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with an application to peer to peer systems

Bruno Gaujal∗ Florence Perronnin† Rémi Bertin‡

October 18, 2013

Abstract

In this paper we present a class of hybrid systems made of deterministic differential equa-

tions and random discrete jumps. We then show how to construct a simulation of such a

stochastic hybrid system that provides perfect samples of its asymptotic behavior based on

the extension to continuous state-space of coupling-from-the-past techniques introduced by

Foss and Tweedie (1998) and using suitable envelope trajectories to tackle non-monotonicity.

The applicability of the method is illustrated by showing how this framework can be used

to model the Squirrel peer to peer system and by reporting a simulation study based on this

approach.

This paper provides both a framework on how to carry simulation based experimental

studies of large and complex hybrid systems and its application in the Squirrel model demon-

strating how versatile and powerful this approach can be over a typical example.

1 Introduction

Hybrid systems have become popular to model systems whose dynamics is an interplay between

a continuous one and a discrete one.

The main difficulty in dealing with them is that continuous systems are often modeled by

differential equations while discrete ones are in general seen as automata. The mathematical tools

to analyze the two parts (calculus versus algebra) as well as computer issues (numerical precision

versus complexity) from both worlds are hardly compatible. However several recent breakthroughs
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such as [Alur et al., 2003, Tomlin et al., 2003, Girard, 2005] have demonstrated the usefulness and

the interest from both theoretical and practical points of view, of mixing the continuous and the

discrete paradigms.

Historically, the most widely used hybrid systems are switched systems. These systems can be

classified into state-dependent and time-dependent systems [Liberzon, 1973]. Consider a family

P of differential equations {ẋ = fp(x), p ∈ P}. A time-dependent switched system is composed

of a piecewise continuous process x and a piecewise-constant function σ : R+ 7→ P verifying

ẋ = fσ(t)(x). In a state-dependent switching system, the index p of function fp depends on x itself

and not on a time variable. This results in a process hitting boundaries (switching surfaces) across

which the differential system changes.

The main focus in the literature is on stability analysis (i.e., find conditions such that the

system remains in a compact domain) and control synthesis (find control policies such that the

system remains stable) [Liberzon, 1973].

More recently, other classes of hybrid systems have been studied such as hybrid stochastic

processes where the differential equations and/or the discrete dynamics are governed by stochas-

tic inputs. Examples of such systems are piecewise-deterministic Markov processes (PDMP)

[Davis, 1984], where the continuous part is deterministic and the discrete part is Markovian, or

switched diffusion processes where the continuous part involves a Brownian term [Ghosh et al., 1997].

In such systems, the vast majority of research is on the study of the long-term behavior of the

system (recurrence, ergodicity) and, for controlled systems, on the existence of simple optimal

control policies.

In this paper, we will rather focus on computational issues, i.e., find efficient algorithms to com-

pute numerically the asymptotic behavior of hybrid systems which are non-homogeneous PDMPs

with continuous state-spaces.

The analysis of such systems is often difficult on a mathematical as well as on a numerical

point of view and such large hybrid systems are often considered computationally untractable (even

in the simple case where the PDMP is homogeneous and the state-space is discrete). Simulation

approaches are efficient alternative methods to estimate the behavior of such systems by providing

samples distributed according to its asymptotic distribution, even when it is impossible to compute

this distribution numerically. However, simulation has several drawbacks. First, simulations do not

make any sense unless the system has ergodicity properties, which are sometimes difficult to assert.

Second, even under the right ergodicity conditions, classical simulation techniques only provide

approximations of the asymptotic behavior. The longer the simulation the more accurate the

result, but it is usually hard or impossible to be more precise than this general statement. Recently,

Propp and Wilson used backward coupling techniques ([Propp and Wilson, 1996]) to design a

simulation algorithm to get perfect sampling (i.e. whose distribution is not an approximation
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but the exact asymptotic distribution) of discrete time finite Markov chains. Their technique has

been extended to Markov chains over continuous state spaces under uniform ergodicity conditions

in [Foss and Tweedie, 1998] and we show how this is suitable for hybrid systems by using the

embedded chain at jump instants.

More precisely, in this paper, we show that backward coupling technique can be used to sim-

ulate perfectly an embedded Markov chain in a stochastic hybrid system. We show that when a

partial order exists on the state space such that the evolution equations verify some monotonicity

properties, or when envelopes of all trajectories couple in finite time, then backward coupling can

be done by simulating only a small number of trajectories, starting with the maximal and the

minimal states.

These simulations provide, in finite time, trajectories of a hybrid system which follow its

asymptotic behavior. Our simulation algorithm is presented under a general framework of a

hybrid system made of deterministic ordinary differential equations coupled with a Markovian

discrete process. To illustrate the approach and to give an insight on the applicability of the

method, an example of a hybrid model of the squirrel peer to peer (P2P) system [Iyer et al., 2002]

is developed in full details throughout the paper.

This real-world system is actually fully discrete but involves several time and space scales (see

Section 3). In that case, hybrid systems are very useful: one can use fluid limits for the parts

of the system with fastest and largest scales to make them continuous, and keep the slow part

discrete. These models have been introduced in various domains under the form of fluid queues

[Dai, 1995], continuous Petri nets [David and Alla, 2004], or timed automata [Asarin et al., 1995].

In this paper, we will consider one such example, namely peer to peer systems, where two types of

dynamics are superimposed. The slow dynamics concerns the customers, who join and leave the

system. The fast dynamics concerns the files and their transfers between the customers. While

hybrid systems often provide compact and elegant models for complex systems

The goal of this paper is two-fold. First it provides a general framework on how to carry

experimental studies based on perfect simulations, of large and complex hybrid systems. Second,

it shows how fast, versatile, practical and powerful this approach can be over a typical example,

namely the Squirrel peer to peer system, which exhibits many features which make hybrid sys-

tems difficult to study: a large state space, highly non-linear dynamics and an intricate interplay

between its discrete and continuous parts.

The paper is organized as follows. In Section 2, we present the general hybrid system for

which a perfect simulation algorithm will be given and construct the corresponding embedded

Markov chain. Section 3 describes the Squirrel model in details and provides the corresponding

hybrid model fitting the general framework. Section 4 shows how hybrid systems are amenable
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to perfect simulations under several assumptions: the state-space admits a partial order and

the Markov chain is ergodic in a strong sense. We also provide a general algorithm even when

the monotonicity of the embedded Markov chains is not verified. This problem is by-passed by

simulating lower and upper envelopes instead, which have the wanted monotonicity property and

couple in finite time. All the concepts in this section are illustrated with the Squirrel instance.

Finally Section 5 reports a complete study of the Squirrel model based on the perfect simulation

tool implementing the envelope algorithm and Section 6 provides several improvements in terms

of simulation time and fast approximations.

2 Stochastic hybrid systems

In this paper we consider a dynamic system S whose state is a couple (N(t), x(t)) where N(t) is

the discrete component of S and can only take discrete values while x is the continuous part of S.
The variables (N(t), x(t)) will be cadlag functions in the following.

Classical issues from control (observability, controllability) are not essential (or become triv-

ial) here by compactness of the state space. Most stochastic switched system issue (ergodicty,

stationnarity) will be assumed to be verified. Here we tackle computational problems both on

an algorithmic point of view and a practical ones: get numerical guarantees for the asymptotic

behavior for huge systems.

The discrete process N(t) evolves in a finite, discrete state space M ⊂ N. N(t) only changes

values at random times (Tn)n≥0, that forms a point process whose rate ν(t) depends on both

the discrete and continuous components before the jump instant: ν(t) = ψ(N(t−), x(t−)). The

destination state of N(t) after the jump is a random variable whose distribution Q(i, j)i,j∈M2 only

depends on N(t) = i. We further assume that the function ψ is bounded so that the jump rate is

bounded, which ensures the absence of Zeno behaviors.

The continuous process x(t) evolves in a compact D ⊂ R
n according to a deterministic differ-

ential equation that depends on N(t), which is constant between consecutive jumps:

dx

dt
= f(N(Tn), x, t). (1)

At jump times Tn, x(t) has discrete, stochastic jumps δn whose distribution ∆N,x depends on

N and x just before the jump.

Such dynamical equations couple the discrete and continuous part in both directions and

therefore do not belong to the class of simple switched systems. In our framework, the switching

is both time and space dependent, in a stochastic sense.

There are classes of stochastic hybrid systems that cannot be described in this framework:

those with non Poisson jumps and/or with continuous stochastic dynamics, such as Brownian
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motions.

2.1 Embedded Markov chains

In the following, we will restrict our study to cases with an integer discrete part N(t) ∈ N,

a real continuous part x(t) which is mono-dimensional (x(t) ∈ R) and a differential equation

dx
dt = f(N(Tn), x, t) that admits a unique solution for all possible initial states (N0, x0), denoted

F (N0, x0, t).

We denote by D ⊂ N× R the set of all reachable states for the couple (N, x).

Lemma 1. Under the foregoing assumptions, the embedded process Sn = (N(Tn), x(Tn)) is a

homogeneous discrete-time Markov chain over the continuous domain, D ⊂ N× R.

Proof. It should be clear from the definition of N and x that for all measurable set A in D,

P((N(Tn+1), x(Tn+1)) ∈ A|(N(Tn), x(Tn)) = (an, bn), . . . , (N(T0), x(T0)) = (a0, b0))

= P((N(Tn+1), x(Tn+1)) ∈ A|(N(Tn), x(Tn)) = (an, bn)).

The state of the process at time Tn+1 only depends on the state at time Tn and the n-th inter-arrival

of the jump process Tn − Tn−1, whose value only depends on the state at time Tn−1. This means

that (N(Tn), x(Tn)) is a Markov chain over the domain of all reachable states, D ⊂ N× R.

3 Overview and model of Squirrel

Throughout the paper, we will use the example of a hybrid system to illustrate and to apply

the general framework. The example models a peer to peer caching system. We believe that

the example provides a good illustration of the applicability of the general framework, but also

presents a significant interest per se, providing interesting insights on the evolution of a peer to

peer system. Indeed, in Section 5 we use our approach to compute detailed performance metrics

of complex P2P systems, such as the probability that files are present in the system.

In this section we briefly introduce the running example, namely Squirrel: a P2P cooperative

Web cache. Then we show how it can be modeled as a hybrid system.

Squirrel system description

Web caching consists in keeping copies of Web objects locally or closer to the end-users than the

origin servers, so as to limit bandwidth consumption and download time. In the context of Web

caching, the “servers” may be a local proxy or even a local cache on each client’s machine. The

Squirrel system [Iyer et al., 2002] was designed to enable users to share their local Web caches to

make a distributed P2P caching system.
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We now briefly describe how Squirrel works. The interested reader can refer to [Iyer et al., 2002]

for a complete description of the protocol. In the following, a node will denote a user’s machine.

Squirrel is based on the Pastry routing protocol [Rowstron and Druschel, 2001]. Nodes emit re-

quests for Web objects. The local cache is then checked first. If the object is not found (“cache

miss”) the client tries to locate the file on another node of the Squirrel system as follows. The

URL of the object is mapped to a number called “object-Id” using a hash function. The request

is then forwarded using Pastry to the node whose node-Id is numerically closest to the object-Id.

This latter node is called “home node” for this object. The home node acts as a classical cache

for this object : it checks its own local cache for the object. In case of a cache hit the object is

sent to the requesting node. In case of a cache miss, the home node downloads the object from

the origin Web server, stores a copy locally and sends it to the requesting node.

Finally, nodes can join and leave the system at anytime, for instance due to peer disconnection

or to software crash. When a node A leaves the system, the objects that were cached in A are lost

for the whole system. When a node B joins the system, it becomes de facto a home node for a

number of objects. We assume that B does not bring any exogenous content to the global system

when joining in [Clévenot-Perronnin, 2005].

Modeling Squirrel with a hybrid system

We now introduce a fluid-discrete model for Squirrel. This model was introduced and experimen-

tally validated in [Clévenot-Perronnin, 2005]. Let us now describe the model and show that it

belongs to the class of hybrid systems defined in Section 2.

We assume that nodes join and leave independently of each other. This process is the discrete

component of the model. Let N(t) denote the number of connected nodes. We assume the system

is closed, i.e., there may exist only Nmax nodes. Each node leaves the system with a constant

rate µ. Each node joins the system with a constant rate λ. Note that this process is a classical

continuous time Markov chain whose generator is displayed in Figure 1. This is the well-known

Ehrenfest urn model which is studied in [Kelly, 1979] for example.

10 n − 1 n + 1 Nmax

λNmax λ

µNmax

n

λ(Nmax − n + 1)
λ(Nmax − n)

µnµ(n − 1)µ µ(n + 1)

Figure 1: The infinitesimal generator for the Markov process N

We now model the files dynamics in the Squirrel system.

In the following we assume that the request rate σ is constant and identical for each node.
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The total amount of cached documents is modeled with a fluid system.

The justification for this continuous model is that files may be partially transferred and also

that these transfers occur on a much faster time scale than node events. More details on this

fluid assumption can be found in [Clévenot-Perronnin, 2005]. Specifically, let x(t) denote the total

amount of fluid, i.e. the total number of files in the Squirrel system. This process is the continuous

component of our hybrid system. Again, we assume a closed set of objects, i.e. x(t) is bounded

by the maximum number of existing files C.

We now describe the dynamics of x(t) and show how they can be modeled by Equations (6)-(1).

Let us first determine the differential equation which describes the evolution of fluid between two

consecutive jumps of N(t). The amount of fluid increases whenever a client brings a new file in

the system. That is, upon a cache miss, the home node downloads the requested file and stores

it for future requests. This increases x(t). This process is proportional to the total request rate

σ × N(t) and to the miss probability. Using the well-known Zipf-like popularity distribution of

Web objects [Breslau et al., 1999], we show in Appendix A.1 that the miss probability is of the

form 1−
(

x(t)
C

)α

with 1 ≥ α > 0. Finally the fluid decreases when copies become stale or obsolete,

typically after an average time-to-live 1/θ. As a result, the function f in differential equation (1)

becomes homogeneous in time and can be expressed as::

dx

dt
= f(N(Tn), x(t)) = σN(Tn)

(

1−
(

x(t)

C

)α)

− θx(t). (2)

When α = 1 this ODE admits a closed-form solution and the stationary hit probability of the

Squirrel system may be analytically expressed in closed form [Clévenot and Nain, 2004]. However,

if α 6= 1 this equation admits a unique solution (see Appendix A.3) with no known closed-form

and a numerical resolution is needed.

We now turn to the evolution of the fluid at jump instants Tn. When a node leaves the system

it takes away all the documents it was responsible for. With the load balancing property of Pastry,

the number of lost documents is a proportional fraction of the total fluid. Therefore if the event

at Tn is a departure then

x(Tn) =
N(Tn−1)− 1

N(Tn−1)
x(T−

n ). (3)

When a node joins the system, it does not bring exogenous files with him upon its arrival. The

increase of the number of files will come from the future downloads of the newcomer:

x(Tn) = x(T−
n ). (4)

Figure 2 shows a typical trajectory of the evolution of both N and x over time. By look-

ing closely to the evolution of x(t), one may notice down jumps corresponding to departures

of customers and singularities (instants where x remains continuous but is not differentiable),

corresponding to customer arrivals.
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Figure 2: A trajectory of N and x respectively for the Squirrel model, with C = 100, Nmax =

10, λ = µ = 1, θ = σ = 1, α = 1.

The Squirrel example does not exhibit all the complexity of our general framework. Indeed, the

discrete part is autonomous (it does not depend on the continuous state). Also, both the discrete

and continuous parts are of dimension 1 (Z and R respectively). A more complex application where

the discrete part depends on the continuous state is presented in [Gaujal and Perronnin, 2007].

The framework applies similarly in that case.

A model with a high dimension but with very simple continuous dynamics is studied in

[Vincent, 2005]. Despite the high dimensionality, two envelope trajectories are enough in that

case to provide perfect sampling of the system.

4 Perfect simulation of Markov chains over continuous state

spaces

4.1 Sampling the steady-state distribution of a Markov chain

As mentioned in the introduction, the goal of this paper is to get guaranteed estimates of the

asymptotic behavior of the hybrid system S. In order to do so, we will provide a perfect simulation

algorithm of the Markov chain Sn = (N(Tn), x(Tn)).

Let us first recall the main ingredients for perfect sampling of Markov chains. Let Pn(s, A)

denote the transition law of n steps of the chain Sn (This is the probability P(Sn ∈ A|S0 = s) ).

When it exists, its stationary measure satisfies Π(A) =
∫

D P
1(s, A)Π(ds), for all measurable set

A in D.

Of course, if Π can be computed explicitly, there are many ways to draw samples from it.

However, in most cases, analytical or even numerical computations of Π are impossible to obtain,

either because the domain D is huge (in finite cases) or because the structure of the kernel P 1(s, A)

is too complex.
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Without analytical or numerical knowledge of Π the most popular method for sampling from

Π is simulation. The classical Monte-Carlo simulation consists in choosing an arbitrary initial

value S0 = s0 in D and to use the constructive equations given below in Equations (5),(6) and (7),

to generate S1, . . . , Sn using a random number generator. This technique works asymptotically

because the sequence of samples converges in law, in the sup-norm, to the stationary distribution:

lim
n→∞

sup
A

|Pn(s0, A)−Π(A)| = 0.

However, for a given finite n, the gap with the exact distribution depends on the convergence rate

to the stationary distribution which is unknown in general. Therefore, it is difficult to estimate

the bias between Pn(s0, A) and Π(A) in general.

Here, we will show how to compute samples in finite time whose distribution is exactly Π (hence

the name perfect), using a backward coupling technique. This technique was proposed for the first

time in [Propp and Wilson, 1996] for Markov chains over finite state spaces. The main idea is to

run several simulations in parallel starting in the past from all possible initial states and look at

what happens at time 0. If all the trajectories coincide at time 0, then the simulation stops and

outputs the common value of all the trajectories at time 0, which happens to be a perfect sample

of the chain.

This idea was extended to Markov chains over continuous state spaces in [Foss and Tweedie, 1998]

by proving the existence of a finite vertical backward coupling time.

In this paper we use their theorem to construct an exact sampling algorithm for hybrid models

and we show how to deal with continuous systems that are not strictly monotonic.

We first propose a constructive definition of the Markov chain that is needed for algorithmic

purposes.

4.2 Constructive Markov Chain

We now introduce functions ϕ and h to describe the Markov chain in a constructive way. This

can be done with no loss of generality.

The idea used in the following construction is to simulate a variable-rate Poisson process with

rate λ(t) ≤ Λ by generating a Poisson process 0 ≤ P1 ≤ P2 ≤ · · · ≤ Pn ≤ · · · with rate Λ and

then by removing each point Pi with probability 1− λ(P )
Λ .

Here, the function ψ is bounded (by, say, Λ), it is possible to generate the jump times Tn+1

as a sub-sequence of a Poisson point process Υ1,Υ2, . . . with rate Λ in the same way, that is by

setting Tn+1 = Υδ(n+1) where δ(n+ 1) = i with probability

ψ(N(Tn), F (N(Tn), x(Tn),Υi − Tn))

Λ

i−1
∏

j=δ(n)+1

1− ψ(N(Tn), F (N(Tn), x(Tn),Υj − Tn))

Λ
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In other words, Υδ(n)+1 corresponds to the next real jump Tn+1 with probability

ψ(N(Tn), F (N(Tn), x(Tn),Υδ(n)+1 − Tn))

Λ
,

and otherwise, the next point Υδ(n)+2 is considered, and so forth. Note that δ(n+ 1) is finite as

long as Tn+1 is well defined.

The process N(t) is driven by those potential jump instants, which form a point process Υ0 = 0

(time origin), Υ1, . . .Υn, . . .. At time Υn, one can write as for any Markov chains,

N(Υn) = ϕ(N(Υn−1), x(Υ
−
n ), ξn), (5)

where {ξn}n∈N is a random process of innovations (a random variable uniformly distributed over

[0, 1]) and ϕ is a deterministic function that describes the dynamics of N at jump instants.

As for the continuous part, x(t) is governed by a process at jump instants (using the same

innovation ξn),

x(Υn) = h(N(Υn−1), x(Υ
−
n ), ξn), (6)

and by a deterministic differential equation between jump instants. In [Υn,Υn+1),

dx

dt
= f(N(Υn), x, t). (7)

This defines a global function Φ as (N(Υn), x(Υn)) = Φ(N(Υn−1), x(Υn−1), ξn, τn), with τn =

Υn −Υn−1.

Instantiating with Squirrel: To deal with the continuous time Markov chain driving N , the

uniformization procedure described above is applied using the uniformization constant Λ = (λ +

µ)Nmax. The transition matrix of this embedded discrete time Markov chain is given in Figure 3,

where the rates are normalized: λ′ = λ/Λ and µ′ = µ/Λ.

Using uniformization, the stochastic process will be considered at times Υn which include all

real jumps Tn as well as fictitious jumps (null events).

10 n − 1 n + 1 Nmax

λ′Nmax λ′

µ′ µ′Nmaxµ′(n − 1) µ′(n + 1)

n

µ′n

1 − µ′Nmax1 − λ′Nmax

λ′(Nmax − n + 1)
λ′(Nmax − n)

1 − λ′(Nmax − n)
−µ′n

Figure 3: The transition kernel of the uniformized Markov chain

Note that in this example, N does not depend on x so that its evolution can be computed in

isolation. We would like to emphasize that while this greatly simplifies the computation for this
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particular instance, it is not a necessary condition for our framework, and more general hybrid

systems have been analyzed similarly in [Gaujal and Perronnin, 2007].

Also note that N being a one-dimensional random walk, it is an ergodic chain. Its stationary

distribution πE is easy to compute using the closed-form formula:

πE(N = k) =

(

λ
µ

)k
(

Nmax

k

)

(

1 + λ
µ

)Nmax
∀ 0 ≤ k ≤ Nmax. (8)

However, the asymptotic behavior of the continuous part, x is more difficult to compute for several

reasons. First, the differential equation (2) does not have a closed form solution when α is not an

integer. Second, the stochastic jumps and the dependence with respect to N make the asymptotic

behavior of x hard to grasp, even numerically.

Here is the functional construction of the next state N(Υn), x(Υn) of the chain using N(Υn−1)

and x(Υ−
n ). This corresponds to defining the functions ϕ and h.

1. Generate ξ uniformly over [0, 1].

2. Generate τ exponentially distributed with parameter Λ.

3. Υn = Υn−1 + τ .

4. Integrate the differential equation over span τ : x(Υ−
n ) = F (x(Υn−1), N(Υn−1), τ).

5. • If ξ > 1 − λ′(Nmax − N(Υn−1)), then the next event is a customer arrival: N(Υn) =

N(Υn−1) + 1 and x(Υn) = x(Υ−
n ).

• If ξ < µ′N(Υn−1), then the next event is a customer departure: N(Υn) = N(Υn−1)− 1

and x(Υn) = x(Υ−
n )− x(Υ−

n )/N(Υn−1).

• Otherwise, this is a null event, i.e. no customer arrives nor leaves and the system is

left unchanged at time Υn: N(Υn) = N(Υn−1) and x(Υn) = x(Υ−
n ).

In most cases, the integral F of the differential equation cannot be computed under closed

form. In this case, we use a classical Runge-Kutta numerical integrator [Press et al., 1992] to

compute x(Υ−
n+1).

4.3 Backward coupling of Continuous state space Markov chains

Here is the main theorem (for our use) in [Foss and Tweedie, 1998], adapted to our notations.

Theorem 2 (Vertical backward coupling [Foss and Tweedie, 1998]). If the Markov chain is uni-

formly ergodic, i.e. if there exists a probability measure γ over D, some m > 1 and 0 < B ≤ 1

11



such that

∀x ∈ D Pm(x, ·) ≥ Bγ(·),

then, the vertical backward coupling time

K
def
= min{n ≥ 0 : Φ(s, ξ−n, τ−n . . . , ξ−1, τ−1) = Φ(r, ξ−n, τ−n . . . , ξ−1, τ−1), ∀r, s ∈ D},

is a well defined random variable. Furthermore, ∀s ∈ D, Φ(s, ξ−n, τ−n . . . , ξ−1, τ−1) ∼ Π.

Note that K is defined by using backward iterations of function Φ. Instead of starting from

one initial state at time 0 and make the chain evolve from that point on, here, the iterations start

at time −K using all possible initial states and evolve up to time 0 where they should all coincide

(or couple). This is the reason why this technique is also called “coupling from the past”.

Note that starting at all initial states and simulating forward until coupling of all trajectories

gives a biased result since trajectories may couple at specific states (in the Squirrel instance it is

(0, 0)), where a forward simulation would stop. Simulating from the past stops the simulation at

time 0 if and only if all trajectories coincide, which provides a state with the stationary distribution.

Also note that Theorem 2 does not provide directly an effective algorithm for computing perfect

samples Φ(s, ξ−K , τ−K , . . . , ξ−1, τ−1) since the definition of K is not constructive (the state space

is continuous) and because m may be too large to be amenable to any efficient computation.

Instantiating with Squirrel: In the Squirrel example, N follows a birth and death process. If a

large number of consecutive departures occurs, then the number of customers becomes N = 0 and

the number of files must also be null in that case: x = 0. Moreover, for all n, P(N(Υn) = 0|N(0) =

N0) ≥ P(N(Υn) = 0|N(0) = Nmax). Now, P(N(Υn) = 0|N(0) = Nmax) ≥ µnNmax!
Λn if n ≥ Nmax.

It suffices to choose m = Nmax, h = 1I(0,0) and B = (µ/Λ)NmaxNmax! in the definition of uniform

ergodicity to satisfy the condition of uniform ergodicity required in Theorem 2. Therefore, the

Squirrel MC, Sn = (N(Υn), x(Υn)) admits a vertical backward coupling time.

4.4 Monotonicity issues

From now on, we assume that the domain D admits a component-wise ordering: (N, x) � (N ′, x′)

if N ≤ N ′ and x ≤ x′. If the construction Φ of the chain Sn = Φ(Sn−1, ξn, τn) is monotonic in its

state coordinate, ( ∀y, z Φ(u, y, z) ≤ Φ(v, y, z) whenever u ≤ v) then, one can characterize the

backward coupling time in terms of maximal and minimal states.

Since Φ is a combination of several functions, Φ is non-decreasing if F, h and ϕ are all non-

decreasing in their first two coordinates N and x. Finally note that F is monotonic in its first two

coordinates if f is monotonic in N and the solution of the differential equation is monotonic in its

initial condition.
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Theorem 3 ([Foss and Tweedie, 1998]). Let M (resp. M) be the set of all maximal (resp. mini-

mal) elements in D for the order �. Then K ′ equal to

min{n ≥ 0 : Φ(s, ξ−n, τ−n . . . , ξ−1, τ−1) = Φ(r, ξ−n, τ−n . . . , ξ−1, τ−1), ∀r ∈M, s ∈M},

is a vertical backward coupling time of the chain.

Note that if M and M are finite sets, then this definition of K ′ is constructive so that one can

use backward coupling to design a perfect simulation algorithm of the Markov chain.

Instantiating with Squirrel: Monotonicity is a rather strong assumption for general hybrid

systems as defined in Section 2. The Squirrel instance does not satisfy this assumption. We recall

that the Squirrel Markov chain is such that :

1. if ξ > 1 − λ′(Nmax − N(Υn−1)), then the next event is a customer arrival: N(Υn) =

N(Υn−1) + 1 and x(Υn) = x(Υ−
n );

2. if ξ < µ′N(Υn−1), then the next event is a customer departure N(Υn) = N(Υn−1)− 1 and

x(Υn) = x(Υ−
n )− x(Υ−

n )/N(Υn−1);

3. otherwise, this is a null event, i.e. no customer arrives nor leaves and the system is left

unchanged at time Υn.

As for the evolution between jumps, it follows the differential equation (2). To test if the chain

is monotonic in its two components, one considers two chains S1 and S2 starting with ordered

values, Nu(0) ≥ Nl(0) and xu(0) ≥ xl(0).

One must first consider the evolution between jumps. It should be clear that the differential

equation (2) is monotonic in N as well as in its initial condition. Therefore, if Nu(0) ≥ Nl(0) and

xu(0) ≥ xl(0), then for all time t ≥ 0, xu(t) ≥ xl(t).

As for the behavior of the chain at jump times, it is monotonic as long as ξ > 1 − λ′Nmax;

this corresponds to arrivals or null events, whatever the value of N . In that case, if Nu(Υn−1) >

Nl(Υn−1) then Nu(Υn) ≥ Nu(Υn−1) ≥ Nl(Υn−1)+1 ≥ Nl(Υn) since it may be that ξ corresponds

to an arrival for S2 an a null event for Nu. As for the files, such events do not change their values:

xu(Υn) = xu(Υ
−
n ) ≥ xl(Υn) = xl(Υ

−
n ).

When ξ < 1 − λ′Nmax, the event may either be a departure or a null event for both chains.

The following tricky situation can occur: µ′Nl(Υn−1) < ξ < µ′Nu(Υn−1). This corresponds to a

departure for S1 and a null event for S2. Now, if xu(Υ
−
n ) and xl(Υ

−
n ) are too close, the following

can happen: xu(Υn) = xu(Υ
−
n ) − xu(Υ

−
n )/Nu(Υn−1) ≤ xl(Υ

−
n ) = xl(Υn). So that the chain is

actually not monotonic under such events.
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4.5 Stochastic envelopes of the Markov chain

To address this non-monotonicity problem we introduce upper and lower envelopes of the tra-

jectories of the Markov chain S. These envelopes are constructed to keep containment along all

trajectories. However, they are not Markovian in isolation.

In the following, we will consider that the order over the state space is a lattice and that M

and M are reduced to single states. If this is not the case, the following can be adapted but

becomes more technical. We define upper and a lower envelopes, U = (Nu, xu) and L = (Nl, xl),

respectively, of all trajectories of the Markov chain, starting from all possible states in D. The

upper (resp. lower) envelope starts at time t = 0 in stateM (resp. M). They are both sampled on

the underlying process {Υn}n∈N (so that some instants Υn may not correspond to actual jumps

on one or both envelopes).

U(Υn) = sup
s∈A(n−1)

Φ(s, ξn, τn),

L(Υn) = inf
s∈A(n−1)

Φ(s, ξn, τn),

where A(n− 1) is the set of all states s such that L(Υn−1) ≤ s ≤ U(Υn−1). The upper envelope

is not a Markov chain, neither is the lower one. However, the couple (U(Υn),L(Υn)) is a Markov

chain over the continuous state space D × D. The construction of the envelopes (U(Υn),L(Υn))

given above can be written under the form of two new functions Γ1,Γ2 that describes the Markovian

evolution of both envelopes at jump times.

U(Υn) = Γ1

(

U(Υn−1),L(Υn−1), ξn, τn

)

, (9)

L(Υn) = Γ2

(

U(Υn−1),L(Υn−1), ξn, τn

)

. (10)

Note that by construction of the envelopes, U(t) stays above L(t) for all time t ≥ 0 using the

property U(0) > L(0). Also note that by construction, for all initial state S(0) = (N, x) and all

time t,

L(t) � S(t) � U(t).

Theorem 4. Assume that the Markov chain (U(Υn),L(Υn)) hits the diagonal (i.e., states of the

form (s, s)) in finite time a.s.. The hitting time

K ′′ = min
{

n : Γ1

(

(s, r, ξ−K , . . . , ξ0, τ−K , . . . , τ0
)

= Γ2

(

(s, rξ−K , . . . , ξ0, τ−K , . . . , τ0
)

∀s ∈M, r ∈M
}

is a vertical backward coupling time of the Markov chain S, so that for all initial state s,

Φ(s, ξ−K′′ , τ−K′′ , . . . , ξ−1, τ−1) ∼ Π

.
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Proof. It simply uses the fact that U(t) ≥ S(t) ≥ L(t) for all initial conditions for the chain S. Con-
sider a stationary initial condition S(−K ′′) ∼ Π. Then, S(0) = Φ(S(−K ′′), ξ−K′′ , τ−K′′ , . . . , ξ−1, τ−1) ∼
Π by stationarity and U(0) = S(0) = L(0) by definition of K ′′.

Remark 5. In general, this approach does not gain much over the general non-monotonous cou-

pling techniques because of two problems:

• The assumption that (U(Υn),L(Υn)) hits the diagonal may not be verified,

• even if Theorem 4 applies, the time needed to compute U and L might be complicated and

might not provide any gain over considering all states in A(n− 1)

The goal of the next paragraph is to show that both obstacles can be overcome in the Squirrel case.

Instantiating with Squirrel: The upper (resp. lower) envelope start in (Nmax, C) (resp. (0, 0))

and evolves exactly as the Markov chain over all events that cannot cause a swap of the ordering

between the two envelopes. Whenever such an event occurs, here is the way both envelopes are

computed in constant time. Let N3 = ⌊ξ/µ′⌋ be the largest value of N for which ξ is the null

event. For N3+1 and larger values of N , ξ would be a departure. Note that since ξ is a swapping

event, then Nu(Υn−1) > N3 ≥ Nl(Υn−1). Now, the smallest value of N after event ξ is larger than

Nl(Υn−1), the smallest value of x is larger than xl(Υ
−
n )

N3

N3+1 , while the largest possible value of N

after event ξ is smaller thanNu(Υn−1)−1 and the largest possible value of x after event ξ is smaller

than x1. Therefore, we set U(Υn) = (Nu(Υn−1) − 1, x1) and L(Υn) = (Nl(Υn−1), xl(Υ
−
n )

N3

N3+1 ).

Therefore, an event that would correspond to a departure in U and a null event in L becomes a

“dummy” departure for L and a “dummy” arrival in U .

Lemma 6. For the Squirrel Markov chain, (U(Υn),L(Υn)) hits the diagonal (more precisely, the

Squirrel Markov chain hits the state (0, 0)) in finite time a.s.

Proof. The proof is similar to the proof of the uniform ergodicity of chain S. Indeed, if a large

number of departures occur, both envelopes will eventually reach (0, 0). Since this happens with

a positive probability, the Markov chain (U(Υn−1),L(Υn−1)) is uniformly ergodic and K ′′ has a

finite expectation.

4.6 Perfect Simulation Algorithm for hybrid models

The previous theorem 4 is the theoretical foundation of the perfect simulation algorithm using the

above envelopes.

Algorithm 1 provides the perfect sampling algorithm using Theorem 4. There are two subtleties

added to the “coupling from the past” technique.

15



First, Algorithm 1 uses a time doubling technique for reducing the total computation time, as

suggested in [Propp and Wilson, 1996]. Its time complexity is O((2K + cΦ)(|MAX | + |MIN |)),
where cΦ is the total complexity of computing Φ over the whole simulation.

Second, the stopping test is relaxed. Here we decide to stop as soon as the upper and lower en-

velopes are close enough. A stopping test on equality is theoretically possible since both envelopes

couple in (0, 0) with positive probability, and remain exactly equal from this point on. However,

the probability that N ever reaches 0 is extremely small (less than 10−300 in the examples of Sec-

tion 5). This means that the average vertical coupling time is huge so that the backward coupling

technique of no practical use. Testing for a small gap between both envelopes provides a strong

control on the simulation time (see Section 6). It also provides confidence intervals on the output

of the simulation, as seen in the following.

Algorithm 1 Backward simulation of a hybrid system using envelopes

n = 1;

repeat

U := (Nmax, C) ,L := (0, 0) {Initialize the two envelopes at time −n}
for i = n downto ⌊n/2⌋+ 1 do

ξ[−i] :=Random(Uniform over [0, 1]); τ [−i] :=Random(exponential with rate Λ) {generates
the event at step −i and the inter-jump time}

end for

for i = n downto 1 do

U := Γ1(U ,L, ξ[−i], τ [−i]) , L := Γ2(U ,L, ξ[−i], τ [−i])
end for

n = 2n;

until (U → N) = (L → N) and (U → x)− (L → x) ≤ ε/3

return U ,L

4.6.1 Stationary state at arbitrary instants

Algorithm 1 provides samples of the stationary distribution at jump instants. However, this

distribution may significantly differ from the distribution of the system at arbitrary instants.

From the PASTA [Baccelli and Brémaud, 1994] property, this latter distribution can be sampled

simply by pursuing each trajectory during a random time independent of the system, distributed

according to the jump process. More precisely, the algorithm gives a trajectory which is in

stationary state at time 0. Therefore, this trajectory will remain stationary ever after 0. To

observe an arbitrary stationary sample, on can thus choose an arbitrary instant after time 0.

This arbitrary instant can for instance be sampled according to an exponential distribution with
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rate equal to the Poisson arrival rate, since the PASTA property ensures that such a sampling is

representative of the system at arbitrary instants (not necessarily jump instants).

Another possibility is to use backward sampling to obtain one stationary sample at time 0

(given by algorithm 1) and then use this state as an initial state for a classical forward simulation.

The stationary behavior is obtained by sampling the visited states over this single trajectory

from time 0 to some large simulation time T , using a deterministic periodic sampling sequence.

The ergodicity property of the system ensures that this technique provides samples distributed

according to the general stationary distribution when T goes to infinity.

4.6.2 Implementation issues

The perfect simulation theorem of Propp and Wilson for finite Markov chain can be almost directly

translated into an implemented algorithm for sampling the stationary distribution of the chain.

This is not really the case for Theorem 2 nor for Theorem 3 for two reasons. First, the vertical

coupling times may be too large for a computer program to ever converge in a reasonable time.

Second, the definition of the vertical coupling times is based on testing the equality of real numbers,

which is always difficult to do in a computer program.

Both issues can be addressed by choosing an arbitrary precision ε and by stopping the algorithm

as soon as all the trajectories are contained in a ball of size ε.

The output of the algorithm, in the monotonic version is an upper and a lower bound on the

cumulative distribution function of Π, with precision ε.

In the experiments provided below (Section 5), this method improves the convergence time by

several orders of magnitude, even when ε is very small. An explanation of this behavior is also

provided.

Instantiating with Squirrel: In Figure 4, we display a perfect simulation of U ,L together with

an arbitrary trajectory of the Squirrel Markov chain S, starting in Nmax/2, C/2. First note that

S stays within [L,U ] at all times. Also note that several dummy events on U ,L are visible. They

all correspond to discontinuous jumps of L and singularities of U . At those instants, S may or

may not jump, depending on the value of ξ.

Algorithm 1 is used to simulate the hybrid squirrel model. The outputs of the i-th run of

the algorithm are numerical approximations of the couples (U i = (N i
u, x

i
u),Li = (N i

l , x
i
l)). Using

a small step h for numerical integration of the differential equations (i.e. such that the error

ǫ = hσN +ατ σα+1gNα+1

Cα hα ≤ ε/3, see Appendix A.5), then the outputs of the algorithm are such

that the real values xiu − xil ≤ ε.

Let us denote by πN and πx the marginal distribution of N and x respectively, for the unknown
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Figure 4: Trajectories of the two envelopes U ,L and a trajectory of the Markov chain S. One can

notice several “dummy” departures on S2 and several “dummy” arrivals on S1. The sample of S

is a real trajectory, which stays within the upper and lower envelopes.

distribution Π. According to Theorem 4, they satisfy for all runs i:

P (N i
u = k) = P (N i

l = k) = πN (k), (11)

P (xiu ≤ z|N i
u) ≤ πx([0, z]|N i

u) ≤ P (xil ≤ z|N i
l ) ≤ P (xiu − ε ≤ z|N i

u) = P (xiu ≤ z + ε|N i
u). (12)

From these equations, one can compute confidence intervals using the following procedure. Let

E be an interval E = [a, b] ⊂ [0, C] for which we want to compute πx(E) with confidence c. The

problem is to find an interval I such that P (πx(E) ∈ I) ≥ c.

We denote by Eε the augmented interval , Eε
def
= [a − ε, b + ε]. For a total of M runs, let

p̂1 = 1/M
∑M

i=1 1{xiu ∈ E ∧ xil ∈ E} and p̂2 = 1/M
∑M

i=1 1{xiu ∈ Eε ∨ xil ∈ Eε}. Using Equation

(12), There exists an unbiased estimator p̂ of πx(E) such that p̂1 ≤ p̂ ≤ p̂2.

Now, the central limit theorem gives the following confidence interval

I =

[

p̂1 −
ηcv√
M
, p̂2 +

ηcv√
M

]

,

where ηc is half the c-percentile for the normal distribution N (0, 1) and v is the variance of a

Bernoulli distribution with probability πx(E): v =
√

πx(E)(1 − πx(E)) ≤ 1/2.

Note that the size of the confidence interval can be bounded by ηc√
M

+ e where the error e

is made by substituting p̂ by the empirical measures p̂1 and p̂2. If we denote the cumulative

distributions π1([u, v])
def
= P (u ≤ xiu ≤ v|N i

u), π2([u, v])
def
= P (u ≤ xil ≤ v|N i

l ), that do not depend

on i, then

e ≤ sup
z>0

π1([z, z + ε]) + sup
z>0

π2([z, z + ε]).
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It should be noted that since the only atom of all the distributions is in 0 and the supremum is

taken over all z > 0, The error e goes to 0 when ε goes to 0.

So the size of the confidence interval decreases with 1/
√
M , as usual with unbiased estimates

and with the error e which is an empirical function of the precision ε.

5 Numerical experiments

In this section we report the results of several simulations made on the Squirrel model. We

report the computation times as well as the performance indexes measured over the system. All

experiments are carried out on a 2 GHz Pentium 4 with 1 GB of RAM.

We choose a realistic instance of the Squirrel model with

• C = 10000, which is the maximal number of files that can be present simultaneously over

the system;

• Nmax = 1000, which is the maximal number of participants to our Squirrel system;

• µ = λ = 10−4 (on average, each customer stays connected/disconnected for 2.7 hours);

• σ = 10−2 (on average, each connected customer emits a request every 1.6 minutes);

• θ = 10−2, corresponds to an 1.6 minutes time-to-live;

• α = 0.4 , corresponds to a Zipf-like popularity distribution with parameter 0.8.

On Figures 5 and 6 we show the density of N and x, respectively. To obtain these figures we ran

algorithm 1 or equivalently the “N-first” algorithm (see section 6) 10000 times in approximately 4

minutes and 30 seconds. The ten thousand resulting samples of N and x are distributed according

to the stationary distribution. On Figure 5 we observe the density of the Ehrenfest model, which

is highly centered around its mean value. On Figure 6 we observe that the distribution of x also

exhibit a very narrow peak around its mean value. This shows that x has very little variance and

is well described by its mean. For this reason in the following experiment we restrict our attention

to the mean value of x.

We then chose to measure H , the asymptotic hit probability. This is the probability that a

given file (chosen uniformly over all files) is present in the system, under its stationary regime. As

shown in Appendix A.1,

H = lim
t→∞

(

x(t)

C

)α

.

This quantity is the typical performance measure of a caching system like Squirrel.

Figure 6 shows that for the Squirrel system described above, there are on average 500 simul-

taneously connected nodes and the average number of cached documents is 363.78, corresponding

to an average hit probability of 0.26.
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Figure 5: The empirical density of the distribution of N , as given by 10000 simulations.
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We now show how the hit probability varies with regard to its design parameters. Note that θ

is the only parameter over which the system designer has some control (the time-to-live of cached

objects may be set to an optimal default value). Figure 7 displays the hit probability (and not

the amount of fluid x) as θ varies from 10−7 to 10 for the simulation setup described above.
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Figure 7: The hit probability as θ varies (over a log scale).

Note that θ evolves over a logarithmic scale. We observe that the hit probability can vary

greatly with θ (from 0 to 0.9). However, only the [10−4, 10−2] range of θ has a real impact on the

hit probability: the hit probability drops sharply as soon as θ > 10−4 and is below 0.2 as soon

as θ > 10−2. A 0.5 hit probability is achieved with θ > 10−3. This means that for the system

described above, the time-to-live of objects should not be of the order of 15 minutes. We also

note that the smaller θ the better hit probability. However, a small θ means a increased risk of

using out-of-date cached copies. To limit this drawback most caching systems use a default 24

hours time-to-live corresponding to θ ≈ 10−5. This values seems to be a minimum value to ensure

acceptable average staleness.

6 Coupling time improvements in Squirrel

The most important feature of perfect simulation is the coupling time. Indeed, perfect simulation

is not usable for sampling the stationary distribution if the coupling time is too large. Two factors

play a major role in the coupling time.

The first factor is the convergence rate of the stochastic discrete part, N . Since, the underlying

Markov Chain is the Ehrenfest model, the stationary distribution is not spread and both the upper

and lower envelopes have their respective discrete part converge fast towards middle values. The

second factor is the ratio between the convergence rate of the differential equation to its asymptotic

value and the jump rate of the discrete part. The next two sections address these two points.
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6.1 Let N converge first

One can take advantage of the fact that the evolution of N is independent of the evolution of x,

so that its stationary distribution can be computed in isolation.

The idea is to first compute a sampleN∞ forN , distributed according to its marginal stationary

measure, and then to simulate for the global system (N, x) starting with the initial states (N∞, C)

and (N∞, 0), instead of (Nmax, C) and (0, 0). This is valid using the next theorem.

Theorem 7. If N∞ is a sample of N with the stationary distribution of the Markov chain N(Υn),

then,

(N0, x0) = Φ

(

(N∞, C), ξ−K′′′ , τ−K′′′ , . . . , ξ−1, τ−1

)

,

is a sample with the stationary distribution of the Markov chain (N(Υn), x(Υn)) if K ′′′ is the

vertical backward coupling time of the trajectories starting with the initial states (N∞, C) and

(N∞, 0):

K ′′′ def
= min{n : Φ

(

(N∞, C), ξ−n, τ−n, . . . , ξ−1, τ−1

)

= Φ

(

(N∞, 0), ξ−n, τ−1, . . . , ξ−1, τ−1

)

.

Proof. Starting from a stationary state (N∞, x∞) at time −K ′′′, the state at time 0 must be

(N0, x0) by monotonicity of the chain with respect to x. The state at time −K ′′′ being sta-

tionary, so is the state at time 0, therefore, (N0, x0) has the stationary distribution of the chain

(N(Υn), x(Υn)).

This construction has several advantages.

First, N∞ can be constructed without using a simulation since the stationary distribution of

the Ehrenfest birth and death process N(Υn) is well known (see Equation (8)). Generating a

sample according to this distribution is rather simple and can be done in constant time using an

aliasing technique [Walker, 1974].

A second advantage is that since both trajectories always have the same value for N , the

associated Markov chain becomes monotonic and there is no need to use envelopes. This improves

the coupling time since dummy events that tend to widen the gap between the upper and lower

trajectories never occur here.

We have used this approach and have evaluated its benefit in terms of coupling time as well

as total computation time. In the following experiment, we ran both algorithm 1 and this N∞

enhancement. The experimental setup is the following. We chose the realistic parameters α =

0.4, θ = 10−4, σ = 10−3, C = 10000, Nmax = 5000, λ = µ = 10−4. For each experiment using this

setup, the coupling time was 65536 (216) steps for algorithm 1 and 32768 (215) for theN∞ algorithm

(note that the coupling time is necessarily a power of two because of the time doubling technique).

Regarding the real execution time (measured with the date command), the N∞ algorithm takes

less than 45 minutes (for 1000 runs) while the original algorithm 1 ended after more than 2 hours
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and 40 minutes, over a Pentium 4 PC. The fact that the N∞ algorithm is more than twice faster

than the original algorithm while its coupling time is just halved, comes from the fact that there

is no need to generate envelopes in that case. This saves time in the inner loop of the algorithm.

Finally, this approach provides a better understanding on the simulation duration. When

starting from states (N∞, C) and (N∞, 0), the rates of convergence over both trajectories (see

Lemma 11 in Appendix A) is uniformly bounded by γ
def
= maxNmax

N=1 γN .

From Lemma 11, the distances |xu(t)−ℓN | and |xl(t)−ℓN | are both bounded by e−γt over all the

inter-jump intervals. Therefore, |xu(t)− xl(t)| ≤ 2Ce−γt. Note that this bound does not depend

on N anymore. Also note that |xu(t)− xl(t)| never increases at jump times: |xu(Tn)− xl(Tn)| ≤
|xu(T−

n )− xl(T
−
n )|.

The duration before coupling T verifies |xu(T )− xl(T )| ≤ ε/3, so that

T ≤ −γ log(ε/6C) = γ(log(6C)− log(ε)). (13)

This bound is rather tight since the rate of convergence is never much larger than γ, over the

whole range of N and x.

As for the vertical coupling timeK ′′′ of the simulation,K ′′′ corresponds to a sum of independent

exponential variables with rate Λ such that
∑K′′′

i=1 τi ≥ T ≥∑K′′′−1
i=1 τi. Therefore, K ′′′ − 1 has a

Poisson distribution with rate ΛT . Its mean verifies EK ′′′ ≤ −Λγ log(ε/6C) + 1 and its variance

varK ′′′ ≤ −Λγ log(ε/6C) + 1.

This explains why most simulations have the same number of steps (which is a power of 2,

such that 2n−1 ≤ K ′′′ ≤ 2n), since T is almost a deterministic value.

Theorem 8. The time complexity of the simulation algorithm using N∞ is

O

(

Nmax(logC − log ε)

(

1 +
(N log(C/ε))1/α

Cε1/α

))

,

and its space complexity is O(Nmax(logC − log ε)).

Proof. The complexity of the algorithm is O((K ′′′ + cΦ)(|MAX | + |MIN |)) where K ′′′ is the

vertical coupling time, cΦ is the total cost of computing Φ and (|MAX |+ |MIN |) is the number

of simulations to be run in parallel. Here , (|MAX |+ |MIN |) = 2 and we have shown above that

K ′′′ = O(Nmax(log(C)−log(ε)). As for cΦ, it is proportional to the number of steps for integrating

the differential equation over time T . If each step is of size h such that hσN+ατ σα+1gNα+1

Cα hα ≤ ε/3

(see Appendix A.5), then cΦ = O(T/h) = O(N
1+1/α

Cεα (logC − log ε)1+1/α. Therefore, the total

complexity is O
(

Nmax(logC − log ε)
(

1 + (N log(C/ε))1/α

Cε1/α

))

.

The space complexity comes from the fact that the random innovations ξn and τn need to be

stored for the total duration K of the simulation.

It is quite remarkable that the complexity is linear in Nmax and in logC, when C is of order

N2 and α > 1/2, which is typical in Squirrel systems.
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6.2 Asymptotic solutions

The solutions of the differential equations converge to a unique asymptotic value, ℓN if no jumps

ever occur (or equivalently, if N remains constant) (see Lemma 9 in Appendix A for more on this).

This is the number of copies present in the system on average when N customers are present and

when nobody ever leaves or joins in.

If the rate of convergence γN of x towards its asymptotic value is larger than the jump rate Λ,

then in most cases, x will actually be very close to ℓN before the next change occurs. Therefore,

one may disregard the transient behavior of x and let x jump from ℓN to ℓN ′ whenever a jump

from N to N ′ occurs. This actually makes the system discrete since both x and N only take

discrete values.

Computing the asymptotic value, ℓN is much faster than solving the differential equation

numerically, and can be done by solving numerically in x (using Newton’s method).

σN
(

1−
( x

C

)α)

− θx = 0. (14)

In that case, the stationary distribution of (N, x) can be approximated by

Π′(N = k, x = ℓk) =

(

λ
µ

)k
(

Nmax

k

)

(

1 + λ
µ

)Nmax
.

Generating samples according to this distribution is rather simple and can be done in constant

time using aliasing techniques.

We have compared this approximation with the exact samples (Nu, xu) computed by the sim-

ulation algorithm presented in Section 4 (using the absolute value |ℓNu − xu|). As seen in Figure

8, the approximation using the asymptote is very good as soon as γNu , the rate of convergence of

the solution of the differential equation to its asymptote it larger than 5% of the jump rate Λ.

As a rule of thumb, for large squirrel systems (with a large number of customers (Nmax) and

a very large file system (C)), the asymptotic approximation is valid as soon as the inverse of the

life time of files , θ is of the same order as C(λ + µ)/Nmax.

7 Conclusion

In this paper we have presented a general simulation framework for stochastic hybrid systems

providing guaranteed samples. We demonstrated the applicability of this technique by carrying

out an experimental study of a complex peer to peer system modeled by hybrid equations.

Simulations based on backward coupling techniques are particularly well adapted to the case

of stochastic hybrid systems for several reasons.
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Figure 8: Comparing the samples of perfect simulations with their asymptotic approximation.

• They provide numerical guarantees,

• and they get rid of the difficulty to manipulate continuous variables.

• Finally, hybrid systems often mean large state spaces. These large state spaces often make

numerical computations of the behavior of the system impossible. However, the complexity

of our backward coupling depends on the size of the state space in a sub-linear way. It is

remarkable that in the Squirrel example, the complexity is in O(Nmax(log(C) − log(ε)) in

most realistic cases, while the state space is NmaxC.
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A More on the Squirrel differential equation

The appendix is used to explain the construction of the differential equation

dx

dt
= fN (x(t)) = σN

(

1−
(

x(t)

C

)α)

− θx(t), (15)

and to assess its properties (uniqueness of the solution, asymptotic behavior, rate of convergence).

A.1 Modeling the miss probability

We now explain how the miss probability of Squirrel can be modeled by

1−
( x

C

)α

. (16)
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This model was first proposed in [Clévenot and Nain, 2004, Clévenot-Perronnin, 2005]. In this

section we will not only recall the theoretical grounds for this model, but we will also provide

experimental results to validate the model and estimate α.

A uniform-popularity model would straightforwardly give a linear model P (hit|N(t), x(t)) =

x(t)
C (the hit probability being 1 - the miss probability). However, it was shown in [Breslau et al., 1999]

that Web objects exhibit a Zipf-like popularity distribution, i.e., the k-th most popular object is

requested with probability Ω
kβ , where 0 < β < 1 is the skew parameter of the distribution and

Ω = 1/
∑C

i=1 i
−β is a normalization factor. In [Breslau et al., 1999] it was shown that β is close

to 0.8. Assuming that the x(t) present objects in cache are the x(t) most popular ones (since they

are more likely to be requested), a rough approximation for the hit probability is

P (hit|x(t)) =
⌊x(t)⌋
∑

i=1

Ω

iβ
≈ x(t)1−β − 1

C1−β − 1
, (17)

by using the approximation
∑⌊x⌋

i=1 i
−β ≈

∫ x

1 t
−βdt = (x1−β − 1)/(1 − β) for x ≥ 1. From (17) we

get the rough approximation P (hit|x(t)) = (x(t)C )α with α = 1− β.
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Figure 9: Hit probability as a function of the number of cached objects x for the Zipf-like distri-

bution with parameter β = 0.8 and with C = 1000 possible objects.

To validate this model we have conducted the following experiment. We have initially drawn x

samples from a Zipf-like distribution. Then we drew an additional sample z. This sample z results

in a hit if it belongs to the set of x initially drawn samples, in a miss otherwise. This latter step

is repeated 1000 times to get a 95% confidence interval no larger than 0.03 on the hit probability.

Then we compared the experimental hit probability to the model given by (16) and we computed

the value of α that best fitted the numerical results. Figure 9 show how perfectly (16) follows the

experimental hit probability.

However, the value of α used to get this accuracy slightly differs from 1−β. Actually for most
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values of β between 0.1 and 0.9 we found experimentally that α ≈ 1.2−β for β < 1. We conjecture

that this discrepancy is partly due to the fact that the x cached objects are not necessarily the x

most popular ones. It may also be due to the approximations used to get (17).

A.2 Asymptote

Lemma 9. Any solution x(t) of the differential equation converges to a unique limit ℓN , for all

initial conditions.

Proof. Setting dx
dt = 0 in (15) we get fN(x) = 0. This equation is verified by potential asymptotes

for x(t).

Since dfN
dx < 0 for all x ≥ 0 and for all N > 0, and since fN (0) = σ N > 0 and fN (C) = −θ C <

0, equation fN (x) = 0 admits a unique positive solution denoted by ℓN :

fN (ℓN) = 0. (18)

Therefore any solution xN (t) of (15) admits a unique asymptote ℓN .

Computing ℓN can be done by using a classical Newton method [Press et al., 1992], that con-

verges very fast here.

A.3 Uniqueness of the solution

The differential equation (15) is not Lipschitz in 0 as soon as α < 1. Therefore, the classical

techniques used to prove uniqueness do not apply here. However, uniqueness is required for our

simulation method to work.

Lemma 10. The equation (15) admits a unique solution for any initial condition x0
def
= x(0) ≥ 0.

Proof. Let us consider first the case x0 < ℓN . In that case, if x1(t) is one solution, dx1

dt =

fN (x1(t)) > 0 for all t ≥ 0, so that x1(t) is strictly increasing from x0 to ℓN . Therefore, the

inverse function x−1
1 (u) : [x0, ℓN) → R is well defined. If we consider another solution x2(t) then

the derivative of the inverse functions x−1
1 (u) and x−1

2 (u) verify
dx−1

1

du (u) = 1
fN (u) =

dx−1
2

du (u) for

all u ∈ [x0, ℓN). So that x−1
1 (u) − x−1

2 (u) is constant and does not depend on u. When u = x0,

then x−1
1 (x0) = 0 and x−1

2 (x0) = 0. This implies that x−1
1 (u) = x−1

2 (u) for all u ∈ [x0, ℓN), so

that x1(t) = x2(t) for all t ≥ 0.

If x0 = ℓN , then the derivative of any solution remains equal to zero, so that there is a unique

solution x(t) ≡ ℓN .

Finally, the case x0 > ℓN is similar to the case x0 < ℓN , with decreasing solutions instead of

increasing ones.
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A.4 Rate of convergence

Let us define the rate of convergence γN (t) at time t of the ODE solution xN (t) as follows: if

xN (t) < ℓN ,

γN (t)
def
= lim

d→0

(xN (t+ d)− ℓN)− (xN (t)− ℓN)

d(ℓN − xN (t))
, (19)

and γN
def
= limd→0

(xN(t+dt)−ℓN )−(xN (t)−ℓN )
dt(xN (t)−ℓN ) otherwise. Note that γN > 0 since xn(t) ≤ ℓN in

steady state as shown in Appendix B.

We now simplify (19) when xN (t) < ℓN . The case xN (t) > ℓN is exactly similar and will be

omitted.

Taking the limit as d→ 0 we get

γN (t) = lim
d→0

xN (t+ d)− xN (t)

d(ℓN − xN (t))
, (20)

=
dxN

dt (t)

ℓN − xN (t)
, (21)

=
dxN

dt (t)− fN (ℓN )

ℓN − xN (t)
, (22)

where (22) is obtained using (18). Then when xN (t) → ℓN we get the asymptotic rate of conver-

gence,

γN = lim
x→ℓN

fN(x) − fN(ℓN )

ℓN − x
, (23)

= − df

dx
(ℓN ) =

σαN + θ(1− α)ℓN
ℓN

. (24)

Lemma 11. If xN (0) < ℓN , then for all t > 0, γN (t) ≥ γN and for all t > 0, xN (t) ≥ ℓN (1 −
exp(−γN t)).

Proof. Note that if xN (0) < ℓN then (in the absence of jumps) we have xN (t) < ℓN for all t > 0.

From (21) and (24) we have for all N :

γN (t)− γN =
dxN

dt (t)

ℓN − xN (t)
+
df

dx
(ℓN ),

=
fN (xN (t)) + (ℓN − xN (t)) df

dx(ℓN )

ℓN − xN (t)
,

=
σN

(

1−
(

xN (t)
C

)α)

− θxN (t)− (ℓN − xN (t))(−σNα(
ℓN
C )α

ℓN
− θ)

ℓN − xN (t)
.

The numerator g(x(t))
def
= σN

(

1−
(

xN (t)
C

)α)

−θxN (t)− (ℓN −xN(t))(−σNα(
ℓN
C )α

ℓN
−θ) is positive

since:
dg

dx
(x(t)) =

σNαℓαNxN (t)α(−ℓ1−α
N + xN (t)1−α)

CαxN (t)ℓN
< 0,

and limt→∞ g(x(t)) = 0. This proves the first inequality of the lemma.
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Using (21) this first inequality gives

dxN

dt (t)

ℓN − xN (t)
≥ γN

dxN
dt

(t) ≥ γN (ℓN − xN (t)).

Let y(t) be the solution of the first-order linear ODE dy
dt (t) = γN (ℓN − y(t)) with y(0) = 0. This

solution is y(t) = ℓN(1− exp(−γN t)). We now prove the second inequality, i.e., that for all t > 0,

xN (t) ≥ y(t). Let us consider the derivative of the inverse functions (which are always well defined

here):
dy−1

du
(u) =

1

γN(ℓN − u)
≥ dx−1

N

du
(u).

As a result we have x−1
N (u) ≤ y−1(u) for all u ≥ 0 since x−1

N (0) = y−1(0) = 0. This implies that

xN (t) ≥ y(t) for all t ≥ 0.

A.5 Numerical integration

First, note that in the case α = 1 the ODE (15) admits a closed-form solution on [Tn, Tn+1):

x(t) =
σN(Tn)

σN(Tn)
C + θ

+

(

x(Tn)−
σN(Tn)

σN(Tn)
C + θ

)

e−(t−Tn)(θ+
σN(Tn)

C ). (25)

However, when α 6= 1, the equation does not have a closed form solution and must be solved

numerically. In this paper, we only consider a first order Runge-Kutta method. More sophisticated

integration is possible, yielding a better precision with fewer discretization steps.

The fact that the equation may not be Lipschitz in 0, makes the computation of the error a

little tricky. Here, we simply compute a bound on the error made by using the classical Euler

integration method: xn = xn−1 + hfN (xn−1). One has to consider the first step of integration

apart. The error on the first step is bounded by hfN (0) ≤ hσN . As for all subsequent steps, n,

the error is bounded by |h2x′′(a)| for some nh ≤ a ≤ (n+ 1)h.

h2|x′′(a)| ≤ |h2
[

σN
(

1−
(xn
C

)α)

− θxn

]

[

−σNαx
α−1
n

Cα
− θ

]

|,

≤ h2
σα+1Nα+1

Cα
αhα−1,

≤ σα+1Nα+1

Cα
αhα+1.

Therefore, the total error by integrating over a duration T is bounded by

e = hσN + αT
σα+1Nα+1

Cα
hα.
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B More on the Squirrel Markov chain

The squirrel Markov chain Sn = (N(Tn), x(Tn)) is proved uniformly ergodic in Section 4 and (0, 0)

is an atom. However, its final class (the set of states reachable with positive probability) is not

clearly stated. We define C = ∪{A : ∃m|Pm(s, A) > 0} for all s ∈ D

Lemma 12. The final reachable class C = {(N, x)|N ∈ {1, . . . , Nmax} , 0 < x < ℓN} ∪ {(0, 0)} ∪
{(1, 0)} ∪ {(1, 0)}.

Proof. First note that state (0, 0) is reachable from any state (N, x) ∈ {0, . . .Nmax} × [0, C] (see

Section 4). Now, from state (0, 0), one may reach state (N, x) for any 0 < N ≤ Nmax and any x

such that 0 < x < ℓN by letting N arrivals come almost simultaneously and let the time run, so

that x may grow from 0 to ℓN .

This means that D def
= {(N, x)|N ∈ {1, . . . , Nmax}, 0 < x < ℓN} ⊂ C.

Also, state (1, 0) is the first state visited from state (0, 0).

Next, we show that during the evolution of the Markov chain starting in (0, 0), no state with

x > ℓN may ever be reached. Starting in state (N, x) with x < ℓN , one may only reach (N ′, x′)

with N ′ = N , or N ′ = N − 1 or N ′ = N + 1.

1. If N ′ = N then x′ < ℓN and the state stays in D.

2. If N ′ = N + 1 then x′ = x < ℓN ≤ ℓN+1 and the state stays in D.

3. If N ′ = N − 1 then x′ may reach any value between x(N − 1)/N and ℓN−1. The proof is

over if one can show that (N − 1)x/N < ℓN−1.

It remains to show that (N − 1)x/N < ℓN−1 for any 0 < x < ℓN . It is enough to show that

ℓNN
′/N < ℓN ′ , with N ′ = N − 1.

Let us consider fN ′(ℓNN
′/N):

fN ′

(

ℓN
N ′

N

)

= σN ′
(

1−
(

N ′ℓN
NC

)α)

− θ
N ′

N
ℓN ,

= σN ′
((

N ′

N

)α(

1−
(

ℓN
C

)α)

+ 1−
(

N ′

N

)α)

− θ
N ′

N
ℓN ,

=

(

1−
(

N ′

N

)α)(

σ − θℓN
N

)

,

=

(

1−
(

N ′

N

)α)

σ

(

ℓN
NC

)α

,

≥ 0.

fN ′(ℓNN
′/N) ≥ 0 means that ℓNN

′/N < ℓN ′ because fN ′ is decreasing and fN ′(ℓ′N ) = 0 (see

Appendix A.2).
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