
Perfect State Transfer in Arbitrary Distance

Supriyo Dutta
Department of Mathematics

National Institute of Technology Agartala
Jirania, Tripura, India - 799046
Email: dosupriyo@gmail.com

Abstract

Quantum Perfect State Transfer (PST) is a fundamental tool of quantum communication in a network. It is
considered a rare phenomenon. The original idea of PST depends on the fundamentals of the continuous-time
quantum walk. A path graph with at most three vertices allows PST. Based on the Markovian quantum walk,
we introduce a significantly powerful method for PST in this article. We establish PST between the extreme
vertices of a path graph of arbitrary length. Moreover, any pair of vertices j and n − j − 1 in a path graph
with n vertices allow PST for 0 ≤ j < n−1

2
. Also, no cycle graph with more than 4 vertices does not allow PST

based on the continuous-time quantum walk. In contrast, we establish PSTs based on Markovian quantum walk
between the pair of vertices j and j + m for j = 0, 1, . . . (m− 1) in a cycle graph with 2m vertices.

1 Introduction

Transferring quantum information between different locations without interrupting the encoded information is
essential for future quantum technologies [1–7]. Routing quantum information is crucial for communication between
quantum processors and many other applications. Considering the advantage of coupling between neighboring
qubits, we can transport quantum information across a network. It is beneficial for keeping the network sites
remain at fixed locations. The perfect state transfer (PST) protocol uses an engineered but fixed coupling network,
represented by a graph [8, 9].

A combinatorial graph G = (V (G), E(G)) is a combination of a vertex set V (G) and an edge set E(G) [10].
There are n vertices in the graph. We number them 0, 1, . . . (n − 1). The adjacency matrix A(G) = (ai,j)n×n is
given by ai,j = 1 if (i, j) ∈ E(G) and ai,j = 0 if (i, j) /∈ E(G) [11]. Assume that the vertices are spins and the
edges connect spins which interact between each other. There are different interaction Hamiltonians, for example
H = −

∑
(i,j)∈E(G)

(
σixσ

j
x + σiyσ

j
y

)
. Here, σix/y are the Pauli matrices for the i-th spin. Let the initial state of

the system is |A〉 ∈ H2n . After time t if the state of the system is in |B〉 then the transfer fidelity is given by
fAB(t) = 〈B|eιHt0 |A〉. There is a PST at time t = t0 if fAB(t0) = 1. A graph-theoretic simplification shows that
there is a PST between the vertices j and k at time t0 if fjk(t0) = 〈k|eιA(G)t0 |j〉 = 1, where |j〉 and |k〉 are the state
vectors in Hn corresponding to vertices j and k [12]. The idea of state transfer is related to the idea of quantum
walk. Let |j〉 be the initial state of a quantum walker starting from vertex j at time t = 0. After time t state of
the walker is eιA(G)t |j〉. The continuous-time quantum walk is determined by the unitary matrix eιA(G)t. If there
is a PST between the vertex j and k at time t0 we have |k〉 = eιA(G)t0 |j〉 [13–16].

There are different classes of graphs supporting PST, such as the path graphs, hypercube graphs, etc. A path
graph Pn with n vertices has edge set {(j, j + 1) : j = 0, 1, . . . (n− 2)}. Path graph P2 allows PST between 0 and 1
at time t = π

2 . Also, P3 supports PST between 0 and 2 at time t = π√
2
. When n > 3, Pn does not allow PST based

on continuous-time quantum walk between any pair of vertices [4]. A path of length n between two vertices i and
j of a graph is a sequence of distinct vertices and edges i = v0, e1, v1, e2, . . . vn−1, en, vn = j. Distance between two
vertices i and j is denoted by d(i, j) which is the number of edges in the shortest path between them. Therefore,

P2 and P3 support PST between two vertices at distance 1 and 2 respectively. Also for them the ratio |E(G)|
d(i,j) = 1,

where |E(G)| is the number of edges in G as well as i and j are two vertices having PST at maximum distance.
There are graphs supporting PST in a greater distance, such as hypercube graphs, cubelike graphs [16], Cayley

graphs [17, 18], etc. But, the ratio |E(G)|
d(i,j) is more than one for them. For example, a hypercube graph Qn in n

dimension supports PST between a pair of antipodal vertices. In Q2, there are 4 edges to support PST at distance
2. In Q3, there are 12 edges to support PST at distance 3. Technically, it is difficult to control a large number of
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interactions between qubits when we want to communicate between two vertices at distance. Therefore, we need
an advanced mechanism to perform PST in a path graph with an arbitrary number of vertices. This article fulfils
the requirement.

The continuous-time quantum walk can not produce PST in a path graph of arbitrary length. In the literature
of quantum information and computation, there are different proposals of quantum walk other than continuous-
time quantum walk, for example, discrete-time quantum walk [19, 20], Szegedy quantum walk [21], and many
others [22–24]. The idea of PST is also generalized in a similar fashion [25–27]. Here, we consider a quantum walk
based on Markov chain [28,29] which is a variant of the Szegedy quantum walk. These quantum walks are applied
in different problems of quantum computing [30–32]. In this work, we observed that any path graph Pn supports
PST between two extreme vertices 0 and (n− 1). Interestingly, PST is possible simultaneously between any pair of
vertices j and (n− 1− j) with 0 ≤ j < n−1

2 . A cycle graph Cn with nodes 0, 1, 2, . . . (n− 1) has an edge between i
and j if i − j ≡ 1( mod n). Recall that, PST based on the continuous-time quantum walk is possible only in C4,
which is a hypercube of dimension 2. But, in the case of PST based on Markovian quantum walk we observe that
Cn permits PST for any even number n between the pair of vertices j, and j + n

2 ( mod n) for j = 0, 1, 2, . . . n2 .
We distribute this work as follows. In section 2, we introduce Markovian quantum walk and PST using it. Here

we develop a basis of Hn different from the computational basis to perform the quantum walk. We bind up this
section with three lemmas which are essential to establish PSTs. Sections 3 and 4 are dedicated to state transfer on
the cycle, and the path graphs, respectively. In these sections, we work out the state after t time steps of evolutions
starting from an arbitrary initial vertex j. It assists us in identifying a pair of vertices allowing PST and periodic
vertices. In conclusion, we mention a few other graphs allowing PST, without proof. We mention three lemmas in
Appendix, which we utilize in sections 3 and 4. Proofs of these lemmas contains straightforward calculations.

2 Markovian quantum walk and perfect quantum state transfer

The random walk [33] on a graph is a fundamental mathematical tool for modelling and simulating complex problems
and natural phenomena. Szegedy developed a general method for quantizing a random walk to create a discrete-
time quantum walk. To develop the idea of a quantum walk, we first generate a directed graph from a given simple
graph G. On every edge, we assign two opposite orientations. For example, (j, k) and (k, j) denote two oppositely
oriented edges from the vertex j to k, and from k to j, respectively. The out-degree of a vertex j is denoted by dj
which is the number of outgoing edges from j. We define

pj,k =

{
1
dj

if (j, k) ∈ E(G),

0 if (j, k) /∈ E(G);
(1)

such that
∑
k∈V (G) pj,k = 1. As G is connected dj 6= 0 for any v ∈ V and 0 ≤ pj,k ≤ 1. The probability transition

matrix P = (pjk)n×n leads to a random walk on G.
For every vertex j we assign an element of the computational basis of n dimensional vector space Hn, say |j〉,

where |j〉 = [0, 0, . . . 1(j-th position) . . . 0]†. Corresponding to a directed edge (j, k) from j to k we assign a vector
|jk〉 = |j〉 ⊗ |k〉 where |jk〉 ∈ Hn ⊗ Hn. A superposition of the vectors representing the edges outgoing from the
vertex j is

|ψj〉 =
∑
k∈V

√
pj,k |jk〉 = |j〉 ⊗

(∑
k∈V

√
pjk |k〉

)
. (2)

We can establish that the vectors in Ψ = {|ψj〉 : j ∈ V (G)} are orthonormal because 〈ψj |ψj〉 = 1 and 〈ψj |ψk〉 = 0
for j 6= k. Therefore, the vectors in Ψ are linearly independent. The number of vectors in Ψ is n, which is the
dimension of Hn. Thus, the vector subspace L(Ψ) spanned by Ψ is isomorphic to Hn. It leads to to define a linear
transformation T : L(Ψ) → Hn such that T |ψj〉 = |j〉 for j ∈ V (G). It can be represented by a matrix T , such
that, T =

∑
j∈V (G) |j〉 〈ψj |. Also, T † =

∑
j∈V (G) |ψj〉 〈j|, such that T † |j〉 = |ψj〉. Therefore, any walk on L(Ψ) is

equivalent to a walk on Hn. It allows us to restrict our discussion on the quantum walk and state transfer on the
space L(Ψ) only.

Corresponding to vertex j ∈ V (G) we now assign a basis state |ψj〉 ∈ Ψ. The unitary matrix leading the
Markovian quantum walk acting on L(Ψ) is defined by

U = S(2Π− I). (3)

Here, Π =
∑
j∈V |ψj〉 〈ψj | denotes the linear sum of all orthogonal projectors on Ψ. Also, S =

∑
j∈V

∑
k∈V |jk〉 〈kj|

is a SWAP operator, and I is the identity matrix of order n2. The following three lemmas demonstrate crucial
characteristics of U . Proof of them are mentioned in appendix.
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Lemma 1. Given any vertex j on a cycle or a path graph we have S(2Π − I) |ψj〉 = 1√
2

(|(j + 1)j〉+ |(j − 1)j〉),
where |ψj〉 = 1√

2
|j(j + 1)〉+ |j(j − 1)〉. Here, j 6= 0 and j 6= (n− 1).

Lemma 2. Given any vertex j on a cycle or a path graph with j 6= (n − 1) we have S(2Π − I) |(j + 1)j〉 =
|(j + 2)(j + 1)〉

Lemma 3. Given any vertex j on a cycle or a path graph with j 6= 0 we have S(2Π−I) |(j − 1)j〉 = |(j − 2)(j − 1)〉.

Suppose the walker starts at vertex j at time t = 0. After times t probability of getting the walker at vertex k is
given by Pt(k) = 〈ψk|U t|ψj〉. We say that there is a PST between vertices j and k at time t if |ψk〉 = U t |ψj〉, that
is, Pt(k) = 1. We define a vertex j ∈ V is a periodic vertex at time t if |ψj〉 = U t |ψj〉. Now, we are in a position
to investigate PST in different graphs.

3 State transfer on cycle graph

A cycle graph Cn with n vertices is given by a vertex set V (Cn) = {0, 1, 2, . . . (n − 1)} and an edges set E(Cn) =
{((j − 1), j) : j = 1, 2, . . . (n− 1)} ∪ {((n− 1), 0)}. In other words, two vertices j and k are connected in Cn if and
only if j − k ≡ 1( mod n). Therefore, for every vertex j we can define

pj,k =

{
1
2 if j − k ≡ 1( mod n),

0 otherwise.
(4)

Using equation (2) we can write

|ψi〉 =


1√
2
(|01〉+ |0(n− 1)〉) if j = 0;

1√
2
|j(j + 1)〉+ |j(j − 1)〉 if j = 1, 2, . . . (n− 2);

1√
2
(|(n− 1)0〉+ |(n− 1)(n− 2)〉) if j = (n− 1);

(5)

for any cycle Cn with n vertices. The above equation can be written more precisely

|ψj〉 =
1√
2

(|j(j ⊕ 1)〉+ |j(j 	 1)〉), (6)

where ⊕ and 	 denote addition modulo n and subtraction modulo n, respectively, throughout the text. Now, we
demonstrate the following characteristics of the operator U = S(2Π − I) for Cn, which will play a crucial role in
PST.

1. Lemma 1 suggests that for any vertex j in Cn we have S(2Π − I) |ψj〉 = 1√
2

(|(j + 1)j〉+ |(j − 1)j〉), when

j 6= 0 and (n − 1). For j = 0 we have S(2Π − I) |ψ0〉 = 1√
2

(|10〉+ |(n− 1)0〉). Also, for j = n − 1 we can

verify that S(2Π− I) |ψn−1〉 = 1√
2

(|0(n− 1)〉+ |(n− 2)(n− 1)〉). Combining all these, we have

S(2Π− I) |ψj〉 =
1√
2

(|(j ⊕ 1)j〉+ |(j 	 1)j〉) . (7)

2. From Lemma 2 we state that for any vertex j 6= 0 and j 6= (n − 1) in Cn we have S(2Π − I) |(j + 1)j〉 =
|(j + 2)(j + 1)〉. Also, for j = n− 1 we have

S(2Π− I) |0(n− 1)〉 = S (2Π |0(n− 1)〉 − |0(n− 1)〉) = S

(
2

1√
2
|ψ0〉 − |0(n− 1)〉

)
= S |01〉 = |10〉 . (8)

For j = 0 we have S(2Π− I) |10〉 = |21〉. Combining we get

S(2Π− I) |(j ⊕ 1)j〉 = |(j ⊕ 2)(j ⊕ 1)〉 . (9)

3. Using Lemma 3 we can justify that S(2Π − I) |(j − 1)j〉 = |(j − 2)(j − 1)〉, when j 6= 0 and j 6= (n − 1).
Considering the cases for j = 0 and j = (n− 1) we can prove in general

S(2Π− I) |(j 	 1)j〉 = |(j 	 2)(j 	 1)〉 . (10)
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Now we are in a position to apply S(2Π − I) multiple times on |ψj〉 with help of equations (7), (9) and (10).
Note that,

[S(2Π− I)]2 |ψj〉 =
1√
2
S(2Π− I) (|(j ⊕ 1)j〉+ |(j 	 1)j〉) =

1√
2

(|(j ⊕ 2)(j ⊕ 1)〉+ |(j 	 2)(j 	 1)〉) . (11)

Similarly,

[S(2Π− I)]3 |ψj〉 =
1√
2
S(2Π− I) (|(j ⊕ 2)(j ⊕ 1)〉+ |(j 	 2)(j 	 1)〉) =

1√
2

(|(j ⊕ 3)(j ⊕ 2)〉+ |(j 	 3)(j 	 2)〉) .

(12)
Applying the principle of mathematical induction we can write the following theorem in general.

Theorem 1. In a cycle graph Cn with n vertices applying U = S(2Π− I) on state |ψj〉 for t times we have

[S(2Π− I)]t |ψj〉 =
1√
2

(|(j ⊕ t)(j ⊕ (t− 1))〉+ |(j 	 t)(j 	 (t− 1))〉) ,

where j = 0, 1, 2, . . . (n− 1).

This theorem leads us to the idea of PST on a cycle graph with an even number of vertices. Consider the
following corollaries.

Corollary 1. In a cycle graph C2m there is a PST between any two vertices j and j + m at time t = m for
j = 0, 1, . . . (m− 1).

Proof. Applying Theorem 1 we have

[S(2Π− I)]m |ψj〉 =
1√
2

[|(j ⊕m) (j ⊕ (m− 1))〉+ |(j 	m) (j 	 (m− 1))〉] . (13)

Since 0 ≤ j ≤ 2m − 1, we have j ⊕m ≡ j 	m and j ⊕m ⊕ 1 ≡ j 	 (m − 1). Now, applying equation (6) we find
that [S(2Π − I)]m |ψj〉 = |ψj⊕m〉 Therefore, if the cycle graph has n = 2m vertices then there is PST between j
and j ⊕m at time t = m.

Applying the superposition principle of quantum states, we conclude that, given any two distinct vertices j and
k in C2m, there are PSTs between j and j ⊕ n as well as k and k ⊕ n simultaneously at time t = m.

Corollary 2. All the vertices in Cn are periodic at time t = n for any n.

Proof. Applying Theorem 1 we have

[S(2Π−I)]n |ψj〉 =
1√
2

[|(j ⊕ n) (j ⊕ (n− 1))〉+ |(j 	 n)(j 	 (n− 1))〉] =
1√
2

[|j(j + 1)〉+ |j(j − 1)〉] = |ψj〉 , (14)

since j ⊕ n = j 	 n = j, j ⊕ (n− 1) = j − 1, and j 	 (n− 1) = j + 1. Therefore, the vertex j is a periodic vertex
for all j at time t = n.

4 State transfer on a path graph

Recall that a path graph Pn with n vertices 0, 1, . . . (n− 1) has edges (j, (j + 1)) for j = 0, 1, . . . (n− 2). Now, the
out-degree of 0 and (n− 1) is 1. Also, the out-degree of each of the remaining vertices is 2. Applying equation (1)
we have

pj,k =


1 if (j, k) = (0, 1) or ((n− 1), (n− 2));
1
2 if (j, k) ∈ E(G), (j, k) 6= (0, 1) or (j, k) 6= ((n− 1), (n− 2));

0 if (j, k) /∈ E(G).

(15)

For every vertex j we generate pj,k, such that
∑
k∈V (G) pj,k = 1. Applying equation (2) we have

|ψj〉 =


|01〉 if j = 0;
1√
2
(|j(j + 1)〉+ |j(j − 1)〉) if j = 1, 2, . . . (n− 2);

|(n− 1)(n− 2)〉 if j = (n− 1).

(16)
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The sum of projection operators on L(Ψ) for path graph Pn is given by

Π = |01〉 〈01|+ 1

2

(n−2)∑
j=1

(|j(j + 1)〉+ |j(j − 1)〉) (〈j(j + 1)|+ 〈j(j − 1)|) + |(n− 1)(n− 2)〉 〈(n− 1)(n− 2)| . (17)

In the theorem below, we demonstrate PST between the two extreme vertices of any path graph Pn.

Theorem 2. There is a PST between the vertices 0 and (n−1) in a path graph Pn with n vertices at time t = (n−1).

Proof. Note that, [S(2Π − I)] |ψ0〉 = |10〉. Applying Lemma 2 repeatedly on |10〉 we can prove that [S(2Π −
I)]t |ψ0〉 = |t(t− 1)〉. Putting t = n− 1 we have [S(2Π− I)](n−1) |ψ0〉 = |(n− 1)(n− 2)〉 = |ψn−1〉. Also, [S(2Π−
I)] |ψn−1〉 = |(n− 2)(n− 1)〉. Applying Lemma 3 on |(n− 2)(n− 1)〉 repeatedly, we have [S(2Π − I)]t |ψn−1〉 =
|(n− t− 1)(n− t)〉. When t = (n − 1) observe that [S(2Π − I)](n−1) |ψn−1〉 = |01〉 = |ψ0〉. Therefore, we can
conclude that there is a PST between 0 and (n− 1) in Pn at time t = (n− 1).

Now, we prove that there is PST between other pairs of vertices in Pn.

Theorem 3. Let 1 ≤ j ≤ n− j − 1 represents a vertex of a path graph Pn, then

[S(2Π− I)]t |ψj〉 =


1√
2

(|(j + t)(j + t− 1)〉+ |(j − t)(j − (t− 1))〉) when 0 ≤ t ≤ j;
1√
2

(|(j + t)(j + t− 1)〉+ |(t− j)(t− j − 1)〉) when j + 1 ≤ t ≤ n− j − 1;
1√
2

(|(2n− t− j − 2)(2n− j − t− 1)〉+ |(t− j)(t− j − 1)〉) when n− j ≤ t ≤ (n− 1).

Proof. This result holds trivially when t = 0. Lemma 1 indicates the proof for t = 1. For other values of t with
2 ≤ t ≤ j, the proof is similar to Theorem 1. When t = j we have [S(2Π− I)]j |ψj〉 = 1√

2
(|(2j)(2j − 1)〉+ |01〉).

Now, consider the range j + 1 ≤ t ≤ n− j − 1, that is 1 ≤ t1 = t− j ≤ n− 2j − 1. Applying Lemma 2, we have

[S(2Π− I)]j+1 |ψj〉 =
1√
2

(S(2Π− I) |(2j)(2j − 1)〉+ S(2Π− I) |01〉) =
1√
2

(|(2j + 1)(2j)〉+ |10〉) . (18)

Applying Lemma 2 repeatedly we have

[S(2Π− I)]j+t1 |ψj〉 =
1√
2

(|(2j + t1)(2j + t1 − 1)〉+ |t1(t1 − 1)〉)

or [S(2Π− I)]t |ψj〉 =
1√
2

(|(j + t)(j + t− 1)〉+ |(t− j)(t− j − 1)〉) .
(19)

When t = (n− j − 1) we get [S(2Π− I)](n−j−1) |ψj〉 = 1√
2

(|(n− 1)(n− 2)〉+ |(n− 2j − 1)(n− 2j − 2)〉).
Now, consider the range n− j ≤ t ≤ (n− 1), that is 0 ≤ t2 = t+ j − n ≤ j + 1. When t = n− j, equivalently,

t2 = 0 we have

[S(2Π− I)]n−j |ψj〉 =
1√
2

(S(2Π− I) |(n− 1)(n− 2)〉+ S(2Π− I) |(n− 2j − 1)(n− 2j − 2)〉)

=
1√
2

(|(n− 2)(n− 1)〉+ |(n− 2j)(n− 2j − 1)〉) .
(20)

Applying Lemma 2 and 3 repeatedly we have

[S(2Π− I)]n−j+1 |ψj〉 =
1√
2

(|(n− 3)(n− 2)〉+ |(n− 2j + 1)(n− 2j)〉) . (21)

In general we can write

[S(2Π− I)]n−j+t2 |ψj〉 =
1√
2

(|(n− (t2 + 2))(n− (t2 + 1))〉+ |(n− 2j + t2)(n− 2j + t2 − 1)〉)

or [S(2Π− I)]t |ψj〉 =
1√
2

(|(2n− t− j − 2)(2n− j − t− 1)〉+ |(t− j)(t− j − 1)〉) .
(22)

Combining all we observe the result.
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We mention the following corollaries to discuss PST and periodic vertices in a path graph.

Corollary 3. There is PST between the vertices j and n− j−1 in line graph Pn for 1 ≤ j < n−1
2 at time t = n−1.

Proof. Let the initial state be |ψj〉. Applying Theorem 3 we have the state at time t = (n− 1), which is

[S(2Π− I)]n−1 |ψj〉 =
1√
2

(|(n− j − 1)(n− j)〉+ |(n− j − 1)(n− j − 2)〉) = |ψn−j−1〉 . (23)

Therefore there is PST between the vertices j and (n− j − 1).

Corollary 4. In a path graph P2m+1 the vertex m is periodic at time t = (n− 1).

Proof. Applying n = 2m+ 1, j = m, and t = n− 1 = 2m in Theorem 3 we have

[S(2Π− I)]2m |ψm〉 =
1√
2

(|m(m+ 1)〉+ |m(m− 1)〉) = |ψm〉 . (24)

Therefore, the vertex n−1
2 is periodic at time t = n− 1, when n is an odd number.

As there is PST s between j and n− j − 1 all the vertices in Pn are periodic at time t = 2(n− 1).
We can visualize the movement of the quantum walker in terms of probability. Suppose the walker starts at

vertex j at time t = 0 with the initial state |ψj〉. Probability of getting it at vertex k at time t is Pt(j, k) =
〈ψk|[S(2Π− I)]t|ψj〉. Theorem 3 indicates when 0 ≤ t ≤ j we have

Pt(j, k) =


1 when k = j and t = 0;
1
2 when k = j + t or k = j − t and t = 0 ≤ j < j − 1;
1√
2

when k = 0 and t = j.

(25)

When j + 1 ≤ t ≤ n− j − 1 we have

Pt(j, k) =


1
2 when k = j + t or k = t− j and j + 1 ≤ t < n− j − 1;
1
2 when k = n− 2j − 1 and t = n− j − 1;
1√
2

when k = n− 1 and t = n− j − 1.

(26)

Also for n− j ≤ t ≤ n− 1 we have

Pt(j, k) =

{
1
2 when k = 2n− t− j − 2 or k = t− j and n− j ≤ t < n− 1;

1 when k = n− j − 1 and t = n− 1.
(27)

Other than these values of t, j and k we have Pt(j, k) = 0. For example, we consider a path graph with 6 vertices
with a walker who initiates walking at vertex j = 1. There is a PST between vertex 1 and 4. We plot Pt(j, k) with
bar diagrams for different values of t in figure 1.

5 Conclusion

In this article, we study PST in the path graphs and the cycle graphs with an arbitrary number of vertices. We
consider an alternative approach to PST which is based on the Markovian quantum walk. The idea of the Markovian
quantum walk is a variant of the Szegedy quantum walk. In case of the continuous-time quantum walk, we consider
exp(itA(G)) as the evolution operator. PST based on the continuous-time quantum walk is limited in path graph
with at most 3 vertices and cycle graph with at most 4 vertices. Considering the evolution operator S(2Π − I) of
Markovian quantum walk we overcome this limitation. We investigate the propagation of a quantum walker on path
and cycle graphs. In a cycle graph with 2m vertices, we establish PST between any pair of vertices j and j +m at
time t = m for j = 0, 1, . . .m−1. Also, in case of path graphs Pn we observe PST between any pair of vertices j and
n− j−1 at time t = n−1 for 0 ≤ j < n−1

2 . When n is odd the vertex n−1
2 is a periodic vertex. Therefore, this work

opens up a new direction to investigate PST in graphs which might be more efficient in quantum communication.
The idea of PST based on Markovian quantum walk is new and different from the other proposals of PST. It

is well-known that the antipodal vertices of a hypercube graph allow PST based on the continuous-time quantum
walk. In our case, only a two-dimensional hypercube graph which is a cycle graph with four vertices allows PST.

6



Figure 1: The probability of getting the walker at the vertex k ∈ P6 at different time instance t = 0, 1, . . . 5. Suppose
the walker started at vertex 1 at t = 0. At t = 5, it reaches vertex 4. Therefore, the probability of getting the
walker at time t = 0 at vertex 1 is 1. Similarly, the probability of getting the walker at time t = 5 at vertex 4 is 1.
There is a PST between vertices 1 and 4 at time t = 5.

Hypercube graphs do not allow PST based on Markovian quantum walk in them when their dimension is more
than two. Interestingly, all the vertices in the hypercube graph of dimension 4 are periodic at time t = 12. The
central vertex of the star graphs is periodic at time t = 2. The non-central vertices of the star graphs are periodic
at time t = 4. Tensor product of two path graphs Pi⊗Pj allows PST when i+ j ≤ 7. Computer programs identify
these graphs supporting PST or having periodic vertices in them. Here, we mention them without proof, which an
interested reader may attempt.
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Appendix

Proof of Lemma 1:

Proof.

(2Π− I) |ψj〉 = 2Π |ψj〉 − |ψj〉 = 2 |ψj〉 〈ψj |ψj〉 − |ψj〉 = 2 |ψj〉 − |ψj〉 = |ψj〉

or S(2Π− I) |ψj〉 = S |ψj〉 =
1√
2
S(|j(j + 1)〉+ |j(j − 1)〉) =

1√
2

(|(j + 1)j〉+ |(j − 1)j〉).
(28)

Proof of Lemma 2:

Proof.

(2Π− I) |(j + 1)j〉 = 2Π |(j + 1)j〉 − I |(j + 1)j〉 = 2 |ψ(j+1)〉 〈ψ(j+1)|(j + 1)j〉 − |(j + 1)j〉

= 2
1√
2
|ψ(j+1)〉 − |(j + 1)j〉 ,

(29)

7



since 〈ψ(j+1)|(j + 1)j〉 = 1√
2
. Applying equation (2) we have

S(2Π− I) |(j + 1)j〉 = S

(
2

1√
2

1√
2

(|(j + 1)(j + 2)〉+ |(j + 1)j〉)− |(j + 1)j〉
)

= S (|(j + 1)(j + 2)〉+ |(j + 1)j〉 − |(j + 1)j〉) = S |(j + 1)(j + 2)〉 = |(j + 2)(j + 1)〉 .
(30)

Proof of Lemma 3:

Proof.

(2Π− I) |(j − 1)j〉 = 2Π |(j − 1)j〉 − |(j − 1)j〉 = 2 |ψ(j−1)〉 〈ψ(j−1)|(j − 1)j〉 − |(j − 1)j〉

= 2
1√
2
|ψ(j−1)〉 − |(j − 1)j〉 ,

(31)

since 〈ψ(j−1)|(j − 1)j〉 = 1√
2
. Applying equation (2) we have

S(2Π− I) |(j − 1)j〉 = S

(
2

1√
2

1√
2

(|(j − 1)j〉+ |(j − 1)(j − 2)〉)− |(j − 1)j〉
)

= S (|(j − 1)(j − 2)〉+ |(j − 1)j〉 − |(j − 1)j〉) = S |(j − 1)(j − 2)〉 = |(j − 2)(j − 1)〉 .
(32)
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[25] Pawe l Kurzyński and Antoni Wójcik. Discrete-time quantum walk approach to state transfer. Physical Review
A, 83(6):062315, 2011.

[26] Xiang Zhan, Hao Qin, Zhi-hao Bian, Jian Li, and Peng Xue. Perfect state transfer and efficient quantum
routing: A discrete-time quantum-walk approach. Physical Review A, 90(1):012331, 2014.

[27] Ada Chan and Hanmeng Zhan. Pretty good state transfer in discrete-time quantum walks. arXiv preprint
arXiv:2105.03762, 2021.

[28] Etsuo Segawa. Localization of quantum walks induced by recurrence properties of random walks. Journal of
Computational and Theoretical Nanoscience, 10(7):1583–1590, 2013.

[29] Radhakrishnan Balu, Chaobin Liu, and Salvador E Venegas-Andraca. Probability distributions for Markov
chain based quantum walks. Journal of Physics A: Mathematical and Theoretical, 51(3):035301, 2017.

[30] Andris Ambainis. Quantum walk algorithm for element distinctness. SIAM Journal on Computing, 37(1):210–
239, 2007.

[31] Jiangfeng Du, Chao Lei, Gan Qin, Dawei Lu, and Xinhua Peng. Search via Quantum Walk. In Search
Algorithms and Applications. IntechOpen, 2011.

[32] Harry Buhrman and Robert Spalek. Quantum verification of matrix products. arXiv preprint quant-
ph/0409035, 2004.

[33] Gregory F Lawler and Vlada Limic. Random walk: a modern introduction, volume 123. Cambridge University
Press, 2010.

9

https://arxiv.org/abs/1102.4898
https://arxiv.org/abs/1201.4822
https://arxiv.org/abs/1201.4822
https://arxiv.org/abs/1010.4721
https://arxiv.org/abs/1601.07647
https://arxiv.org/abs/1712.09260
https://arxiv.org/abs/quant-ph/0012090
https://arxiv.org/abs/quant-ph/0403120
https://people.cs.rutgers.edu/~szegedy/PUBLICATIONS/walk_focs.pdf
https://arxiv.org/abs/1201.4780
http://stubber.math-inf.uni-greifswald.de/algebra/qpt/konno-26nov2007.pdf
https://arxiv.org/abs/1103.4185
https://arxiv.org/abs/1405.6422
https://arxiv.org/abs/1405.6422
https://arxiv.org/abs/2105.03762
https://arxiv.org/abs/1112.4982v2
https://arxiv.org/abs/1703.04131
https://arxiv.org/abs/1703.04131
https://arxiv.org/abs/quant-ph/0311001
https://arxiv.org/abs/quant-ph/0608026
https://arxiv.org/abs/quant-ph/0409035

	1 Introduction
	2 Markovian quantum walk and perfect quantum state transfer
	3 State transfer on cycle graph
	4 State transfer on a path graph
	5 Conclusion

