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Summary. We provide an exact simulation algorithm that produces variables from truncated
Gaussian distributions on (R4 )? via a perfect sampling scheme, based on stochastic ordering
and slice sampling, since accept—reject algorithms like those of Geweke (1991) or Robert
(1994) are difficult to extend to higher dimensions.

Keywords: Accept reject, coupling from the past, slice sampling, stochastic monotonicity.

1. Introduction

The simulation from a normal distribution N, (u, X), restricted to a subset of RP, and in
particular, to the positive quadrant (Ry )?, with density proportional to

ola) = exp (~3@ =0 S @ = ) L), (1)

called abusively “positive Gaussian distribution”, is a recurrent problem in many areas,
including signal processing (clipping) and econometrics (factor models, multivariate tobit
models). See, e.g., Hajivassiliou, McFadden and Ruud (1996) for examples.

There have been proposals in the past to simulate these truncated distributions by using
Gibbs sampling based on exact sampling algorithms in dimension one, since the conditional
distributions are all truncated normal distributions. See, for instance, Geweke (1991) or
Robert (1994), for exact (accept-reject) sampling algorithms in dimension one and details
about the Gibbs algorithms.

These solutions are, however, unsatisfactory in that they do not produce exact simu-
lations from the multivariate truncated normal distribution, except in an aymptotic sense
practitioners are unlikely to accept. Standard simulation methods such as accept-reject
methods are also difficult to implement since the performance of a proposal distribution is
bound to depend on the shape of the normal distribution on the positive quadrant. For
instance, the simplest proposal, based on simulating from the normal distribution A} (u, )
until all components are positive, offers no lower bound on the probability of acceptance.

We show in Section 2 that a perfect sampling algorithm, based on coupling from the
past (CFTP) and slice sampling, is available to simulate directly and exactly from the
multivariate truncated normal distribution, describe the algorithm in Section 3 and illustrate
this fact in dimension two in Section 4. Appendix A details the construction of the algorithm
in dimension two.

tWork partially supported by EU TMR network ERB-FMRX-CT96-0095 on ‘Computational
and Statistical Methods for the Analysis of Spatial Data’.
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2. Perfect sampling

The general theory of perfect (or exact) sampling, introduced by Propp and Wilson (1996),
is now comprehensively covered in surveys like Dimakos (2001) or Casella, Lavine and
Robert (2001), and we refer the reader to these papers for an introduction to the topic. In
this paper, we make use more particularly of the specific type of perfect sampling recently
developped in Mira, Mgller and Roberts (2001), based on coupling from the past (CFTP),
slice sampling and stochastic ordering of Markov chains. We simply recall here that CFTP
consists in running an MCMC sampler with parallel Markov chains using all possible starting
points at time —7, with T' “large enough” for all chains to be identical by time 0. While
this event, called coalescence, has probability 0 to occur for independent parallel chains, in
most setups, it can gain a positive probability when the chains are coupled, that is, based
on the same sequence of uniform variates.

We also refer the reader to another source, namely Robert and Casella (1999), for a
general description of slice sampling, which is at its core a Gibbs sampling implementation
of the simulation from the joint distribution

(X, U) ~ Uy(z,u); 0<u< f(2)} 5

which enjoys f as its marginal distribution (in ). (See also Damien, Wakefield and Walker,
1999.)

An appealing feature of slice samplers in the setting of perfect sampling, pointed out
by Mira et al. (2001), is that there exists a natural stochastic ordering, which is induced
by ¢(-). Hence, monotonicity arguments can be invoked to reduce the number of parallel
chains to two parallel chains only. (See also Casella et al., 2001, for a similar derivation of
a perfect slice sampler in the setup of mixtures of distributions.)

More precisely, note first that, if p(z1) < @(z3), the corresponding slices satisfy

Az = {z; p(2) > up(z2)} C AL = {z; p(z) > up(z1)}.

Therefore, simulation from a uniform distribution on 4, can first proceed by acceptance—
rejection of a uniform sampling on A;. In other words, and from a perfect sampling point of
view, this property induces a natural possibility of coalescence: if x] ~ U(A;) also belongs
to As, this realization is acceptable as a simulation from U (A4;) and both chains coalesce,
that is, they are identical from this epoch; if ) does not belong to Az, the value x4 simulated
subsequently from the uniform distribution on Az, preserves the ordering ¢(z}) < p(z}).
Therefore, exploiting this possibility for coalescence at each epoch ensures that two Markov

chains such that © 0
oz ) < plxs”)
at time 0 remain ordered in the sense that

o) < p(z)

for every t, the inequality turning into an equality for ¢ large enough.

Secondly, it happens that, in the case of truncated normal distributions, there exist both
a maximal and a minimal element in (R, )?, 1 and 0, for the order induced by ¢, since this
density is bounded. Moreover, these maximal and minimal elements can be identified since
1 is either y, if 4 € (Ry.)?, or a point on the boundary of (R, )? otherwise (see Theorem 1 in
the Appendix for an example in dimension 2), while 0 is co. Thus, monotone CFTP in the
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sense of Propp and Wilson (1996) applies: it is sufficient to run two chains starting from 1
and 0, respectively, at time —T, and increase T, that is, go back further in time, till both
chains have coalesced by time 0. By virtue of a straightforward monotonicity argument,
the collection of all chains in between the two extreme chains, even when this collection is
uncountable, have coalesced by the time those two coalesce.

3. The exact simulation algorithm

The perfect sampling (CFTP) algorithm looks as follows:

T+ —1
Repeat

Take t « T, w") « Dand w{™) « 1
While t < 0, do
0. If t < T/2, generate seed®, u® ~ 1([0,1])
1. e ul?p(wf)
2. Generate w{'*" from
U({z e ®e); (x—p)' S (2 — p) < —2log(e) }) (3.1)
starting with seed®.

3. I p(wi™) > ulp(wl?) = ¢, take Wi « wf Y
Otherwise
(t+1

Generate w; ) from
U({z e ®)Ps (@ - w)' S (2 —p) < —2log(e)})
starting with seed®.
4 tt+1
not.coalescence — {w” # wi”}
T+2xT

while not.coalescence

This pseudo-code requires some detailed explanations. First, the introduction of the
variables seed®) and u® at step 0. and the use of seed? in steps 2. and 3. ensures
that the coupling from the past algorithm is correct, that is, that it produces a simulation
from the distribution of interest ¢. In fact, as described in Propp and Wilson (1996), the
validity of the algorithm requires the same sequence of random variables (typically, those
are uniform random variables) to be used each time the epoch ¢ (t = 0,—1,...) is visited.
In other words, one must determine a single realisation of a sequence of random transforms
(P4)¢ such that

W) — g, (w(t))
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corresponds to the transition from w® to w(tt1) whatever the value of w® is. Since
simulation from (3.1) can only be done via an accept—reject algorithm (described below),
the number of uniforms used at each epoch varies, but the sequence of uniforms used by
this accept-reject algorithm will always be the same if we start the uniform generator on
the computer with the same seed seedt).

Second, simulation from (3.1) requires accept-reject steps, based on a uniform proposal
on an hypercube (or boz) B that contains the ellipsoid

£={re®R) (x-S (z— p) < —2log(e)}

and on which uniform simulation is possible. The specific construction of the box B is
proposed for p = 2 in the appendix A. In general, the box B is determined by the extreme
points of £ in every direction and seed® is a uniform random variable on [0,1]P. (Note
that, in the very special case when u = 0 and ¥ = 021, the finite sequence of uniforms is
exactly the same.)

Third, there is a difficulty with the extreme point 0. While 0 = co does exist, it is not
possible to simulate uniformly on the slice {¢(z) > 0} because it is equal to (Ry)?. We
thus replace oo with a large enough value of 0, that is, such that ¢(0) < (1) to implement
the method.

4. Some illustrations

In this section, we consider two examples of simulations of two dimensional truncated Gaus-
sian distributions, namely

Example 1 ;= (2,2) and ¥ = ( 2.5 —2.5)

-2.5 3.5

Example 2 p = (1,-5) and ¥ = (15 25)

Note that the marginal densities are not truncated Gaussian anymore. For instance,

ol (z1—p1)? VO o
o1(zy) ox e T (P14 <1 - (—\/% (#2 + O__i(xl - Hl)))) Ir+(z1)

where @ is the standard Gaussian cdf and the covariance matrix is given by

o (011 012) _
o12 022
Appendix A provides the details about the calibration of the accept—reject algorithm and
the construction of the “boxes” that contain the slices to simulate from.

Figure 1 shows a typical sequence of trials necessary to achieve coalescence. (The moves
of both the upper and lower chains are different on each graph, that is, for each starting
time T, since the requirement on the uniforms is to use the same starting seed at a given
time ¢.) As one can see from the graphs, the chain starting at 0 (chosen as (10, 10) in this
case) requires several steps to reach the region of interest, slow moves in regions of small
posterior densities being characteristic of the slice sampler.
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subset of the lower left graph. It indicates that coalescence actually took place at time ¢t = —1. (The
numbers on the graphs represent the time at which the corresponding points were simulated.)

Fig. 1. A coalescence story for p = (0,0)* and & = . The lower right graph represents a
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Fig. 2. Histogram of the coalescence time for both examples (obtained from 10, 000 independent
replications and 0 = (100, 100))

As mentioned above, this graph is typical of the coalescence process. Figure 2 shows how
the coalescence times are distributed across 10, 000 experiments. In most cases, coalescence
occurs between T = —8 and T' = —16 horizons. (Starting with a larger value of 0 increases
the coalescence times, without modifying the shape of the sample histograms.)

Figures 3 and 4 provide a dot representation of the sample produced by our algorithm for
two sets of parameters p and ¥, along with a adequation between the marginal histograms
of these samples and the corresponding true marginal densities.

AN

20 025 030
.
.
__—
020 05
~
—~
N
D
A
T
=

of 015

13

Fig. 3. Output and marginal histograms produced by the perfect sampler for Example 1 with 0 =
(100,100). (The sample size is 10, 000.)
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A. The special case p =2

In this appendix, we consider more specifically the case p = 2, that is, a normal A5 (i, X)
distribution, restricted to R3 , with

n= (/J’lalu2)t7 Y= (011 012) .

012 022

We denote by A the diagonal matrix of eigenvalues {A1, A2} of ¥ and @ the matrix of the
corresponding eigenvectors {Q1, @2}. The matrix ¥ can be expressed as ¥ = Q*AQ and its
inverse 7! = QA'Q?, where M* denotes the matrix transpose of M.

The argument of the maximum of ¢ on (R, )2 can then be obtained as follows:

2

THEOREM 1. The density ¢ is bounded and its mazimum z* in (Ry)? is given by

N {u if peRY,

T =
).« Otherwise.
where
* _ _ ty—1 _
Trmax = AIg MaX (z—p)'E (z—p),
with

e ={0.0), G+ 22,0, O+ 22 bR

We now detail the simulation of random variables from the uniform distribution on
{o(z) > etp(z4—1)}. First, we can rewrite this set as

{z:0(@) > eap(@i1)} ={z: (z—p)'S ' (z—p) <Ky, z € (Ry)?}
={y:y'A Yy <Ky, y=Q'(z —p), =€ (Ry)%}

with K; = —2log(e;) + (z¢—1 — p)!'E " (zp—1 — p)
We denote (1, 22), the coordinates in (O, 4, j) and (y1, y2). the coordinates in (4, Q1, Q2)-
We have
(y1,92)f = Q" ((21,22)}, — p) and (21, 22)}, = Qy1,y2)" + -

Let By = [0,1]?. We construct a box of the form
Bi = {(h1u1 + t1, hy uy + t2)e, (w1, u2)e € Bu}

such that
{z: p(z) > erp(xi-1)} C Be.

In order to determine the vertices of the box B;, consider the set
S={(VMK,0)e, (VM K,0)e, (0, VX2 K)e, (0, =/ A2 K) }
and St = SN(Ry)?
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| Example 1 Example 2
Mean 1.64 2.32
Variance 1.24 4.68
Table 1. Number of uniforms simulated
by the accept-reject algorithm.

LEMMA 1. If |St| =4 then

(hl,hz,tl,tz) = (2 vV /\1K, 2 )\QK,min{O, vV )\IK, -V /\1K},min{0, vV /\2K, —\//\QK})

When |S*| < 4, we calculate the points (a(?), i € I; where the (a(?,0),’s are the roots
of the equation
(@ —w'= e —p) =K

on the horizontal axis, and the points b)), i € I, where the (0,b()),’s are the roots of the
equation
(= w)'S" (z —p) = Ky

on the vertical axis.
We then construct the set of points

8+ UHQ (@, 0) = ), € 1} ULQH(0,69) = )i € 1) otherwise
= {(y§i),y§i))e,i € I}

W= {3+ U(Q! (a9, 0)" — ), € I} LHQH(0.b)! — )i € B} UL=@u} it 11| = Il = 1,

and deduce the vertices of B; as follows:

LEMMA 2. If |ST| < 4 then

Once the box B; is constructed, a straightforward simulation from the uniform distribu-
tion on the ellipsoid

{z:0(x) > ep(w—1)}

is then to simulate uniformly on B; until the simulation belongs to the ellipsoid. Note that,
since the box B; is an affine transformation of D = [0,1] x [0, 1], it is sufficient to simulate
a sequence of uniforms on D. Table 1 gives the performance of this accept-reject algorithm
for both examples treated in Figures 3 and 4.



