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We derive a mathematical description of a perfect vortex beam as the Fourier transformation of a Bessel
beam. Building on this development, we experimentally generate Bessel-Gauss beams of different orders and
Fourier-transform them to form perfect vortex beams. By controlling the radial wave vector of Bessel-Gauss
beam, we can control the ring radius of the generated beam. Our theoretical predictions match with the
experimental results and also provide an explanation for previous published works. We find the perfect vortex
resembles that of an orbital angular momentum (OAM) mode supported in annular profiled waveguides. Our
prefect vortex beam generation method can be used to excite OAM modes in an annular core fiber. c© 2016
Optical Society of America

OCIS codes: 050.4865, 070.6120, 230.6120.

Optical vortices have wide application in science [1,2].
Their recent application in communication systems, both
in free space [3,4] and fiber [5], is a burgeoning area of
research. Researchers are attracted towards these beams
because they have orbital angular momentum (OAM).
However, these conventional vortex beams are limited as
their ring diameter depends on the order, or topological
charge, l (the number of twist in a wave front per unit
wavelength). This property may create problems when
coupling multiple OAM beams into a fiber with fixed
annular index profile [6-9].
To overcome the limitations of conventional vortex

beam, Ostrovsky, et al. [10,11] introduced the concept
of a perfect vortex beam: one having ring diameter inde-
pendent of topological charge. They used a special phase
mask, generated from a complex equation, to approxi-
mate perfect vortex. The beam they created has unde-
sired extra rings. Another recently published technique
for generation of perfect vortex beams uses an axicon
[12]. A beam with fixed ring diameter, proportional to
the axicon parameter, can be achieved at any vortex or-
der. This technique, however, require the axicon be re-
placed and the setup re-aligned to achieve different ring
diameter.
To simplify generation and overcome the above men-

tioned drawbacks, we demonstrate a new technique to
form a perfect vortex beam with controllable ring radius
using the Fourier transform property of a Bessel beam.
The derivation of this transform is obtained theoreti-
cally and used to generate a perfect vortex beam. We
implement our technique by using spatial light modula-
tor (SLM). The new phase mask for the SLM is designed
by combining an axicon and a spiral phase function to
form a Bessel-Gauss (BG) beam. Then this BG beam
is optical Fourier-transformed through a simple lens. By
controlling the axicon parameter in creating the phase
mask, one can control the BG beam’s radial wave vector
and consequently ring radius of the perfect vortex. We
also studied detection of these beams or their conver-

sion back to Gaussian beam. The application of perfect
vortex beam for excitation of OAM mode in an annular
waveguide is discussed at the end.
Consider an ideal Bessel beam equation in the cylin-

drical coordinate system (ρ, φ, z) with unit amplitude
[13],

E(ρ, φ, z) = Jl(krρ)exp(ilφ+ ikzz), (1)

where Jl is an l
th order Bessel function of first kind. kr

and kz are the radial and longitudinal wave vectors, with
the wave vector k =

√

k2r + k2z = 2π
λ
.

A simple lens can act as an optical Fourier trans-
former. This transformation for any arbitrary field
E(ρ, φ) into E(r, θ) can be written mathematically in
cylindrical coordinates as [14],

E(r, θ) =
k

i2πf

∫

∞

0

∫

2π

0

E(ρ, φ)ρdρdφ

exp

(

−ik

f
ρrcos(θ − φ)

)

, (2)

where f is the focal length of the lens. After substituting
Eq. (1) into (2), the Fourier transform of the Bessel beam
is,

E(r, θ) =
k

f
il−1exp(ilθ)

∫

∞

0

Jl(krρ)Jl(krρ/f)ρdρ. (3)

Using the orthogonality of Bessel functions, the above
equation can be reduced to the Dirac delta function δ(r),
as,

E(r, θ) =
il−1

kr
δ(r − rr)exp(ilθ). (4)

The above equation represents the complex field ampli-
tude of an ideal perfect vortex beam having topological
charge l and ring radius rr = krf/k. The same equation
is considered in the reference [10]. As the formation of a
Dirac delta field in an experiment is difficult, the above
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equation is reduced to a finite-sum approximation in the
same reference. The simulated intensity profile plotted
from such an approximation has a bright center ring,
with extra undesired lateral rings. The center ring is the
perfect vortex while the others are present due to the
truncated sum approximation.
While experimental realization of an ideal Bessel beam

is not possible, one can always form a Bessel-Gauss beam
experimentally with complex field amplitude [15],

E(ρ, φ) = Jl(krρ)exp(ilφ)exp

(

−

ρ2

w2
g

)

, (5)

where wg is the beam waist of the Gaussian beam which
is used to confine the Bessel beam. Again, the Fourier
transform of the above equation is derived by substitut-
ing it into Eq. (2),

E(r, θ) =
k

f
il−1exp(ilθ)

∫

∞

0

Jl(krρ)Jl(krρ/f)

exp

(

−

ρ2

w2
g

)

ρdρ. (6)

Using standard integral and Bessel function identity [16],
one can write Eq. (6) as,

E(r, θ) = il−1
wg

w0

exp(ilθ)exp

(

−

r2 + r2r
w2

0

)

Il

(

2rrr

w2

0

)

.

(7)

The above equation represents the field amplitude of a
perfect vortex having ring width and radius equal to
2w0 and rr respectively. Here, Il is an l

th order modified
Bessel function of first kind. The Gaussian beam waist
at the focus is w0(=

2f
kwg

). Equation (7) is the combi-

nation of two functions: a modified Bessel function and
a Gaussian function. Since Il grows exponentially, both
function intersect at r = rr to form a ring. As the slope
of the curve of Il slightly decreases with l, the ring radius
shifts by a small value. One can always control decrease
experimentally by changing the axicon parameter.
As the Fourier plane lies at the focus of the lens, w0

is small. For large rr, one can approximate Il as

Il(
2rrr

w2

0

) ∼ exp(
2rrr

w2

0

). (8)

So that the Eq. (7) can be reduced to

E(r, θ) =
wgi

l−1

w0

exp(ilθ)exp

(

−

(r − rr)
2

w2

0

)

. (9)

The above expression is similar to the expression men-
tioned in the reference [12]. This equation can be reduced
to Eq. (4) for small w0 or for w0 = 0. Overall, Eq. (7)
is the true representation of the complex field amplitude
of perfect vortex beam.
For the sake of simplicity, one can write Eq. (7) in the

following form having constant amplitude A0 at z = 0

plane,

E(r1, θ1) = A0exp(ilθ1)exp

(

−

r2
1

w2

0

)

Il

(

2rrr1
w2

0

)

. (10)

Now, consider the Fresnel diffraction formula for study
of free space propagation of perfect vortex beam [14].

E(r2, θ2, z) =
k

i2πz
exp(ikz)

∫

∞

0

∫

2π

0

E(r1, θ1)r1dr1dθ1

exp

(

ik

2z
(r2

1
+ r2

2
− 2r1r2cos(θ2 − θ1))

)

.

(11)

After putting Eq. (10) into Eq.(11), we obtain

E(r2, θ2, z) = A0

w0

w
(−1)lexp(iψ + ilθ2 + ikz)

exp

(

ik

2R
(r2

2
+ r2r)

)

exp

(

−1

w2
(r2

2
− (

rrz

zr
)2)

)

Il

(

2rrr2exp(iψ)

w0w

)

. (12)

Here, w is the beam radius at z, R is the radius of curva-
ture and ψ is the Gouy phase shift of the Gaussian beam.
The beam parameters w, R, and ψ are related to the
waist spot size w0 and the Rayleigh range zr = kw2

0
/2

by

w = w0

√

1 + (
z

zr
)2, R = z +

z2r
z
, ψ = arctan(

z

zr
). (13)

From equation (12), we observe the beam profile has a
Gaussian nature. It does not show any non-diffraction
property.
To study experimental generation of perfect vortex

beams, we use our theoretical finding that the Fourier
transform of a BG beam is an annular-shaped perfect
vortex having finite ring width and diameter. The BG
beam can be created using an axicon. The generation of
a perfect vortex is divided into two stages. The first stage
generates the BG beam with controllable radial wave
vector kr and topological charge l. The second stage con-
verts this beam to a perfect vortex of topological charge
l having ring radius rr using the Fourier transform prop-
erty of a simple lens.
We start with generation of BG beam having differ-

ent value of kr and l using a phase mask as shown in
Fig. 1. This phase mask is formed by plotting an argu-
ment of function exp(iar + ilθ), which is the combina-
tion of an axicon function and a spiral function. Here, a
is the axicon parameter. The BG beam generated from
such a phase mask have radial and longitudinal wave vec-
tor which can be calculated from the axicon parameter
(a = ktan−1(kr/kz) = ksin−1(kr/k) = kcos−1(kz/k)).
The first zero of the zeroth order BG beam is equal to
2.405 times the inverse of kr [13].

We next consider the lens that Fourier-transforms the
BG beam to form perfect vortex beam. By controlling
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the input beam radius wg (used to form the BG beam),
one can control the Gaussian beam waist w0 at the fo-
cus, which is actually half the ring-width of the perfect
vortex. The ring radius rr of a perfect vortex depends on
radial vector kr, which can be controlled by an axicon
parameter via the phase mask. At the same time, the
same phase mask gives a vortex nature with topological
charge l to the ring beam.
Figure 1 shows the experimental setup for genera-

tion of a perfect vortex beam with different topological
charges. The beam from a semiconductor laser (Cobrite
DX1 at wavelength, 1550 nm) with a single mode fiber
patch cord is collimated by a collimating lens to form a
free space beam of 2 mm diameter. The SLM (PLUTO,
phase only spatial light modulator from Holoeye) screen
having phase mask is illuminated by a collimated beam
to form a BG beam of different topological charge and
radial vector. The field distribution of the diffracted
beam from the phase mask is Fourier transformed by
using a physical lens of focal length 50 cm. The Fourier
transformed field forms a perfect vortex beam at the
focus point. The ring dynamics is studied by recording
the intensity profile through a CCD camera (Spiricon,
SP620U-1550).

Fig. 1. Experimental setup: L, laser; SMF, single mode
fiber; CL, collimating lens, M1, M2, M3, M4, mirrors;
BS1, BS2, beam splitters; SLM, spatial light modulator;
PM, phase mask; FL, Fourier lens; CCD, CCD camera.

The generation of zeroth and fourth order BG beams
for different values of axicon parameter is shown in Fig.
2. The intensity profile of these beams is recorded by a
CCD camera after the SLM. As expected, the full width
half maximum (FWHM) of the zeroth order BG’s center
lobe increases with decreasing axicon parameter. Since
kr = 2.405/B0 (where B0 is the first zero of zeroth order
Bessel beam), one can calculate kr experimentally and
verify with the axicon parameter. The experimental re-
sults are verified with the theoretical plot obtained from
Eq. (5). There is only a small discrepancy between ex-
perimental and theoretical results. Due to saturation of
the intensity of main lobe in the experiment, we could
not record all rings of the beam. As we increase the ex-
posure time, the contrast between the central rings and
the lateral ones becomes so small that they could not
resolve. Note that the number of rings of a BG beam
is practically limited by resolution and aperture size of
SLM.
We next Fourier-transform the BG beams to form per-

a = 16.80/ mml = 0

Exp. 500 µm

a = 13.32/ mm a = 9.50/ mm

l = 4

Exp.

l = 4

Theory

l = 0

Theory
500 µm

Fig. 2. Generation of zeroth and fourth order Bessel-
Gauss beams

fect vortex beams. These transformations are shown in
Fig. 3 for different values of a. The ring radius of the per-
fect vortex decreases with decreasing a, irrespective of
its topological charge. For a = 0, it forms a conventional
optical vortex. For verification and comparison, the theo-
retical results obtained from Eq. (7) are also shown in the
same figure. The measurements match well with theory.
As predicted in theory, the ring radius remains constant
for all orders, or topological charges. However, as the
order of a perfect vortex increases by one in the experi-
ment, the ring radius shifts by 0.04 times of ring width
which can be corrected via the axicon parameter.
The vortex nature of the ring beam generated from

Fourier transform of the BG beam is verified through
interferometry. Figure 4 shows the interference pattern
obtained by interfering a perfect vortex and Gaussian
beam. We observe a spiral fringe pattern, which con-
firms the presence of OAM in the perfect vortex beam.
The number of spirals represents the order or topological
charge of the perfect vortex, and its direction of rotation
decides the sign.
Unlike its Fourier pair, this ring beam diffracts in both

direction towards the center, as well as away from the
center following a Gaussian divergence law. If rr >> w0,
the ring beam maintains its annular shape; otherwise it
forms an Airy pattern after a finite distance of propaga-
tion.
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a = 16.80/ mml = 0

Exp. 500 µm

a = 13.32/ mm a = 9.50/ mm

l = 4

Exp.

l = 0

Theory 500 µm

l = 4

Theory

Fig. 3. Generation of perfect vortex beams through
Fourier transformation of Bessel-Gauss beams

Theory

l = 0

Exp.

l = +1 l = −1 l = −5l = +5

Fig. 4. Interference pattern of perfect vortex beam and
Gaussian beam.

In many applications like fiber based communications
[3-5] and quantum computing [2], it is necessary to con-
vert a vortex beam to a Gaussian beam for detection.
This is easily possible with a conventional vortex beam.
In the case of a perfect vortex, however, it is complex.
The perfect vortex never converts back to the Gaussian
by passing through a spiral phase mask or spiral + axi-
con phase mask. We must convert the perfect vortex to
BG beam. After then passing through a spiral + axi-
con phase mask, the BG beam becomes Gaussian. The
phase mask for generation and detection should be the
same but with an opposite sign of spiral.
Since the perfect vortices have the same profile as

OAM modes present in the annular shaped waveguides,
they can be used to excite OAM modes in such waveg-
uides [6-9]. We used these beams to study OAM mode

excitation in an air-core fiber [17]. The verification of
36 OAM modes was only possible by exploiting perfect
vortices. Due to the controllable ring width, radius and
topological charge, we could match mode field diameter
of the OAM modes of the fiber with perfect vortices. We
expect to be alike to form radially or azimuthally po-
larized perfect vortex beams by using the same annular
core fiber.
In conclusion, we have studied generation of perfect

vortex via Fourier transformation of BG beams. Our
theory is validated with experimental results, as well as
previously published results. The vector counterpart of
perfect vortices may be the solution of annular-shaped
waveguides. These beams have the potential for exci-
tation of OAM modes in ring fibers, which are under
development in OAM based fiber data communication
systems.
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