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Summary. We discuss how the ideas of producing perfect simulations based on coupling from 
the past for finite state space models naturally extend to multivariate distributions with infinite or 
uncountable state spaces such as autogamma, auto-Poisson and autonegative binomial models, 
using Gibbs sampling in combination with sandwiching methods originally introduced for perfect 
simulation of point processes. 
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1. Introduction 

Since Propp and Wilson's (1996) seminal work on perfect simulation there has been exten- 
sive interest in developing and applying their ideas in different contexts (see the survey in 
Propp and Wilson (1998)). Briefly, the main idea is to use coupling from the past (CFTP) and 
repeatedly to use the same sampler for generating upper and lower Markov chains started 
increasingly further back in time until a pair of upper and lower chains coalesce at time 0, and 
then to return the result as a perfect (or exact) simulation from a given target distribution (in 
Kendall (1998) and Kendall and M0ller (1998) it is argued why the terminology 'perfect' is 
preferable). To  do this Propp and Wilson (1996) assumed that the state space is finite and 
equipped with a partial ordering so that the sampler is monotone and there are a unique 
minimal element, in which the lower processes are started, and a unique maximal element, in 
which the upper processes are started. Then a chain produced by the sampler, started at any 
time n d 0 in an arbitrary initial state, sandwiches between that pair of lower and upper 
chains which was started at the same time n. Thereby it can be established under weak 
(ergodicity) conditions for the sampler that coalescence will happen for all sufficiently large n, 
and by considering a 'virtual simulation from time minus infinity' it follows that the output is 
a simulation from the target distribution. 

These ideas have now been extended in various ways. Kendall (1998) and Haggstrijm et al. 
(1996) outlined how to do perfect simulation for point processes, where the state space is 
uncountable. In particular, as Propp and Wilson (1996) in their examples required the target 
distribution to be attractive in a certain sense so that the Gibbs sampler becomes monotone, 
Kendall's work showed how to handle the opposite repulsive case. This has been further 
generalized in Kendall and M0ller (1998), where the role of the minimal element (the empty 
point configuration) is emphasized (there is no maximal element in a point process setting); 
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see also Kendall (1997) and Haggstrom and Nelander (1997). An even more general 
approach, but for simulating multivariate continuous distributions, has recently been studied 
in Murdoch and Green (1998). This and the other papers mentioned will be commented 
further on in this paper. 

The purpose of this paper is to show how these ideas can be further extended to produce 
perfect simulation of multivariate discrete (Section 2) and continuous (Section 3) target 
distributions, where the target distribution is naturally specified through its conditional 
distributions of one component given the others so that Gibbs sampling is the obvious way of 
producing samples. The examples of such distributions to be discussed will mainly be locally 
specified exponential family distributions (Besag, 1974; Cressie, 1993) with applications in 
spatial statistics such as autobinomial, auto-Poisson, autonegative binomial, autogamma 
models and certain pairwise difference interaction models (Sections 2.3 and 3.3). Indeed many 
other examples of models could be included; for example combinations of the local char- 
acteristics from different types of models may specify a joint distribution from which we 
can make perfect simulations. The autogamma model has also been used in other papers on 
Markov chain Monte Carlo methods, in particular in connection with a Bayesian analysis of 
a data set on pump reliability (Gelfand and Smith, 1990; Murdoch and Green, 1998). In 
relation to this some empirical results will be reported in Section 3.3.2. 

The techniques used in Section 2 are much inspired by Kendall and M ~ l l e r  (1998) and 
some of the terminology and notation will be borrowed from that work. Compared with 
Propp and Wilson (1996, 1998) and Haggstrom and Nelander (1997) the extension is mainly 
that infinite discrete state spaces are covered as well provided that the model is repulsive. For 
definiteness an autogamma model is considered in Section 3 and it is demonstrated how we 
can make perfect simulations with arbitrarily good accuracy by Gibbs sampling. Also the 
possibility of using the Metropolis-Hastings algorithm will be investigated in Section 3. 

Though the practicality of doing perfect simulation in general is not yet clear, the present 
paper and the contributions mentioned above at least demonstrate that it is feasible to tackle 
many complex distributions by exploring the monotonicity properties of the model and the 
sampler. One important model, which I could not handle, is a conditional autoregression 
as it seems impossible to bound the lower and upper processes by dominating chains (the 
construction of upper and lower processes will be similar to the coupling construction for the 
autobinomial model in Section 2.3.2- the problem is to realize (if possible) how to start 
these processes in the right manner -obviously, we need both a 'positive' dominating chain 
and a 'negative' dominating chain). 

2. Discrete multivariate distributions 

Suppose that we want to make simulations from a target distribution .ir = V(X) with X = 
(XI, . . ., Xk) a k-dimensional discrete random vector, which is specified by its conditional 
distributions V(Xil X-,), i = 1, . . ., k, where X-, = (XI, . . ., Xi-], Xi+1, . . ., Xk) and k 3 2. 
Assume also that the support S2 of X is a subset of {0, 1,.  . .jk and that it contains the minimal 
element 0 = (0, . . ., 0) E Q. Let Fi(.lx-,) denote the cumulative distribution function of 
V(XiIX-, = x-,) when P(X-, = x-~)> 0. We can then generate a Markov chain X(t) = 
(X(t, l), . . ., X(t, k)), t = 0, 1, . . ., started at X(0) = 0 and using cyclic Gibbs sampling by 
setting 
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where 

X(t, i)+=(X(t, I), . . ., X(t, i - 1), X(t- 1, i + l ) ,  . . ., X(t- 1, k)) 

are the k - 1 states of the components just before the ith update at time t and the R(t, i) are 
independent and identically distributed (IID) uniform numbers between 0 and 1. Here the 
inverse F- of a cumulative distribution function F is defined by F-(r) =min{s: F(s) 3 r). If 
the Markov chain X(t) is irreducible, it is also aperiodic and it converges weakly towards X (see, 
for example, Roberts and Smith (1994)). In what follows irreducibility of X(t) is assumed. 

In this section we show how CFTP can be used for producing a perfect simulation from .ir 
within finite time. It is assumed that the conditional distribution functions satisfy a certain 
monotonicity condition with respect to the natural partial ordering '<' on ~ " d  = 1, 2, . . .) 
given by (xl, . . ., xd) < b I ,  . . ., yd) if xi < yi, i = 1, . . ., d. We assume that, for any i, 
Fi(.IX-i) is increasing in X-i, i.e. 

By analogy with Kendall (1998) and Kendall and M ~ l l e r  (1998) we refer to expression (1) as 
the rep~tlsive case since Xi tends to be smaller as XPi increases (other terminology is used in 
Haggstrom and Nelander (1997)). The opposite attractive case has been studied earlier (in 
the binary case where Xi E {0, 1)) in Propp and Wilson (1996) and (for point processes) in 
Kendall (1998), Haggstrom et al. (1996) and Kendall and M ~ l l e r  (1998). This case will be 
commented on further in Section 2.3.2. 

2.1. Perfect simulation algorithm (discrete repulsive models) 
Let the situation be as described above and suppose that the IID uniform variates R(t, i) are 
defined back in time t = -1, -2, . . ., also. CFTP is then obtained by reusing these random 
numbers in the following construction of lower and upper processes L,,(t) = (L,,(t, l), . . ., 
L,,(t, k)) and U,,(t) = (U,,(t, I), . . ., U,(t, k)), which are started at times n and generated 
forwards in time. For each integer n E Z, set 

and 

with the dominating chain D(n) = (D(n, l), . . ., D(n, k)) given by the mutually independent 
components 

Owing to the conditioning in equations (2) and (3) we need to extend the definition of Fi(.lx-J 
when P(X-i = x-~)= 0. For i E {l ,  . . ., k) and E {O, I , .  . .lk-I, define 

which ensures that F i ( ~ i l ~ - i )  is increasing in x -~ .  
Now, in the perfect sim~tlation algorithm we use a strictly decreasing sequence of non- 

positive starting times n = n, (0 3 n, > n, > . . .) and repeat to generate lower and upper 



processes (L,,, U,,) until coalescence happens at time 0. For j = 1, 2,.  . . , set n = n, and 
generate (L,,(t), U,,(t)), t = n, . . ., 0, until L,,(O) = U,,(O); then return Y = L,,(O) as a perfect 
simulation from the target distribution .ir (see Section 2.2). 

In principle an arbitrary sequence of starting times {n,} as above may be used, but 
following the nearly optimal choice of doubling n (see Propp and Wilson (1996)) we propose 
to set n, = -2j in applications. Notice that, by definition (2)-(3), when generating (L,,, U,,) 
for n = -2' and j 3 2 we are reusing the random number stream R(t, i), i = 1, . . ., k, 
n/2 d t G 0, used in the generation of (LIll2, UlIl2), . . ., (Lo, Uo) together with the new 
random number stream R(t, z), i = 1, . . ., k, n G t < n/2. Further comments are given in 
Section 2.3. 

2.2. Theoretical results (discrete repulsive models) 
The perfect simulation algorithm works (at least in theory) according to a general result 
presented in Kendall and M ~ l l e r  (1998), theorem 1. In this section we restate and verify this 
for the present set-up, partly for completeness and since we refer to the proof later and partly 
because the results presented below extend those in Haggstrom and Nelander (1997). 
Actually, Haggstrom and Nelander assumed that 52 is bounded by some maximum xmax; they 
started each upper process in xmax",ut compared with the perfect simulation algorithm in 
Section 2.1 this can only increase the coalescence time by at most 1. 

For n E Z, let Xn(t) denote the target chain defined by cyclic Gibbs sampling and started at 
the minimum 0 at time n: 

Proposition I. For all times m < n < u d t the following sandwiching properties hold: 

Proposition 1 is easily verified by induction. By condition (6), if coalescence happens at 
time u in the nth pair of lower and upper processes (when n < ,< 0), we also have 
coalescence from time u to time 0 in the mth pair of lower and upper processes (whenever 
m ,< n), and so Y = L,,,(O) = U,,,(O). Consequently, to verify that coalescence happens within 
finite time in the perfect simulation algorithm and the output Y follows the target 
distribution, it suffices to consider the case where n, = -j and to define 

so -N is the number of pairs of lower and upper processes that are needed for obtaining 
coalescence at time 0 when all the non-positive numbers are used as starting times (we set 
sup(@) = -00). 

Theorem I. With probability 1, N > -00, and Y = L,(O) follows .ir. 

Proof. Clearly, with probability 1, D(t) = 0 for some t d 0, and so, by inequality (4), N > 
-00 almost surely. Hence we can define a virtual simulation Y = lim,,,-,{L,,(O)} from time 
-00, and using properties (4)-(6) we obtain with probability 1 that 
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Y = L,(O) = XN(0)= UN(0)= lim {X,,(O)). 
tI+--W 

This together with the fact that X,,(O) converges weakly to X as n -+ -GO (since, by sta- 
tionarity of R(t), V{X,,(O)} = V{X(-n))) imply that Y follows .ir = V(X). 

Remark I. By stationarity of R(t), 

Hence, as observed in Propp and Wilson (1996), V(-N) = V(M), where M = inf{rz 3 0: 
Lo(n) = Uo(n)} is the first time of coalescence when the lower and upper processes are started 
at time 0. But note that Lo(M) is in general a biased sample from .ir (Propp and Wilson, 
1996). 

The proof of theorem 1 is only based on the sandwiching properties and the fact that 0 is 
an ergodic atom for the dominating chain. In the terminology of Foss and Tweedie (1998), 
-N  is a succesful backward coupling time, so the proof that Y - .ir follows also from their 
theorem 3.1. Clearly, if P(.,.) is the transition probability matrix for a target chain, then by 
inequality (1) 

k 


P(S, 0) 3 nF~(OIO-~) for any x E Q.> 0 
1 

Hence the state space Q is a small set or equivalently P(.,.) is uniformly ergodic (see, for 
example, Meyn and Tweedie (1993), theorem 16.0.2). Although this gives uniform ergodicity, 
it is not for the same reason as in Foss and Tweedie (1998), theorem 4.2, since - N  is not 
'vertical' in their sense: in fact, if the state space Q is infinite, we cannot achieve a backward 
coupling by considering sample paths generated by the Gibbs sampler and started at any 
state in Q and any time (less than or equal to 0). However, because of the stochastic 
domination given by D, we need only to consider target chains started at 0. 

The following lemma can be applied for establishing that the models considered in Section 
2.3 below are attractive or repulsive. 

Lemma 1. Let X denote counting measure on {0, 1,.  . .) (or Lebesgue measure on (0, co)). 
Suppose that F;(.~s-~) (whenever well defined for x-;) has density 

with respect to A, where hi(.) 3 0 and Oi(.) are measurable real functions. Then F;(.~X-~) is 
decreasing or increasing in x-; if Bi(xPi) is increasing or decreasing respectively in s -~ .  

Proof. Letting 

with dub )  = bib)  dXb), then O = {0: a(0) < co) is an interval. For 0 E O, let F,(.) denote the 
cumulative distribution function with density exp(Oy)/a(O) with respect to v. For any r 3 0 
with u([O, r ] )  > 0, it is easily seen by differentiation that 



is increasing in 0 E O (if 0 is an end point of O,  we consider just left or right derivatives of 
gr(8)). Hence FB(r) = 1/{1 + g,(O)) is decreasing in 8 if u([O, r]) > 0, and FB(r) = 0 otherwise, 
whereby the lemma is verified. 

2.3. Comments and examples (discrete attractive and repulsive models) 
2.3.1. Binary repulsive models 
Some empirical findings for simple examples of binary repulsive models (i.e. when Q g 
{0, Ilk) such as the hard core model, Ising antiferromagnet and random cluster model (with 
the parameter for the number of connected components chosen so that the random cluster 
model is repulsive) are reported in Haggstrom and Nelander (1997). 

2.3.2. A~ctobinomial and pairwise dzference prior models 
Note that L,, and U,, are not individually Markov chains in the repulsive case. In the 
attractive case where, for any i, Fi(IX-i) is decreasing in X-i, we need an upper bound xmax on 
52 and we redefine the lower and upper chains by setting L,,(n) = D(n) and U,,(n) = xmaxand 
interchanging the role of L,,(t, i), and U,,(t, i), when conditioning in equations (2) and (3). 
Then both L,, and U,, become Markovian, and the results in proposition 1 and theorem 1 are 
still valid except that expression (4) must be modified so that D becomes a lower dominating 
chain (correspondingly the role of the minimum 0 and the maximum xmax are now inter- 
changed). Propp and Wilson (1996, 1998) reported on simulation studies of the attractive 
Ising model (defined on very huge lattices) and its accompanying random cluster model. 

Another model is the autobinomial model. Here V(X,IX-, = x-~) is a binomial distribution 
with parameters ni and p,(x-,), where 

and pi and ,B, = pjiare real parameters. The model is attractive if all Pii3 0 and repulsive if 
all ,B, < 0. For illustration, if the ,Bqhave different signs, then we can start the upper processes 
at xmaX = (n,, . . ., nk) and the lower ones at 0, and set 

i, = FL{R(t, i)IL,,(t, j)lwu >ol  + U,,(t, j)lwu sol, 1 < j < i; 
Lt,(t- 1>j)lw,>01 + Utr(t - i <j < k),1,j)lwuGO1, 

utl(t, i) = FL{R(t, i)IL,,(t, j)lD,, + U,,(t, j)lwu >01, 1 < j < i; 
Ltl(t- 1 7 j ) l ~ y s ~ ~  i <j G k),+ ~ , , ( t -  1 , ~ 1 1 ~ , > ~ ] ,  

when t > n, where denotes the indicator function. 
Yet another interesting model is the 'pairwise difference prior' model with (in the present 

set-up) finite state space Q = {0, . . ., mlk and 

where ,B, = ,Bjiare real parameters (see, for example, Besag (1989) and Green (1996)). In 
applications of image analysis one takes all P, 3 0 so that the model becomes attractive. 
When doing conventional Markov chain Monte Carlo forward simulations from this model, 
unless m is sufficiently small, it is often more convenient to use a Metropolis-Hastings 
algorithm other than the Gibbs sampler. 
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If we multiply the pairwise difference prior density (or any other density with 'full con- 
ditionals' of the form (8)) with a 'likelihood term' I7,gi(x,) to obtain a posterior density, the 
monotonicity properties of the prior and the posterior are the same. 

2.3.3. Auto-Poisson and autonegative binomial models 
Examples where Q = {0, 1,.  . .lk is infinite are provided by the auto-Poisson model, where 
V(X,IX-, = x-,) is a Poisson distribution with mean 

and parameters pi E R and pV= Pji < 0, and an autonegative binomial model given by 

with the parameter oli > 0 and where now Pi < 0. Both models are repulsive; the joint dis- 
tribution is not well defined if we allow some P,. to be positive (Besag, 1974), so it is not 
possible to include the attractive case. 

Of course higher order interaction terms may be included in the autobinomial, auto- 
Poisson and autonegative binomial models. For example, we can extend the exponent in the 
definition of p,(x-,)/I1 -p,(x-,)} and A,(x-,) with the term C,<k:ig(i,k, Pljkxjxk, where Piikdoes 
not depend on the ordering of i, j and k; for the auto-Poisson and autonegative binomial 
models, Pii, d 0. 

2.3.4. Example 
Suppose that XI, . . ., XI are conditionally independent given XI+,, . . ., Xk and that XI+,, 
. . ., Xk are conditionally independent given XI, . . ., XI, where 1 d I < k. Then in the 
repulsive case (1) an alternative perfect simulation algorithm is provided by replacing 
equations (2) and (3) by 

L,,(n) = (0, . . ., 0, D(n, I + 1), . . ., D(n, k)), 

Lt,(t, i) = Fi-{R(t, i)lL,l(t, i)+l, 

U,,(n) = I), . . ., a n ,  0, 0, . . ., 01, 

UII(t, i) = F[{R(t, i)IU,I(t, i)+}, 

for t > n, whereby L,, and U,, become individually Markov chains with state space Q. This 
perfect simulation algorithm shares the properties in proposition 1 and theorem 1 if the partial 
order '6' used in expressions (4) and (5) is replaced by another partial order '5' defined by 

A comparative study of this perfect simulation algorithm, the algorithm in Section 2.1 and 
certain perfect simulation algorithms based on extensions of Fill (1998) is given in M0ller and 
Schladitz (1998). 

3. Perfect simulation of autogamma models 

In what follows we use the notation in Section 2, but it is now assumed that each conditional 
distribution of the target .ir = D(X) is given by 



D(Xi1x-i = x-~)= r { ~ i ,Yi(x-i)), 

the gamma distribution with shape parameter ai > 0 and inverse scale parameter 

where the parameters pi > 0 and p,., = pi, >, 0. Thus X = (XI, . . ., Xk) is stochastically 
dominated by k independent gamma variates with parameters (a , ,  PI), . . ., (ak,  Pk) and T 

has density 

with respect to Lebesgue measure on i2 = (0, K I ) ~  (the density is only well defined for non- 
negative a,). Note that the dependence is expressed through the inverse scale parameter y, 
(compare with Cressie (1993), p. 440, who instead considered a dependence through the shape 
parameter). 

The autogamma model (9) is also repulsive as Fi(.lx-i) increases as x-, increases, so like in 
Section 2 we can use cyclic Gibbs sampling based on 'inversion' when simulating from T. 

However, it is more obvious to use the fact that the conditional distributions are scale 
models. So let G(t, i) -- r (a i ,  l), i = 1, . . ., k, t E Z, denote mutually independent gamma 
variates (for the simulation of the gamma distribution, see, for example, Ripley (1987)). Then 
for the Markov chain X(t) = (X(t, l), . . ., X(t, k)), t = 0, 1, . . ., we now set 

X(0) = 0, 

x(t, i) = i ) l~,IX(t ,  9,) for i = l ,  . . . ,  k, t = 1 , 2 ,  

whereby it is easily verified (see, for example, Roberts and Smith (1 994)) that X(t) converges 
weakly to X. 

Apart from one major point, CFTP and the perfect simulation algorithm in Section 3.1 
below follow the same lines as in Section 2.1. As we are using Gibbs sampling on continuous 
distributions we never obtain coalescence at time 0 of the lower and upper processes 
(proposition 2), but we shall establish in theorem 2 that with arbitrarily good accuracy we can 
deliver a perfect simulation from T within finite time. These aspects are further discussed in 
Section 3.3. 

3.1. Perfect simulation algorithm (autogamma) 
Define the lower and upper processes by 

and 

where the dominating chain D(t) is defined by the mutually independent gamma variates 
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Let n,  > n2 > . . .be a given strictly decreasing sequence of non-positive integers. Then, in the 
perfect simulation algorithm, for j = 1 ,  2,  . . . set n = nj and generate (L,,(t), U,,(t)), t = 
n,  . . ., 0 ,  until U,,(O, i)  - L,,(O, i)  < E, i = 1 ,  . . ., k; return Z = {L,,(O)+ U,,(O)}/2as a perfect 
simulation from n with accuracy provably within E of n,where E > 0 is a 'user-specified 
parameter'. 

3.2. Theoretical results (autogamma) 
In this section we verify that for any given E > 0 the stopping time 

N(E)= N(E,  {n,}) = supin,: U,,(O, i)  - L,,(O, i) < E ,  i = 1 ,  . . ., k ]  

is almost surely finite, and that there is a coupling with a random vector W so that D(WJ = n 
and the output Z = {L,(,)(O) + UN(,)(0)}/2satisfies that 

This justifies that the 'accuracy is E'. 
Let X,,(t) denote the target chain defined by cyclic Gibbs sampling and started at the mini- 

mum 0 at time n: 

X,,(n) = 0 ,  


Xtr(t, i )  = i)+1, i = k t > n . 
G(t ,  i ) /~ i{Xlr( t> 

Proposition 2. For all times m < n < u < t the sandwiching properties (4)-(6) remain valid in 
the present situation. However, with probability 1 ,  N(0)  = -00, and if n < s < t then 

ProoJ The sandwiching properties are straightforwardly verified by induction. Clearly, 
P{U,,(t, i) > L,,(t, i )  for all i and n < t }  = 1 ,  so N(0)  = -00 almost surely. Since 

where the gamma variate D(t,  i)  is independent of the fraction, it follows that expression (13) 
holds. 

Remark 2. As N(0) = -00 we must take E > 0 to obtain a finite stopping time (as discussed 
in Section 3.3.3, there are perfect Metropolis-Hastings algorithms with N(0)  > -00). Fur-
ther, condition (6) is not useful any more, and because of expression (13)we cannot stop the 
backward sampling the first time that we have intermediate 'E-coupling'. This is in contrast 
with the perfect simulation algorithm in the discrete case, but for the autogamma model it 
turns out that only the sandwiching properties ( 4 t ( 5 )  are needed to establish inequality 
(12). 

The argument in Propp and Wilson (1996) for preferring the sequence {-2') still applies 
in the present situation. Clearly, if we consider a subsequence { m j }of in j} ,  then for the 
corresponding stopping times we have that N(E,  {m,}) < N(E,  {n,}), SO -N(E ,  {0,  - 1 , .  . .}) is 
the smallest number of pairs of lower and upper processes needed for obtaining coalescence 
at time 0. Observe also that, as condition (7) is satisfied, D[-N(E, {0 ,  - 1, .  . .})I = DIM(€)} 
with 
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M(E)= inf{n 3 0: Lo(n, i) = Uo(n, i) < E, i = 1, . . ., k}. 

Theorem 2. Let E > 0. With probability 1, N(E) > -m and the limits 

exist and agree. Moreover, 

L-,(t) follows the autogamma model n (1 5) 

and condition (12) is satisfied with W = L-,(O). 

Proof. By proposition 2 and expression ( 9 ,  the limits in equations (14) exist. Further, 
expression (5) also gives that Ull(t) - L,,(t) decreases to U-,(t) - L-,(t) as n (< t) +- -m. 
To show that both L-,(t) = U-,(t) and N(E) > -m hold almost surely, it suffices to show 
that E{Uo(t) - Lo(t)} tends to 0 as t +- m; see condition (7). Hence, letting 

l(tk + i) = Lo(t, i), u(tk + i) = Uo(t, i), d(tk + i) = D(t, i), 

we must just verify that 

lim [E{u(tk + i) - I(tk + i)}] = 0, i =  1 , .  . ., k. (16)
I+ CO 

Set a = min(Pi) > 0, /3 = max(Pij) > 0 and 


A(s) =max{D(s, l), . . ., D(s, k)}, 


Further, for i, j E 11, . . ., k} with i # j, let P(i, j) = /3, and set P(i, i -j) = P(i, i -j + k) if 
i <j .  We prove by induction that 

f o r t  3 1 and i =  1 , .  . ., k. I f t = i =  1, then by equations (10)and (11) 

where we have used that l(k + 1 -j) = 0, u(.) < d(.) and the real function a +- a/(a + b) is 
increasing for b > 0. So for any t 3 1 and i = 1, . . ., k with tk + i > k + 1 we obtain, by 
similar arguments and by combining the induction hypothesis with the fact that 0 < B(t) < 1, 
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where we set B(1). . . B(t - 1) = 1 if t = 1. Thereby inequality (17) is verified. 
Since d(tk + i) is independent of B(1), . . ., B(t - 1) and B(t) < 1 we obtain from inequality 

(17) that 

As the A(s) are IID and B(.) < 1, we have 

for t even and where EB(1) < 1. So, using again that B(.) < 1, we conclude that E{B(I) 
. . .B(t - 1)) + 0 as t + CQ. This implies that equation (16) holds, and so we have shown 
that, with probability 1, L-,(t) = U-,(t) and N(E)> -CQ. 

To verify expression (15) is similar to the last part in the proof of theorem 1 by using 
equations (4) and (5) and observing that the Markov chain L-,(t) = U-,(t) =X-,(t) is in 
equilibrium for all t E Z as V{X,,(t)} =D{Xo(t- n)}, t 3 n, where Xo(t - n) converges weakly 
towards X as n + CQ. 

Finally, as L,,(O) d W(0) < U,,(O) if n d 0, inequality (12) follows from the triangle in- 
equality. 

3.3. Comments and examples (autogamma) 
3.3.1. Choice of e 
In computing the state space is of course finite, and to avoid technical subtleties we may 
simply refer to the results for the discrete case as outlined in Section 2. If we take e = 0, the 
perfect simulation algorithm (Section 3.1) terminates when the lower and upper processes 
become equal because of rounding errors in the machine; this may cause substantial 
numerical errors so we are not quite sure that the accuracy is given by the precision 'emachinel 
of the numbers used in the computations. So it may be safer to keep the size of e several 
orders of magnitude larger than E , ~ ~ ~ ~ ~ ~ 

3.3.2. Empirical results 
The main example discussed in Murdoch and Green (1998) is how to do perfect simulations 
from a posterior distribution for a data set on pump reliability (Gelfand and Smith, 1990), 
which is actually an autogamma model (9) with k = 11 and pairwise interactions between just 
one variate and each of the remaining variates. For this model I have produced two C-
programs PerfectGammaBackwards.c (the algorithm in Section 3.1 for generating a 
perfect simulation) and Perf ectGammaForwards .c (for forward runs and with output 
as shown below). These programs are available by anonymous file transfer protocol (f tp: 
//f tp .math. auc .dk/pub/jm/)or from the World Wide Web at 



The accuracy E is specified at the beginning of the programs. The average of M(E) based 
on 10 000 simulations for each value of E was 9.3047 (E = 1 op3), 1 1.3 170 (E = lop4), 
13.3262 (E = lop5), 19.3508 (E = lop8), 31.3775 (E = 10-14) and 34.8263 (E = 0); the stan- 
dard error of the average was 0.0050 (E = lop3), 0.0052 (E = lop4), 0.0054 (E = lop5), 
0.0061 (E = 0.0072 (E = 10-14) and 0.0120 (E = 0). 

The CFTP algorithms in Murdoch and Green (1998) used a larger number of paths 
than just the two paths for the lower and upper processes in the perfect simulation 
algorithm considered in Section 3.1, so it would not make much sense to use M(E) in a 
comparative analysis. Duncan Murdoch has suggested to me that a hybrid algorithm 
might do better than either theirs or mine, e.g. by first using my algorithm so that the 
lower and upper processes become sufficiently close and then using their multigamma 
coupler. 

3.3.3. A perfect Metropolis-Hustings algorithm 
It is at least theoretically feasible to make simulations with accuracy 0 by the following 
perfect Metropolis-Hastings algorithm by noting that the density (9) of the autogamma 
model (as well as the autobinomial, auto-Poisson, autonegative binomial and many other 
models) is of a particular form: 

where (in the case of the autogamma model) q, is the density of r(a,,pi) and 

Suppose that we are using cyclic updates and the usual notation introduced in Section 2, but 
it is now a Metropolis-Hastings algorithm which generates the Markov chain X(t), t 3 0: at 
time t, when the ith co-ordinate is to be updated and the current state is given by X(t - 1, i) 
and X(t, i),, first a proposal D(t, i) is generated from qi together with a uniform number 
R(t, i) (between 0 and l), and secondly we set X(t, i) = D(t, i) if R(t, i) ,< min[l, a,{D(t, i), 
X(t - 1, i), X(t, i),}] and we retain X(t, i) = X(t - 1, i) otherwise (where all gamma variates 
D(t, i) and random numbers R(t, i) are assumed to be mutually independent). Here 

is the Metropolis-Hastings ratio (Hastings, 1970). This is larger than 1 if d, < xi (i.e. moving 
down is always accepted), whereas it decreases from 1 to 0 as a function of x-, when di > xi. 
It is easily seen that X(t) converges weakly to X. 

CFTP should now be obvious. Set L,,(n) = 0 and U,,(n) = D(n), and for t > n set 

and L,,(t, i) = L,,(t - 1, i) otherwise and 

U,l(t, i) = D(t, i) if R(t, i) < ai{D(t, i), UII(t - 1, i), LII(t, i),} 

and U,,(t, i) = U,,(t - 1, i) otherwise. Clearly, the usual sandwiching properties remain valid 
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with D(t) as the dominating chain, and for a perfect Metropolis-Hastings algorithm similar 
to the algorithm in Section 2.1 it is not difficult to verify that the coalescence time is almost 
surely finite and the output follows the target distribution. (For a sketch of the proof, let 
E > 0. Conditioning on the event that D(t - 1, 1) < E, . . ., D(t, k) < E, then for t > n the 
conditional probability of the event L,,(t) = D(t) is greater than s(E)~, where 

From this we obtain that the coalescence time is almost surely finite; that the output follows 
the target distribution is verified in the same way as in the proofs of theorems 1 and 2.) 

However, in practice (even for the simple example considered in Section 3.3.2) this perfect 
Metropolis-Hastings algorithm may become extremely slow as the lower processes become 
stuck at 0 for a very long time unless the parameters ,f3,/,f3,Pj, i <j, are sufficiently small or 
equivalently if the interactions are sufficiently weak. One may object that this is clearly due 
to the way that proposals are generated. But in practice we need a coupling construction, 
where it is feasible to generate a dominating chain, which is in equilibrium; this is clearly the 
case in the present perfect simulation algorithm. Actually we are using the smallest possible 
dominating chain as this must dominate both the proposals and the Markov chain X-,(t) 
started 'in equilibrium at time minus infinity' and generated by the Metropolis-Hastings 
algorithm (see the proofs of theorems 1 and 2). 

3.3.4. Comment 
The coupling construction in Section 3.1 and the proofs of proposition 2 and theorem 2 are 
essentially only based on a few properties. 

(a) The 'local characteristics' D(XiIX-, 	=xPi) are scale families, where the inverse scaling 
factor yi(x-,) is an increasing function of x-, and the support is the positive half-line. 
Thereby lower and upper processes are constructed naturally (Section 3.1). 

(b) There is a (natural) dominating and stationary Markov chain D(t) (in the proof of 
theorem 2 we stated that the D(t, i) are IID, but this may of course be weakened). 

(c) 	E D(t) is finite. 

Apart from (a)-(c) the fact that D(X,IX-, = x-,) is a gamma distribution was never used. 
Certain models can be transformed into an autogamma model such as autogeneralized 

gamma and hierarchical models obtained by conditional independent normally distributed 
variates with the precisions (inverse variances) given by an autogamma model. It would be 
interesting to see whether the ideas in Sections 3.1 and 3.2 become useful for other multi- 
variate continuous distributions. 
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