℓ(r)

R̄ℓ

if (ℓ,ℓ′) ∈ L

I(t) = (ℓ,ℓ′,r,move)
do

Draw M0 ∼ Unif(Aℓ),M1 ∼ Unif(Aℓ′)
Draw U2 ∼ Unif(0,∆ℓ,ℓ′)

until U2 < d(M0,M1)
leave

else // (ℓ,ℓ′) ∈| L

Draw M0 ∼ Unif(Aℓ),M1 ∼ Unif(Aℓ′)
Draw U2 ∼ Unif(0,∆ℓ,ℓ′)
if U2 < d(M0,M1)

I(t) = (ℓ,ℓ′,r,move); leave

end do

Fig. 9. Sampling algorithm for restricted random waypoint, sup-

porting both cases where the average distance between Aℓ and Aℓ′ is

known or not.

J. Details of Perfect Sampling for Restricted Random

Waypoint

Complexity. We compare the complexity of the two

branches of the algorithm in numbers of calls to the

random number generator. Let a be the number of such

calls required to simulate one sample (M0,M1) uniformly

in the A1 plus one (a = 5 for a rectangle or a disk, usually

more for non convex domains). By an analysis similar

to the proof of Lemma 3, we find, for the former case

C1 = α+∆a

α+∆̄ and for the latter C2 = ∆−∆̄
α+∆̄(1+a)+ α+(1+a)∆

α+∆ ,

with α = τpause/ω.

We always have C2 > C1; thus if ∆̄ is known with

little computational cost, it is always preferable to use

the former case (“∆̄ is known"). In contrast, if ∆̄ is not

known, there are two options: (1) compute ∆̄ offline by

Monte Carlo simulation and use the former case (“∆̄ is

known"), or (2) use the latter case (“∆̄ is not known").

The optimal choice depends on the number N of mobiles

that need to be initialized by the sampling procedure (N

includes the number of replications of the simulation).

Clearly, since C2 >C1, as N goes to ∞, and since the cost

of the Monte Carlo simulation is incurred only once for

all simulation runs, there is a breakpoint N0 such that

for N ≤ N0 it is optimal to use the first option, and vice

versa. The complexity of Monte Carlo to compute ∆̄ with

99.99% confidence interval and a relative accuracy of

1−ε is of the order of a(6 σ
∆̄ε)

2, where σ2 is the variance

of the distance between two points in A1. σ depends on

the regularity of the domain A . For restricted random

waypoint or city graph, it is large compared to the mean

value. For more regular areas, a crude approximation

of σ is ∆− ∆̄. Comparing C2/C1 to this complexity, we

find that N0 is of the order of 10 to 1000 times 1
ε2 . In

practice, ε = 10−4 and thus N0 is of the order of 109 to

1011 for L = 1, which is probably larger than the number

of simulation runs performed in a campaign by several

orders of magnitude. Thus, it should generally be much

more efficient to consider the second option.

K. Evaluating a Transient Distribution

We discuss details on obtaining the transient distri-

bution shown in the example of Section I (Figure 1).

Define the set of phases as I = A1×A1×{pause,move},

where A1 are points in A defined by the location of

the vertices of the graph. At time t, I(t) = (v0,v1,φ)
denotes the origin vertex is v0, the destination vertex

is v1, φ is either move or pause. Assume In verifies

H3, I is finite, the transition matrix is Q and denote

the stationary distribution of In with π0. Our goal is

to compute IP0(I(t) = i), i ∈ I, the distribution of the

phase at time t, given that the initial phase I0 is drawn

from the event-stationary distribution. The distribution

IP0(I(t) = i), i ∈ I, is a transient distribution, which

we know how to compute in the view that (In,Tn) is a

Markov renewal process. To that end, let A(t) be an event

determined by (I(t),S(t)). By Markov renewal property,
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we have for each i,

IP0(A(t)|I0 = i) = IP0(A(t),T1 > t|I0 = i)+ (5)

+∑
j

∫ t

0
Q(i, j)G0

i ( j,ds)IP0(A(t − s)|I0 = j)

where G0
i ( j,s) := IP0(I1 = j,T1 ≤ s|I0 = i). From [7]

(Proposition 4.9, Chapter 10, Section 4)

lim
t↑∞

IP0(A(t)|I0 = i)

= λ∑
j

π0( j)
∫ ∞

0
IP0(A(s),T1 > s|I0 = j)ds

= λ∑
j

π0( j)IE0

(∫ ∞

0
1A(s)1{T1>s}ds|I0 = j

)

= λ∑
j

π0( j)IE0

(∫ T1

0
1A(s)ds|I0 = j

)

where λ = 1/∑ j π0(i)IE0(T1|I0 = i). By Palm inversion

formula, we recognise that the right-hand side in the last

equality of the above display is IP(A(t)). In other words,

the transient distribution converges to the time-stationary

distribution as t goes to infinity. A question is how

long it takes for the transient distribution to converge

near the time-stationary distribution. This is evaluated

numerically in Section I.

The system of equations (5) is known as Markov

renewal equation; in principle, it is numerically solved

routinely. In our example this is in particular simple for

the reasons explained now. In the example, we assumed

the mobile always move and the travel time on a path

j is fixed to an integer number of seconds τ j > 0.

This allows us to instantiate (5) as: A(t) := {I(t) = k}
and G0

i ( j,ds) = δτ j
(s). With the notation π0(i,k, t) :=

IP0(I(t) = k|I(0) = i), (5) boils down to

π0(i,k, t) = a(i,k, t)+∑
j∈I

Q(i, j)b( j, t)π0( j,k, t − τ j) (6)

where a(i,k, t) = 1{τi>t,i=k} and b( j, t) = 1{t≥τ j}, i, j,k ∈ I.

The equations (6) are difference equations, which we

run recursively for t = 1,2, . . . to obtain numerical values

in Figure 1.
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