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Centre d’Analyse de Défense
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ABSTRACT
This lecture presents the perfectly matched layer (PML) absorbing boundary condition (ABC)

used to simulate free space when solving the Maxwell equations with such finite methods

as the finite difference time domain (FDTD) method or the finite element method. The

frequency domain and the time domain equations are derived for the different forms of PML

media, namely the split PML, the CPML, the NPML, and the uniaxial PML, in the cases

of PMLs matched to isotropic, anisotropic, and dispersive media. The implementation of the

PML ABC in the FDTD method is presented in detail. Propagation and reflection of waves

in the discretized FDTD space are derived and discussed, with a special emphasis on the

problem of evanescent waves. The optimization of the PML ABC is addressed in two typical

applications of the FDTD method: first, wave-structure interaction problems, and secondly,

waveguide problems. Finally, a review of the literature on the application of the PML ABC

to other numerical techniques of electromagnetics and to other partial differential equations of

physics is provided. In addition, a software package for computing the actual reflection from a

FDTD-PML is provided. It is available at www.morganclaypool.com/page/berenger.

KEYWORDS
Absorbing boundary conditions, Perfectly matched layer, Numerical method, Finite difference,

Finite element, Free space, Stretched coordinate, Discretized space, Evanescent wave, FDTD,

PML
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1

Introduction

Nowadays, computers have been used for several decades to solve the partial differential equa-

tions of physics. To this end, numerous computational methods have been developed. In the

field of electromagnetics, some, such as the asymptotic methods, solve an approximation of the

Maxwell equations. Others solve the exact Maxwell equations numerically, or a set equivalent

to the Maxwell equations. The latter methods are the most widely used. They can be grouped

into two classes: firstly the methods based on the solution of integral equations, secondly the

finite methods that solve the Maxwell equations in a direct manner by discretizing the physical

space with elementary volumes.

The integral equations have been extensively used since the 1960’s. They permit realistic

problems of practical interest to be solved with relatively modest computers. The most known

integral method is the method of moments developed by Harrington [1] in frequency domain.

The integral equations are equivalent to the Maxwell equations, the boundary conditions, and

the initial conditions of the problem to be solved. They are solved on part of the physical space

reduced to a surface or a region of space, depending on the problem. These numerical techniques

do not require absorbing boundary conditions (ABCs) and will no longer be mentioned in the

following.

Several finite methods have been developed for solving the Maxwell equations in a

discretized space. The most popular is the finite-difference time-domain method (FDTD)

introduced by K. S. Yee [2]. The finite volume method (FVTD), the transmission line matrix

(TLM) method, and the finite element method (FEM) are finite methods as well. With all these

numerical techniques the physical space is split into elementary cells, elements, or volumes, that

must be smaller than both the shortest wavelength of interest and the smallest details of the

geometry of the objects to be placed within the part of space of interest. Since the computers are

not able, and will never be able, to handle an infinite number of elementary cells or elements,

these methods only allow the Maxwell equations to be solved within a finite part of space. This

is inconsistent with the requirements of most problems of electromagnetics that are unbounded

problems. Consider for instance two typical problems of numerical electromagnetics, first the

calculation of the radiation pattern of an antenna, second the interaction of an incident wave

with a scattering structure. In both cases the radiated field propagates toward the free space

surrounding the structure of interest; in other words the physical boundary conditions should

be placed at infinity. If the Maxwell equations are solved within a finite volume bounded
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with arbitrary conditions, the solution is erroneous. In order to overcome such contradictory

requirements, that is a physical unbounded space to be replaced with a finite computational

domain, the so-called absorbing boundary conditions have been introduced.

The absorbing boundary conditions (ABCs) simulate or replace the infinite space that

surrounds a finite computational domain. The replacement is never perfect. The solution

computed within an ABC is only an estimate to the solution that would be computed within

a really infinite domain. Moreover, the ABCs cannot replace sources of electromagnetic fields,

they only absorb fields produced by sources located inside the surrounded domain. From this,

sources cannot be placed outside the ABCs. As a corollary, the ABCs can be implemented only

upon concave surfaces.

Various ABCs have been developed over the years in the field of electromagnetics, from

the extrapolation [3] or the radiating boundary [4] in the 1970’s to the perfectly matched layer

(PML) [5] and the complementary operators method (COM) [6] in the 1990’s. This lecture

is devoted to the presentation of the PML ABC, initially introduced in [5] for use with the

FDTD method. Since then, the PML ABC has been the subject of numerous works reported

in the literature, with the objective of improving it, extending it to other numerical techniques

of electromagnetics, and extending it to the solution of partial differential equations governing

other domains of physics, such as acoustics, seismic, or hydrodynamics. The lecture is organized

as follows:

r Chapter 1 discusses the requirements that must be fulfilled by the ABCs in view of

replacing a theoretical infinite space with a finite computational domain. This chapter

also reviews the ABCs that were used before the introduction of the PML ABC.

r Chapter 2 introduces the PML concept in the two-dimensional case.

r Chapter 3 extends the PML ABC to three dimensions and to general media. The

PML medium is interpreted in terms of stretched coordinates and dependent currents,

and the complex frequency shifted stretching factor is introduced.

r Chapter 4 derives the different forms of time domain equations, namely the split PML,

the CPML, the NPML, the uniaxial PML, for a vacuum, lossy media, and more general

anisotropic and dispersive media.

r Chapter 5 is devoted to the FDTD method. The FDTD equations are provided for the

various forms of PML media. Propagation and reflection of waves in the discretized

FDTD-PML space are derived theoretically and discussed, with a special emphasize

on the case of evanescent waves.

r Chapter 6 presents the application of the PML ABC to two typical problems of

numerical electromagnetics solved with the FDTD method, namely a wave-structure
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interaction problem and a waveguide problem. The origin of spurious reflections from

the PML is discussed and remedies are given so as to optimize the PML performance.

r Chapter 7 briefly reviews the extensions of the PML concept to other systems of

coordinates, other numerical techniques, and other partial differential equations of

physics.
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C H A P T E R 1

The Requirements for the Simulation
of Free Space and a Review of Existing

Absorbing Boundary Conditions

Answering two questions is the principal objective of this introductory chapter. The first

question is: why is the simulation of free space needed in numerical electromagnetics? The

second one is: which requirements have to be satisfied by the methods that simulate free space?

In addition, the methods developed for simulating free space before the introduction of the

perfectly matched layer concept are briefly reviewed.

1.1 THE MAXWELL EQUATIONS AND THE BOUNDARY
CONDITIONS

The electric and magnetic fields E and H in material media are governed by the Maxwell

equations

∇ ×
−→
E = −µ

∂
−→
H

∂t
(1.1a)

∇ ×
−→
H = ε

∂
−→
E

∂t
+

−→
J (1.1b)

with two Gauss laws satisfied at any time:

∇ · µ
−→
H = 0 (1.2a)

∇ · ε
−→
E = ρ. (1.2b)

Permittivity ε and permeability µ are scalar quantities in isotropic media and tensor quantities

in anisotropic media, J is a current density, and ρ is a charge density.

The Maxwell equations (1.1) are a set of two first-order partial differential equations

connecting the time derivatives of E and H fields to some partial space derivatives of their
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E(r, t0)

H(r, t0)

E(r, t) 

H(r, t)

Boundary conditions

Fields at t > t0

Finite volume

Initial time Later or final time 

Initial conditions 

       at t = t0 Maxwell 

Equations

FIGURE 1.1: Evolution on time of the electromagnetic field governed by the Maxwell equations within

a space domain bounded with boundary conditions

components. As known, this set of two equations can be merged into one second-order par-

tial differential equation, namely the wave equation. As any partial differential equation or

set of partial differential equations, the Maxwell equations are satisfied by an infinite num-

ber of solutions. In other words, there are an infinite number of physical problems that

satisfy Eqs. (1.1). But there is only one solution that satisfies the following two additional

conditions:

(1) initial conditions, that is E and H fields impressed within a given volume at an initial

time,

(2) boundary conditions, that is E and H fields impressed at any time upon the whole surface

enclosing the given volume.

The evolution in time of the initial E and H fields is governed by Eqs. (1.1) in conjunction with

the boundary conditions. Initial E and H fields are physical fields that satisfy (1.2). It is trivial

to prove, by multiplying (1.1) with nabla operator, that the evolution in time preserves the

satisfaction of (1.2). Solving a problem of electromagnetics, especially by means of numerical

methods, consists of using the Maxwell equations (1.1) to advance in time the electromagnetic

fields within a given part of space bounded with impressed boundary conditions, from an initial

time to a later final time. This is summarized in Fig. 1.1. In principle, the finite methods are well

suited to the solution of such problems. The volume of interest is discretized with a finite number

of elementary volumes, called cells or elements, depending on the method. Nevertheless, an

important difficulty arises as using finite methods, because in most applications the domain is,

at least in theory, of infinite extent. This is discussed in the following.
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1.2 THE ACTUAL PROBLEMS TO BE SOLVED WITH
NUMERICAL METHODS

Ideally, a problem well suited to finite methods is like in Fig. 1.1, with a domain of resolution

of the Maxwell equations as small as possible, limited to the region of interest, that is the

region where the field has to be computed. This allows the number of elementary volumes and

then the number of unknown fields to be as small as possible, or alternatively the discretization

of space to be as fine as possible. Unfortunately, most problems encountered in numerical

electromagnetics significantly differ from this ideal case. In most cases the domain of interest is

not bounded with an impressed boundary condition. Instead, the region of interest is open, at

least in part, to the surrounding free space. This means that the boundary condition is rejected

to infinity, or equivalently that the computational domain is, in theory, infinite.

A popular problem involving an infinite domain is the calculation of the radiation pattern

of an antenna. Only fields in the vicinity of the antenna are needed—the far fields can be obtained

by a near-field to far-field transformation—but the antenna radiates in the surrounding free

space. If an arbitrary boundary condition is placed at a finite distance from the antenna, the

radiated field is reflected toward the inner domain, resulting in the addition of a spurious field

to the solution in the vicinity of the antenna. In theory, this difficulty could be overcome with

time domain methods, by working with a large domain in such a way that the fields reflected

from the arbitrary boundary enter the region of interest after the end of the calculation. In

actual applications, such a solution is not realistic, because the required computational domain

would be so large that the problem could not be handled by the computers. From this, for the

calculation of the field near an antenna with a finite method, the infinite space surrounding

the antenna must be replaced with an appropriate boundary condition placed at a distance as

short as possible from the antenna. This boundary condition must allow the fields computed

in the domain to be a satisfactory approximation to the fields that would be obtained if the

computational domain were infinite. Such a boundary condition is called an absorbing boundary

condition (ABC) because it must remove the reflection of fields toward the inner domain, that

is the ABC must absorb the radiated outgoing fields.

Problems that are close to antenna problems are the calculations of the interaction of an

incident wave with a structure of interest. Such problems include radar cross-section (RCS)

calculations and electromagnetic compatibility (EMC) calculations. The field scattered by the

structure is radiated toward the surrounding infinite space. An ABC placed as close as possible

to the structure is needed so as to replace the infinite free space and allow the overall domain

to be as small as possible. This permits the computational resources to be devoted to the use of

a discretization of the structure as fine as possible.

Besides problems open in totality to free space, there exist some problems that are

only partially open. Examples can be found in the field of waveguides where most of the
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computational domain is bounded with the walls of waveguides. The domain is in general only

open in one direction, for instance at one end of the waveguide. Nevertheless, an ABC is also

needed in such partially open problems so as to limit to a reasonable size the computational

domain.

1.3 THE REQUIREMENTS TO BE SATISFIED BY THE
ABSORBING BOUNDARY CONDITIONS

Let us consider the field radiated from a small dipole antenna. In spherical coordinates (r , θ ,

ϕ), the E and H fields are given by:

−→
E (r, θ, ϕ) =

− j Il e− jωr/c

4πε0ω

[

2 cos θ

(

1

r 3
+

jω

c r 2

)

−→u r + sin θ

(

1

r 3
+

jω

c r 2
−
ω2

c 2r

)

−→u θ

]

(1.3a)

−→
H (r, θ, ϕ) =

Ile− jωr/c

4π
sin θ

(

1

r 2
+

jω

c r

)

−→u ϕ (1.3b)

where ω is the angular frequency, l is the dipole length, and I is the magnitude of the current

upon the dipole. As known, far from the dipole (r ≫ wavelength), the radiated field (1.3) is

like a homogeneous plane wave whose magnitude decreases as 1/r . Conversely, at distances of

the order of, or shorter than, the wavelength, the field is not homogeneous and its magnitude

rapidly decreases with distance.

The behavior of the field radiated by a dipole is general. Far from any radiating or

scattering structure the field is like a plane wave in a vacuum, with a magnitude decreasing

as 1/r . This is known as the Sommerfield radiation condition. Conversely, in the vicinity of

the structure the field is not homogeneous and rapidly decreases with distance and its form is

complex. Especially, this is the case around scattering structures stricken by an incident pulse.

Strongly evanescent fields are present at frequencies lower than the resonance of the structure,

up to a distance of the order of its size.

Other problems where evanescent fields are present near the domain of interest, are

waveguide problems. Within a waveguide, both traveling and evanescent waves can exist. Below

a cutoff angular frequency ωcutoff the TE and TM modes are evanescent in the longitudinal

direction of the waveguide. As an example, within a parallel-plate guide each mode is the

superposition of two waves whose space dependence is of the form:

e−η j ωc coshχ y e η
ω
c sinhχx (1.4a)
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where x and y are the longitudinal and transverse directions, η = ±1, and:

sinhχ = ±

√

ω2
cutoff

ω2
− 1, (1.4b)

with, for mode n and a guide of transverse size a :

ωcutoff =
nπ c

a
. (1.4c)

From this brief overview of the fields radiated or scattered in typical open problems of numerical

electromagnetics, it appears that the requirements that an absorbing boundary condition must

satisfy strongly depend on its location with respect to the source of the field:

r if the ABC is placed far from the source, the ABC only has to absorb homogeneous

plane waves propagating with the speed of light c . In general the plane waves strike the

boundary at oblique incidence.

r if the ABC is placed in the vicinity of the source, the ABC must be able to absorb

nonhomogeneous evanescent waves. One might think that this requirement is more

severe than only absorbing homogeneous traveling waves.

Equivalently, the above can be reformulated as follows:

r if the ABC is only able to absorb homogeneous plane waves, it must be placed out of the

evanescent region surrounding the source (antenna, scattering structure, waveguide).

r if the ABC is able to absorb evanescent fields, it can be placed close to the source, in

the evanescent region. In that case, the overall computational domain is significantly

smaller.

1.4 THE EXISTING ABCS BEFORE THE INTRODUCTION OF
THE PML ABC

From a general point of view, there exist two categories of absorbing boundary conditions:

r the global ABCs based on the fact that the field at any point on the boundary of a

given volume can be expressed as a retarded-time integral of the field upon a surface

enclosing all the sources [7]. Such global ABCs are computationally expensive and are

only marginally used in numerical electromagnetics [8].

r the local ABCs with which the field on the boundary is expressed as a function of the

field in the vicinity of the considered point, that is in function of the field at the closest

points of the mesh with finite methods. All the ABCs used in the past in computer
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codes are local ABCs, and the perfectly matched layer ABC also can be regarded as a

local ABC.

Various local ABCs have been proposed over the years, in parallel to the growing use of

finite methods in numerical electromagnetics. Most conditions are designed for the absorption

of traveling waves. Implicitly this means that they must be placed some distance from the

sources, outside the evanescent region.

The ABC described in [4] for the FDTD method, denoted as radiating boundary,

assumes that the field around a scattering structure is like the field radiated from a short dipole

antenna. The field outside the computational domain, needed for the advance of the field on

the boundary of the domain, is obtained from formulas of the dipole, assuming that the dipole

is located at the center of the domain.

The ABC of Engquist–Majda [9], presented in 1977, is based on an approximation of the

wave equation, valid for traveling waves propagating toward the boundary. The approximation

is called a one-way wave equation. Different orders of approximation are possible, the first two

ones read:

∂Eu

∂x
−

1

c

∂Eu

∂t
= 0 (1.5a)

∂2 Eu

∂x∂t
−

1

c

∂2 Eu

∂t2
+

c

2

∂2 Eu

∂y2
= 0 (1.5b)

where Eu is any component of the E field. Equations (1.5) give the space derivatives of the

field in the direction x normal to the boundary. With time-marching methods this permits

the field on the boundary to be advanced in time. Notice that (1.5a) is satisfied rigorously by

a plane wave striking the boundary at normal incidence. The discretized counterpart of (1.5a)

in the FDTD method is nothing but an extrapolation in space and time, assuming that the

field on the boundary is a plane wave at normal incidence. Equation (1.5b) takes account of

the transverse derivative of the field, resulting in a better approximation for waves at oblique

incidence. The reflection coefficient of ABCs based on one-way wave equations, for a plane

wave at incidence θ , is:

r =
(

1 − cos θ

1 + cos θ

)n

(1.6)

where n is the order of the approximation, n = 1 with (1.5a) and n = 2 with (1.5b). The

implementation of (1.5b) in the FDTD method was presented by Mur in 1981 [10]. This

ABC, known as the Mur ABC, has been the most popular ABC in numerical electromagnetics

for more than one decade. The Engquist–Majda ABC was generalized by Trefethen and
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Halpern [11], so as to permit the nulls of the reflection coefficient to be placed at oblique

incidences. This allows a small reflection to be achieved up to wide angles of incidence.

Another ABC later introduced [12] is the Higdon ABC based on a linear operator that

differs from (1.5a) with the introduction of a term cosαi . This allows the reflection of a plane

wave to vanish at incidence αi in place of normal incidence with (1.5a). Applying several times

the operator, the n-order Higdon operator is obtained:

[

n
∏

i=1

(

cosαi
∂

∂t
− c

∂

∂x

)

]

Eu = 0 (1.7)

whose reflection coefficient vanishes at the αi angles. As with Trefethen–Halpern ABC, a small

reflection of traveling waves can be achieved up to wide incidences.

Finally, the above ABCs allow excellent reflection coefficients to be achieved, especially

by using a high order ABC with n > 2. Nevertheless, the Achille tendon of all these ABCs is

in the fact that they were designed to absorb homogeneous traveling waves. This is not well

suited to the realistic problems to be solved by means of numerical techniques, because in most

physical problems the electromagnetic field in the region of interest involves both traveling

and evanescent waves. This explains why the global performance of the one-way wave and

operator ABCs cannot be improved significantly by increasing the order of the ABC over order

2. Especially, these ABCs cannot be placed close to the sources, that is in the evanescent region,

whatever may be their order. In most cases this results in a computational domain significantly

larger than the region of interest, i.e., the domain is larger than the optimum domain that

would be used with an ideal ABC that could absorb both traveling and evanescent waves and

could be placed nearby the region of interest.

Another ABC based on a quite different principle has been used with the FDTD

method [13, 14]. This ABC is based on a matched medium that absorbs without reflection the

electromagnetic waves striking the vacuum–medium interface at normal incidence. A layer of

this medium is placed in the outer FDTD cells of the computational domain, so as to absorb

the outgoing waves. In this matched medium, the Maxwell equations are replaced with:

ε0
∂
−→
E

∂t
+ σ

−→
E = ∇ ×

−→
H (1.8a)

µ0
∂
−→
H

∂t
+ σ ∗−→H = −∇ ×

−→
E (1.8b)

where σ ∗ is a nonphysical parameter that allows the absorption of the magnetic field to be

symmetrized with respect to the absorption of the electric field, provided that the following



12 PERFECTLY MATCHED LAYER (PML) FOR COMPUTATIONAL ELECTROMAGNETICS

relationship holds:

σ

ε0
=
σ ∗

µ0
. (1.9)

With condition (1.9), called the matching condition, the impedance of a plane wave in the

medium equals the impedance in a vacuum. This results in zero reflection at an interface between

a vacuum and this medium, at normal incidence only. More precisely, in the conditions where

the conductivity is large enough so as to realize an actual ABC [14], the reflection coefficient is

identical to the first order of (1.6). This matched layer ABC has been used mainly in the field

of electromagnetic compatibility, where its performance is close to that of the second-order

Mur ABC.

In summary to this chapter, at the beginning of the 1990’s, there existed various absorbing

boundary conditions. These ABCs were highly effective as long as the waves to be absorbed

were traveling waves. But they were essentially noneffective for the absorption of evanescent

waves. Two novel ABCs introduced in the 1990’s widely improved the simulation of free space

in numerical electromagnetics. The principal reason is that these novel ABCs are able to deal

with evanescent waves. These ABCs are the complementary operator method [6] and the

perfectly matched layer [5].
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C H A P T E R 2

The Two-Dimensional Perfectly
Matched Layer

In this chapter, the perfectly matched layer absorbing boundary condition is introduced in the

two-dimensional (2D) case. The 2D case is simple and important because the absorption of

plane waves by a PML or any other ABC is essentially a 2D problem. With a 3D computational

domain, the interaction of a plane wave with a PML is a true 3D problem in the edge and

corner regions, but it remains a 2D problem in the walls that form most of the outer boundary

of the domain.

2.1 A MEDIUM WITHOUT REFLECTION AT NORMAL AND
GRAZING INCIDENCES

Starting from medium (1.8), a new medium can be obtained by modifying the equations so

as to extend the zero reflection at normal incidence to zero reflection at grazing incidence.

We consider a 2D problem without field variation in z direction, in the TE case where E

field is lying in the (x, y) plane and H field is parallel to z direction. In that case, Eqs. (1.8)

reduce to

ε0
∂Ex

∂t
+ σEx =

∂Hz

∂y
(2.1a)

ε0
∂Ey

∂t
+ σEy = −

∂Hz

∂x
(2.1b)

µ0
∂Hz

∂t
+ σ ∗ Hz =

∂Ex

∂y
−
∂Ey

∂x
. (2.1c)

Between a vacuum and this medium, the reflection coefficient is given by (1.6) with n = 1.

The reflection is zero at normal incidence and total at grazing incidence. Let us now consider
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a fictitious medium obtained from (2.1) by removing conductivity σ in (2.1a) and by splitting

(2.1c) into two new equations as follows:

ε0
∂Ex

∂t
=
∂(Hzx + Hzy )

∂y
(2.2a)

ε0
∂Ey

∂t
+ σEy = −

∂(Hzx + Hzy )

∂x
(2.2b)

µ0
∂Hzx

∂t
+ σ ∗ Hzx = −

∂Ey

∂x
(2.2c)

µ0
∂Hzy

∂t
=
∂Ex

∂y
. (2.2d)

The H field is split into two contributions, called subcomponents, denoted as Hzx and Hzy .

One can consider that the two contributions are also present in (2.1) or in any physical media,

but in the case of (2.2) one subcomponent, Hzx , is absorbed, while the other one, Hzy , is not

absorbed.

The propagation of plane waves in medium (2.2) and the reflection from a vacuum–

medium interface can be predicted without algebraic derivation in two special cases where the

propagation is parallel to the x or y coordinates. To this end, let components Ey and Hz of a

plane wave propagating in x direction be set as an initial condition in the medium, and let us

denote Hz as Hzx . The space derivatives in y direction equal zero, so that the time evolution of

the field in the medium is only governed by (2.2b) and (2.2c). These equations are like (2.1b)

and (2.1c), so that the wave will propagate in medium (2.2) like in medium (2.1), with the same

attenuation, and no Ex nor Hzy components will be generated. If we now consider as an initial

condition a plane wave (Ex , Hzy ) propagating in y direction, the derivatives in x direction

equal zero so that the propagation is only governed by (2.2a) and (2.2d). These equations are

identical to their counterparts in a vacuum. From this, the initial wave will propagate as if the

medium were a vacuum, without attenuation.

Let us now consider the reflection coefficient from a vacuum–medium interface. Assume

that a plane wave propagates in the vacuum in x direction and strikes the interface, that is wave

A in Fig. 2.1. Since a wave without y dependence is governed in (2.2) by the same equations

as in (2.1), the incident wave will penetrate into the medium without reflection. At normal

incidence the reflection coefficient from medium (2.2) equals zero. Consider now an initial field

equal to the field of a plane wave propagating in y direction in a vacuum. Assume this field is set

on both sides of the interface, with Hz denoted as Hzy in the right-hand side medium, that is

wave B in Fig. 2.1. In medium (2.2) this field is governed by (2.2a) and (2.2d) that are identical
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Vacuum

 Wave  A 

 Wave  B

 Medium (2-2)

x

y

x 

y 

0

*

0 µ

σ

ε

σ
=

FIGURE 2.1: Plane waves at normal and grazing incidences with respect to the interface between a

vacuum and medium (2.2)

to the equations in a vacuum. In consequence, wave B is governed by the same equations on

the two sides of the interface. It will remain a plane wave, as if medium (2.2) were not present.

No additional field will be generated on the left-hand side of the interface. Thus, the reflection

coefficient from medium (2.2) equals zero at grazing incidence.

In conclusion, it can be shown without mathematics that the reflection coefficient

from an interface normal to x direction, between a vacuum and medium (2.2), equals zero

at two incidence angles, 0 and 90◦. This is summarized in Fig. 2.2. The derivations in

the next two paragraphs will show that the reflection equals zero at any incidence in the

range 0–90◦.

-1 

1 

0

Reflection  r(θ) 

Incidence angle 90 °45 ° 

Unknown curve

r(0) = 0 

r(90°) = 0

FIGURE 2.2: A simple inspection of Eqs. (2.2) shows that the reflection factor from a vacuum–medium

(2.2) interface is zero at normal and grazing incidences



16 PERFECTLY MATCHED LAYER (PML) FOR COMPUTATIONAL ELECTROMAGNETICS

2.2 THE PML MEDIUM IN THE 2D TE CASE
We now consider a more general medium that holds as a special case the medium (2.2). This

is the PML medium for the 2D TE case:

ε0
∂Ex

∂t
+ σy Ex =

∂(Hzx + Hzy )

∂y
(2.3a)

ε0
∂Ey

∂t
+ σx Ey = −

∂(Hzx + Hzy )

∂x
(2.3b)

µ0
∂Hzx

∂t
+ σ ∗

x Hzx = −
∂Ey

∂x
(2.3c)

µ0
∂Hzy

∂t
+ σ ∗

y Hzy =
∂Ex

∂y
(2.3d)

where parameters σ x , σ ∗
x , σ y , σ ∗

y are homogeneous to electric and magnetic conductivities.

Medium (2.3) reduces to (2.2) in the case where σy = σ ∗
y = 0. Let us now search for plane

wave solutions of (2.3) of the following form:

Ex = E0x e jωt− jkx x− jky y (2.4a)

Ey = E0y e jωt− jkx x− jky y (2.4b)

Hzx = H0zx e jωt− jkx x− jky y (2.4c)

Hzy = H0zy e jωt− jkx x− jky y (2.4d)

where kx and k y are the components of the wave vector, and ω is the angular frequency.

Inserting (2.4) into system (2.3) yields

ωε0

(

1 +
σy

jωε0

)

E0x = −ky (H0zx + H0zy ) (2.5a)

ωε0

(

1 +
σx

jωε0

)

E0y = kx(H0zx + H0zy ) (2.5b)

ωµ0

(

1 +
σ ∗

x

jωµ0

)

H0zx = kx E0y (2.5c)

ωµ0

(

1 +
σ ∗

y

jωµ0

)

H0zy = −ky E0x . (2.5d)
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Let us now define

s x = 1 +
σx

jε0ω
s ∗

x = 1 +
σ ∗

x

jµ0ω
(2.6a)

s y = 1 +
σy

jε0ω
s ∗

y = 1 +
σ ∗

y

jµ0ω
(2.6b)

that will be called the stretching coefficients, for reasons explained later. By denoting as H0z =
H0zx + H0zy the magnitude of the sum Hz = Hzx + Hzy , Eqs. (2.5c) and (2.5d) can merge and

(2.5) can be rewritten as

ωε0 E0x = −
ky

s y
H0z (2.7a)

ωε0 E0y =
kx

s x
H0z (2.7b)

ωµ0 H0z =
kx

s ∗
x

E0y −
ky

s ∗
y

E0x . (2.7c)

Then, by inserting E0x and E0y from (2.7a) and (2.7b) into (2.7c), we obtain

ω2ε0µ0 =
k2

x

s x s ∗
x

+
k2

y

s y s ∗
y

. (2.8)

Solutions of the form (2.4) can exist in the medium (2.3) provided that condition (2.8) holds.

This is the equation of dispersion that connects the angular frequencyω to the possible k vectors

in the 2D PML medium. Notice that (2.8) is like its counterpart in a vacuum, with only kx

replaced with kx/
√

s x s ∗
x and k y replaced with ky/

√

s y s ∗
y . The following wave numbers satisfy

(2.8):

kx =
ω

c

√

s x s ∗
x cos θ (2.9a)

ky =
ω

c

√

s y s ∗
y sin θ (2.9b)

where θ is a free parameter and c is the speed of light. These wave numbers allow the field in

the PML medium to be expressed explicitly. Inserting (2.9) into (2.4), the components of the

field are of the following form, where ψ is either Ex , Ey , Hzx , or Hzy :

ψ = ψ0 e jωte
− j ωc

[√
s x s ∗

x cos θx+
√

s y s ∗
y sin θ y

]

. (2.10)
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If the two couples of conductivities (σ x , σ ∗
x) and (σ y , σ ∗

y ) satisfy the matching condition (1.9),

then s x = s ∗
x and s y = s ∗

y , so that (2.10) becomes

ψ = ψ0 e jωte− j ωc (x cos θ+y sin θ ) e
− σx
ε0 c cos θx

e
− σy
ε0 c sin θ y

. (2.11)

The first two exponentials are identical to the waveform in a vacuum. The phase of the wave

propagates in direction θ with celerity c , as in a vacuum. Two absorbing terms are present.

The magnitude of the wave decreases in x and y directions, according to conductivities σ x

and σ y , respectively. If one conductivity equals zero the wave magnitude is constant in the

corresponding direction. Especially, if σy = 0 the magnitude of the field components does not

depend on the location upon a line perpendicular to x. In consequence, the variations of the

phase and magnitude upon such a line in the PML are like the variations of the phase and

magnitude in a vacuum. This is a necessary condition in view of removing the reflection from

a vacuum–PML interface normal to x. It never holds with physical lossy media.

The components of the field can be expressed explicitly. Using (2.7) and (2.9), and with

E2
0 = E2

0x + E2
0y , where E0 is the E field modulus, we obtain:

E0x = −
1

w

√

s ∗
y

s y
sin θE0 (2.12a)

E0y =
1

w

√

s ∗
x

s x
cos θE0 (2.12b)

H0z =
1

w

√

ε0

µ0
E0 (2.12c)

w =

√

s ∗
x

s x
cos2 θ +

s ∗
y

s y
sin2 θ, (2.12d)

and in addition, using (2.5c) and (2.5d):

H0zx = H0z cos2 θ (2.13a)

H0zy = H0z sin2 θ. (2.13b)

Denoting as H0 the modulus of the H field, that is H0 = H0z, in the case where the matching

condition (1.9) holds for both (σ x , σ ∗
x) and (σ y , σ ∗

y ), we have w = 1 and (2.12c) yields:

E0

H0
=

√

µ0

ε0
, (2.14)



THE TWO-DIMENSIONAL PERFECTLY MATCHED LAYER 19

so that the impedance of the wave is like in a vacuum, and like in the matched medium

(1.8). Moreover, from (2.11), (2.12a), (2.12b), the E field is perpendicular to the direction of

propagation of the phase θ , as in a vacuum. From this, at a vacuum–PML interface normal

to x, if σy = σ ∗
y = 0 the phase and magnitude of E and H fields in the PML can equal the

phase and magnitude of E and H fields in the vacuum, provided that the angles θ in the two

media are equal. Thus, in the interface a transmitted wave can match in a perfect manner any

incident wave. No reflected wave is needed to ensure continuity of the tangential components

of the field in the interface; in other words the reflection coefficient is zero. This is confirmed

by algebraic derivations in the next paragraph.

2.3 REFLECTION OF WAVES FROM A VACUUM–PML
INTERFACE AND FROM A PML–PML INTERFACE

In this paragraph the reflection coefficient is derived for an interface between two PML media.

This includes the case of a vacuum–PML interface since a vacuum is nothing but a special

PML medium where σx = σ ∗
x = σy = σ ∗

y = 0. An absorbing boundary condition surrounding

a computational domain will be composed of vacuum–PML interfaces on the walls of the

domain, and of more general PML–PML interfaces in the corners of the domain. PML–PML

interfaces also will be present in actual use of the PML ABC in numerical methods where

the conductivity will grow from one cell or element to the next, so that there will be inner

PML–PML interfaces within the PML ABC.

Let us consider an interface between two PML media (Fig. 2.3), denoted as PML (σ x1,

σ ∗
x1, σ y1, σ ∗

y1) and PML (σ x2, σ ∗
x2, σ y2, σ ∗

y2). As at an interface between physical media,

PML ),,,( *

11

*

11 yyxx σσσσ  PML ),,,( *

22

*

22 yyxx σσσσ  

π - θ1 

θ1 

θ2

x = 0

1k

rk 2k

y 

x

FIGURE 2.3: An interface between two PML media
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the ratio of the reflected wave to the incident wave, and the ratio of the transmitted wave to

the incident wave, are invariant in the interface. Using (2.4) this results in the equality of the

components of the wave vectors lying in the interface, that is:

ky1 = kyr = ky2 (2.15)

where k y1, k yr , k y2 are the y components of the wave vectors of the incident, reflected, and

transmitted waves, respectively. For the reflected wave, using (2.9b) this yields:

θr = π − θ1 (2.16)

as at any physical interface. From (2.9a) we have then kxr = −kx1. For the transmitted wave,

(2.9b) and (2.15) yield

√

s y1s ∗
y1 sin θ1 =

√

s y2s ∗
y2 sin θ2 (2.17)

Consider now the reflection and transmission between two PML media (2.3). As with

physical media, components Ey and Hz lying in the interface are continuous because their space

derivatives in direction x perpendicular to the interface are used in the governing equations

(2.3). From this, using (2.4) and setting x = 0 in the interface, the following relationships hold

with the magnitudes of the incident, reflected, and transmitted waves:

E0y1 + E0yr = E0y2 (2.18a)

H0z1 + H0zr = H0z2. (2.18b)

Using (2.7b) for replacing H0z with E0y in (2.18b), defining the reflection and transmission

coefficients as r = E0yr/E0y1 and t = E0y2/E0y1, and with kxr = −kx1, the set (2.18) becomes

1 + r = t (2.19a)

s x1

kx1
(1 − r ) =

s x2

kx2
t (2.19b)

from which

r =
s x1kx2 − s x2kx1

s x1kx2 + s x2kx1
. (2.20)

After replacement of kx1 and kx2 with (2.9), we have then

r =

√

s ∗
x2

s x2
cos θ2 −

√

s ∗
x1

s x1
cos θ1

√

s ∗
x2

s x2
cos θ2 +

√

s ∗
x1

s x1
cos θ1

. (2.21)
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Consider the special case where the transverse conductivities σ y and σ ∗
y are equal in the two

PML media, that is s y1 = s y2 and s ∗
y1 = s ∗

y2. Then, from (2.17), we have

θ1 = θ2. (2.22)

This is the Snell–Descartes law at an interface between two PML media whose transverse

conductivities are equal. If in addition we assume that the matching condition (1.9) holds in

both PMLs, that is s x = s ∗
x , reflection (2.21) reduces to

r = 0. (2.23)

Thus, at an interface normal to x between two PML media satisfying the matching condition

(1.9) and whose transverse conductivities (σ y , σ ∗
y ) are equal, the reflection coefficient is zero at

any incidence angle and any frequency. Obviously, that is true at an interface between a vacuum

and a PML (σ x , σ ∗
x, 0, 0). Especially, the medium (2.2) designed so as to be reflectionless at

normal and grazing incidences, as drawn in Fig. 2.2, is reflectionless at all the incidence angles

as well.

In the case where the transverse conductivities of the two PML media are equal, so that

(2.22) holds, if the longitudinal conductivities do not satisfy (1.9) r becomes

r =

√

s x1

s ∗
x1

−
√

s x2

s ∗
x2

√

s x1

s ∗
x1

+
√

s x2

s ∗
x2

. (2.24)

The reflection does not equal zero and depends on frequency, but it does not depend on the

incidence angle. This noteworthy feature has been verified by numerical experiments in [5].

In conclusion to this paragraph, there is no reflection from an interface between two

matched PML media whose transverse conductivities are equal. This also holds in the important

special case of an interface between a vacuum and a PML whose transverse conductivities equal

zero. In the above, only the 2D TE case has been considered. In the 2D TM case, with Ez, Hx ,

H y components in place of Ex , Ey , Hz, a PML can be found in the same way, by splitting Ez

in place of Hz [5]. This PML also produces no reflection from vacuum–PML of PML–PML

interfaces.

2.4 THE PERFECTLY MATCHED LAYER ABSORBING
BOUNDARY CONDITION

The PML medium permits an absorbing boundary condition to be realized to absorb plane

waves on a plane boundary. To this end, let a layer of PML medium be placed between a vacuum

and a perfect electric condition (PEC), as shown in Fig. 2.4. The transverse conductivity is zero

so as to cancel the reflection from the interface. An incident plane wave penetrates into the
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FIGURE 2.4: The PML ABC on a plane boundary

PML where its direction of propagation θ is left unchanged from (2.22). The wave is absorbed

according to the real exponential depending on conductivity σ x in (2.11). The wave is then

reflected back to the vacuum from the PEC condition. Finally, the apparent reflection in the

vacuum is given by the absorption corresponding to path 2δ in the PML, where δ is the PML

thickness:

R(θ ) = e
−2 σx

ε0 c cos θδ
. (2.25)

The set (PML, PEC) in Fig. 2.4 is the PML ABC. Its reflection coefficient (2.25) does not

equal zero despite the zero reflection from the vacuum–PML interface. Several remarks can be

done about this reflection coefficient:

r As with previous ABCs (1.6), R(θ ) tends to unity as the incidence tends to the grazing

incidence. This is not a serious drawback in most problems solved with numerical

methods.

r The reflection R(θ ) can be lowered at will. In some way this could be thought of as

being equivalent to increasing the order of analytical ABCs whose reflection is given

by (1.6).

r Lowering R(θ ) can be achieved either by increasing the thickness of the layer δ or by

increasing the conductivity σ x . In theory the two methods are equivalent. As will be

shown and discussed later, that is not true in actual numerical methods, because sharp

variations of the conductivity in a discrete space result in spurious numerical reflections.

Choosing the conductivity and the thickness of the PML is a major question in
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applications, because contradictory requirements hold. First the thickness of the PML

must be as thin as possible so as to reduce the computational cost, second the variations

of the conductivity must be small enough to reduce the spurious reflection, and thirdly

the theoretical reflection (2.25) must be as small as possible. In actual implementations

of the PML ABC, the conductivity varies in the PML from a small value in the interface

to a larger value on the outer side. Denoting as ρ the coordinate in the direction normal

to the interface, and σ ρ the conductivity in the PML, the reflection coefficient is then:

R(θ ) = [R(0)]cos θ (2.26a)

where R(0) is the reflection a normal incidence:

R(0) = e
−2 1

ε0 c

δ
∫

0

σρ (ρ)dρ
. (2.26b)

The choice of the profile of conductivity σ (ρ) is discussed in detail in Chapter 6 for

the application of the PML ABC to the FDTD method.

In actual problems solved by numerical methods, the boundary of the domain is not a plane, as

in Fig. 2.4, but a concave surface enclosing a computational domain. The PML media allow

such concave ABCs to be realized. This is depicted in Fig. 2.5. The ABC is composed of

various PML media in such a way that the reflection is zero from all the inner interfaces in

the domain. This is the case at the vacuum–PML interfaces, as in Fig. 2.4, where transverse

conductivities equal zero on both sides of the interfaces. This is also the case at the PML–PML

interfaces in the corner regions, where the transverse conductivities of the two PMLs are equal.
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FIGURE 2.5: The PML ABC on the outer boundary of a concave volume
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For instance, the transverse conductivities σ x and σ ∗
x equal σ x2 and σ ∗

x2, respectively, on both

sides of interface BB1.

Since no reflection is produced from the interfaces, the reflection from the walls of

the domain is given by (2.26). In the corner regions the absorption is larger because the

two exponentials in (2.11) are present. In numerical methods, the PML ABC is designed by

considering the absorption in the walls (2.26).

2.5 EVANESCENT WAVES IN PML MEDIA
Solution (2.9) of the wave equation (2.8) is like the solution usually considered in physical

media. In fact, the more general solutions of (2.8) are of the form

kx =
ω

c

√

s x s ∗
x C(χ, θ ) (2.27a)

ky =
ω

c

√

s y s ∗
y S(χ, θ ) (2.27b)

where S(χ , θ ) and C(χ , θ ) are the generalized sine and cosine

C(χ, θ ) = coshχ cos θ + j sinhχ sin θ (2.28a)

S(χ, θ ) = coshχ sin θ − j sinhχ cos θ, (2.28b)

and χ and θ are free parameters, with −∞ < χ < ∞ and 0 < θ < 2π . Notice that C(θ, χ )2 +
S(θ, χ )2 = 1. Two cases are of special interest. First, if cosh χ = 1, then C(θ, χ ) = cos θ

and S(θ, χ ) = sin θ , so that (2.27) reduces to (2.9). This case corresponds to traveling waves

propagating in direction θ with respect to the x-axis. Second, if cos θ = 1, then C(θ, χ ) =
coshχ and S(θ, χ ) = − j sinh χ . By inserting kx and k y into (2.4), and by assuming that the

matching condition (1.9) holds in the PML, the field components are of the form

ψ = ψ0 e
jω

[

t− coshχ
c x+ σy

ε0 cω sinhχ y
]

e− ω
c sinhχ y e

− σx
ε0 c coshχx

. (2.29)

In the special case σx = σy = 0, this waveform reduces to the well-known wave propagating

in x direction and evanescent in y direction. In the PML, additional terms are present in the

phase and in the absorption.

Let us now consider the general solution (2.27), with any χ and θ . This will yield

nonuniform waves having any direction of propagation and any direction of evanescence with

respect to the coordinate axes, and then with respect to PML media perpendicular either to x

or y . Let us assume that (1.9) holds and that the PML is perpendicular to x with σy = σ ∗
y = 0,

i.e., s x = s ∗
x and s y = s ∗

y = 1. From (2.27) the components of the wave are of the form

ψ = ψ0 e
jω

[

t− coshχ
c (x cos θ+y sin θ )− σx

ε0 cω sinhχ sin θx
]

e− ω
c sinhχ (y cos θ−x sin θ )e

− σx
ε0 c coshχ cos θx

. (2.30)
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FIGURE 2.6: Direction of phase propagation X and direction of evanescence Y

Using the system of coordinates (X, Y ) forming an angle θ with respect to the (x, y) system

(Fig. 2.6), Eq. (2.30) can be rewritten as

ψ = ψ0 e
jω

[

t− coshχ
c X− σx

ε0 cω sinhχ sin θx
]

e− ω
c sinhχY e

− σx
ε0 c coshχ cos θx

. (2.31)

In (2.31) the exponential terms depending on X and Y are exactly the waveform of a wave

propagating in X direction and evanescent in Y direction in a vacuum. Two additional terms

depending on x and σ x are present: first a phase term, second an absorbing term. It is worth

noticing from (2.31) that:

r The evanescent waves are absorbed in the PML medium, due to the last exponential

in (2.31). The absorption is larger than that of traveling waves, because coshχ > 1 for

evanescent waves instead of coshχ = 1 for traveling waves. As will be discussed later,

this may result in a spurious reflection from PMLs in numerical methods, because for

strongly evanescent waves (coshχ ≫ 1) the absorption is enormous.

r The absorption of evanescent waves whose direction of propagation is parallel to the

interface and direction of evanescence is perpendicular to the interface, that is θ = ±
π/2 in (2.31), are not absorbed. This is a drawback in some applications, as will be

illustrated in Chapter 6 with waveguide problems.

r The phase of evanescent waves depends on frequency, due to the term depending on σ x

in the first exponential of (2.31). For strongly evanescent waves (sinhχ ≫ 1) the phase

may rapidly vary with distance at low frequency. Again, this may result in spurious

reflections in numerical methods.

Let us now consider the components of the field in the PML medium. They are identical

to (2.12) and (2.13), with only the replacement of cosθ and sinθ with C(χ , θ ) and S(χ , θ ). If
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the matching condition (1.9) holds, in the (X, Y ) coordinates defined in Fig. 2.6 the H field

(2.12c) is left unchanged while the E components become:

E0X = j sinhχE0 (2.32a)

E0Y = coshχE0, (2.32b)

that are nothing but the components of a wave propagating in X direction and evanescent in

Y direction in a vacuum. Thus, in a PML perpendicular to x, i.e., if σy = 0, evanescent waves

are like in a vacuum, with only the addition of phase and absorbing terms depending on x.

Consider now an interface between two PML media, with a nonuniform wave propagat-

ing from medium 1 toward medium 2. We assume in the following that the matching condition

(1.9) holds in both two media. The components of the wave vectors of the incident, reflected,

and transmitted waves are equal in the interface, i.e., (2.15) holds. Using (2.27b) this yields

S(χ r , θ r ) = S(χ1, θ1), and if in addition the transverse conductivities σ y are equal, S(χ2, θ2) =
S(χ1, θ1), where χ r , θ r , χ2, θ2 are the unknown χ and θ of the reflected and transmitted waves.

By solving for the unknowns χ and θ the equation S(χ , θ ) = S(χ1, θ1), which is equivalent to

two real equations (real and imaginary parts), the following two solutions corresponding to the

reflected and transmitted waves are obtained:

χr = −χ1 θr = π − θ1 (2.33a)

χ2 = χ1 θ2 = θ1. (2.33b)

These equations are the generalization of (2.16) and (2.22) to nonhomogeneous waves. From

(2.27a) and (2.33a) we have kxr = − kx1, as with traveling waves. From (2.33b) the evanescence

coefficient coshχ and the direction of propagation θ are left unchanged through PML–PML

or vacuum–PML interfaces.

The reflection coefficient can be found by enforcing the continuity of components Ey and

Hz lying in the interface. This yields (2.18). Using (2.7b), Eqs. (2.19) and (2.20) are obtained.

Then, with (2.27a) reflection (2.21) is obtained with C(χ1, θ1) and C(χ2, θ2) in place of cosθ1

and cosθ2. Finally, provided that (1.9) holds and the transverse conductivities are equal, so that

(2.33b) holds, we have

r = 0. (2.34)

In summary to this paragraph, evanescent waves are not reflected from the interface between a

vacuum and a PML medium, or more generally from the interface between two PML media

whose transverse conductivities are equal. In the PML such waves are absorbed according to

the coefficient in (2.30) and (2.31). This PML attenuation is added to the natural decrease of
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evanescent waves. Finally, in a PML we can write:

|ψPML| = |ψvacuum| e
− σx
ε0 c coshχ cos θx

, (2.35)

where ψvacuum is the waveform in a vacuum. The absorption is larger than the absorption of

purely traveling waves that correspond to the special case coshχ = 1 in (2.35). The coefficient

in (2.35) is of primary importance for the interpretation of the spurious reflection from PML

ABCs in numerical methods [15].
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C H A P T E R 3

Generalizations and Interpretations
of the Perfectly Matched Layer

In this chapter, the perfectly matched layer absorbing boundary condition is generalized to

three dimensions and to more general physical media. The first part is devoted to the 3D

PML in the case where the inner medium is filled with a vacuum. The second part presents

two interpretations of the PML medium, in terms of stretched coordinates and in terms

of dependent currents. In the third part the PML is generalized to other physical media,

especially to anisotropic media. The fourth part addresses the case where the inner medium is

nonhomogeneous. In the fifth part the absorbing medium called uniaxial PML is presented.

Finally, the sixth part introduces the CFS-PML medium obtained from the normal PML

medium by means of a modification of the stretching coefficient.

3.1 THE THREE-DIMENSIONAL PML MATCHED TO A VACUUM
As discussed in the previous chapter about the 2D case, the absence of reflection from a vacuum–

PML interface is closely related to the fact that plane waves in the PML can propagate without

attenuation in the direction parallel to the interface. In 3D, a similar property can be obtained

by a straightforward generalization of Eqs. (2.3). The six components of the field are split into

12 subcomponents and the six Cartesian equations are split into 12 subequations, with two

independent conductivities assigned to the two subequations resulting from each equation:

ε0
∂Exy

∂t
+ σy Exy =

∂(Hzx + Hzy )

∂y
(3.1a)

ε0
∂Exz

∂t
+ σzExz = −

∂(Hyz + Hyx)

∂z
(3.1b)

ε0
∂Eyz

∂t
+ σzEyz =

∂(Hxy + Hxz)

∂z
(3.1c)

ε0
∂Eyx

∂t
+ σx Eyx = −

∂(Hzx + Hzy )

∂x
(3.1d)
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ε0
∂Ezx

∂t
+ σx Ezx =

∂(Hyz + Hyx)

∂x
(3.1e)

ε0
∂Ezy

∂t
+ σy Ezy = −

∂(Hxy + Hxz)

∂y
(3.1f)

µ0
∂Hxy

∂t
+ σ ∗

y Hxy = −
∂(Ezx + Ezy )

∂y
(3.1g)

µ0
∂Hxz

∂t
+ σ ∗

z Hxz =
∂(Eyz + Eyx)

∂z
(3.1h)

µ0
∂Hyz

∂t
+ σ ∗

z Hyz = −
∂(Exy + Exz)

∂z
(3.1i)

µ0
∂Hyx

∂t
+ σ ∗

x Hyx =
∂(Ezx + Ezy )

∂x
(3.1j)

µ0
∂Hzx

∂t
+ σ ∗

x Hzx = −
∂(Eyx + Eyz)

∂x
(3.1k)

µ0
∂Hzy

∂t
+ σ ∗

y Hzy =
∂(Exy + Exz)

∂y
. (3.1l)

By inserting a plane wave solution in (3.1), with subcomponents of the form

ψ = ψ0 e jωte− j kx x− j ky y− j kzz, (3.2)

and by defining s u and s ∗
u as

su = 1 +
σu

jωε0
; s ∗

u = 1 +
σ ∗

u

jωµ0
(u = x, y, z), (3.3)

we obtain 12 equations connecting the angular frequency ω, the wave numbers kx , k y , kz, and

the magnitudes of the subcomponents E0xy , E0xz, . . . ., H0zx , H0zy . For example, the first two

Eqs. (3.1a) and (3.1b) yield

ε0 s y E0xy = − jky (H0zx + H0zy ) (3.4a)

ε0 s z E0xz = jkz(H0yz + H0yx). (3.4b)

Dividing (3.4a) and (3.4b) with s y and s z, respectively, and with E0x = E0xy + E0xz, H0z =
H0zx + H0zy , and H0y = H0yz + H0yx , the two Eqs. (3.4) can be merged into a single equation.

By proceeding similarly with the other five couples of equations derived from (3.1c)–(3.1l), the
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following set is obtained:

ωε0 E0x = −
ky

s y
H0z +

kz

s z
H0y (3.5a)

ωε0 E0y = −
kz

s z
H0x +

kx

s x
H0z (3.5b)

ωε0 E0z = −
kx

s x
H0y +

ky

s y
H0x (3.5c)

ωµ0 H0x =
ky

s ∗
y

E0z −
kz

s ∗
z

E0y (3.5d)

ωµ0 H0y =
kz

s ∗
z

E0x −
kx

s ∗
x

E0z (3.5e)

ωµ0 H0z =
kx

s ∗
x

E0y −
ky

s ∗
y

E0x . (3.5f)

Let us now define two vectors ks and k∗
s as follows:

−→
ks = (kx/s x, ky/s y , kz/s z)

T (3.6a)

−→
k∗

s = (kx/s ∗
x , ky/s ∗

y , kz/s ∗
z )T. (3.6b)

Then, (3.5) can be rewritten as

ε0ω
−→
E0 = −

−→
ks ×

−→
H0 (3.7a)

µ0ω
−→
H0 =

−→
k∗

s ×
−→
E0 (3.7b)

where E0 and H0 are vectors of components E0x , E0y , E0z, and H0x , H0y , H0z, respectively.

System (3.7) is like its counterpart in a vacuum, with vectors (3.6) in place of the wave vector k.

Notice that E and H fields are perpendicular from (3.7), as in a vacuum. Using H0 from (3.7b)

into (3.7a) yields

ε0µ0ω
2−→E0 = −

−→
ks × (

−→
k∗

s ×
−→
E0) (3.8)

that can be rewritten as

ε0µ0ω
2−→E0 = −

(−→
ks ·

−→
E0

)

·
−→
k∗

s +
(−→

ks ·
−→
k∗

s

)

·
−→
E0. (3.9)

From (3.7a) ks is perpendicular to E field, so that
(

ε0µ0ω
2 −

−→
ks ·

−→
k∗

s

) −→
E0 = 0. (3.10)
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This yields the following equation of dispersion,

ε0µ0ω
2 =

k2
x

s x s ∗
x

+
k2

y

s y s ∗
y

+
k2

z

s z s ∗
z

, (3.11)

which is the generalization of (2.8). Wave numbers satisfying (3.11) can be written in the form:

kx =
ω

c

√

s x s ∗
x sin θ cosϕ (3.12a)

ky =
ω

c

√

s y s ∗
y sin θ sinϕ (3.12b)

kz =
ω

c

√

s z s ∗
z cos θ (3.12c)

where θ and ϕ are free parameters.

Let us now assume that the matching condition (1.9) holds for the three couples of

conductivities of the PML medium. Then, from (3.3) and (3.6) we have ks = k∗
s , and from

(3.7) ks is perpendicular to E and H . Moreover, using (3.11) and (3.7a) or (3.7b) leads to (2.14),

i.e., the impedance is matched to that of a vacuum. And finally, (3.12) shows that ks is oriented

in direction (θ, ϕ), so that the (E, H) plane is perpendicular to direction (θ, ϕ).

Using now (3.2) and (3.12), any component or subcomponent is of the form

ψ = ψ0 e jωt e− j ωc (x sin θ cosϕ+y sin θ sinϕ+z cos θ ) e
− σx
ε0 c sin θ cosϕx

e
− σy
ε0 c sin θ sinϕy

e
− σz
ε0 c cos θz

. (3.13)

From this, the phase propagates in direction (θ , ϕ) with celerity c , as in a vacuum. Denoting

as ηx , ηy , ηz, the angles that direction (θ , ϕ) forms with the axes of coordinates, (3.13) can be

rewritten in a more symmetric form with respect to the directions of space:

ψ = ψ0 e jωt e− j ωc (x cos ηx+y sin ηy +z cos ηz) e
− σx
ε0 c cos ηx x

e
− σy
ε0 c cos ηy y

e
− σz
ε0 c cos ηz z

. (3.14)

Equations (3.13) or (3.14) show that the attenuation in the 3D PML can be controlled at will

in the three directions. As an example, the attenuation in x and y directions can be vanished by

choosing σ x = σ y = 0. In such a case the phase propagates as in a vacuum, E and H fields are

perpendicular to the direction of propagation of the phase, and the wave is only attenuated in

z direction. In that case, at a vacuum–PML interface perpendicular to z the transmitted wave

can be perfectly matched to the incident wave, so that no reflected wave is needed to satisfy

continuity of E and H fields in the interface.

To prove mathematically the absence of reflection from a PML–PML interface, let us

consider an interface perpendicular to z. The equality of the wave numbers in the interface can
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be expressed as:

kx1 = kxr = kx2 (3.15a)

ky1 = kyr = ky2 (3.15b)

where indexes 1, r , and 2 denote the incident, reflected, and transmitted waves, respectively.

From (3.12a), (3.12b), (3.15), the direction of the reflected wave (θ > π/2) is

ϕr = ϕ1 and θr = π − θ1 (3.16)

as at any physical interface. In addition, from (3.12c) we have kzr = −kz1. For the wave

transmitted into the PML (θ < π/2), (3.12a), (3.12b), (3.15) yield
√

s x1s ∗
x1 sin θ1 cosϕ1 =

√

s x2s ∗
x2 sin θ2 cosϕ2 (3.17a)

√

s y1s ∗
y1 sin θ1 sinϕ1 =

√

s y2s ∗
y2 sin θ2 sinϕ2. (3.17b)

Assume now that the incident field is polarized in such a way that the E field is perpendicular

to z direction (E parallel to the interface). Only components Ex and Ey are present. Continuity

of the field components lying in the interface (x = 0) yields

E0x1 + E0xr = E0x2 (3.18a)

E0y1 + E0yr = E0y2 (3.18b)

H0x1 + H0xr = H0x2 (3.18c)

H0y1 + H0yr = H0y2. (3.18d)

Moreover, using (3.7b) and E0z = 0 we have in both media:

H0x =
−k∗

s zE0y

µ0ω
(3.19a)

H0y =
k∗

s zE0x

µ0ω
. (3.19b)

This allows the H field to be replaced with the E field in (3.18c) and (3.18d). Using then (3.6)

and kzr = −kz1, Eqs. (3.18c) and (3.18d) become

kz1

s ∗
z1

E0y1 −
kz1

s ∗
z1

E0yr =
kz2

s ∗
z2

E0y2 (3.20a)

kz1

s ∗
z1

E0x1 −
kz1

s ∗
z1

E0xr =
kz2

s ∗
z2

E0x2. (3.20b)
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If we define the reflection and transmission coefficients as rx = E0xr/E0x1, r y = E0yr/

E0y1, tx = E0x2/ E0x1, ty = E0y2/E0y1, Eqs. (3.18a), (3.18b), (3.20) can be rewritten as

1 + rx = tx (3.21a)

1 + r y = ty (3.21b)

kz1s ∗
z2(1 − rx) = kz2s ∗

z1tx (3.21c)

kz1s ∗
z2(1 − r y ) = kz2s ∗

z1ty . (3.21d)

This system yields r x = r y and tx = t y . Denoting then as r s the common value of the reflection,

i.e., r s = r x = r y , we have

rs =
kz1s ∗

z2 − kz2s ∗
z1

kz1s ∗
z2 + kz2s ∗

z1

, (3.22)

and with (3.12c):

rs =
√

s z1/s ∗
z1 cos θ1 −

√

s z2/s ∗
z2 cos θ2

√

s z1/s ∗
z1 cos θ1 +

√

s z2/s ∗
z2 cos θ2

. (3.23)

Assume now that the transverse conductivities σ x and σ y are equal on the two sides of the

interface. Then, (3.17) reduces to

ϕ1 = ϕ2 and θ1 = θ2. (3.24)

The direction of propagation of the phase is left unchanged at the interface between two PML

media having the same transverse losses. If in addition the matching condition (1.9) holds for

the longitudinal conductivity σ z, then (3.23) becomes

rs = 0. (3.25)

If we now consider the polarization with H field perpendicular to z direction (H parallel to the

interface), a derivation similar to the previous one yields the following reflection coefficient in

place of (3.22):

r p =
kz2s z1 − kz1s z2

kz2s z1 + kz1s z2
. (3.26)

Notice that (3.26) is identical to (2.20), because the H field is also parallel to the interface in the

2D TE case. In the case of matched PML media with the same transverse conductivities, using

(3.12) and (3.17) in (3.26) also leads to zero reflection from 3D interfaces, that is r p = 0. Finally,
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FIGURE 3.1: The three-dimensional PML absorbing boundary condition

since any polarization of the incident wave can be split into two nonparallel polarizations, r = 0

for any incident wave.

In summary, in the general 3D case no reflection is produced from the interface between

two PML media whose transverse conductivities are equal and whose conductivities satisfy the

matching condition (1.9).

3.2 THE THREE-DIMENSIONAL PML ABSORBING BOUNDARY
CONDITION

The 3D PML ABC is a trivial generalization of the 2D one. In the PML matched to a vacuum,

the transverses conductivities equal zero and (1.9) holds for the longitudinal conductivities. The

PML is bounded with a PEC condition, as in Fig. 2.4. Denoting asρ the direction perpendicular

to the interface and σ ρ the conductivity in this direction, from (3.14) the reflection from a PML

of thickness δ with a conductivity depending on ρ is given by (2.26).

On the outer boundary of a concave computational domain, PML media with transverse

conductivities equal to zero are set on the six walls, so as to cancel the reflection from the

vacuum–PML interfaces. In the edge and corner regions, the conductivities are chosen as

depicted in Fig. 3.1. This allows the transverse conductivities to be equal at all the PML–PML

interfaces, so that no reflection is produced from these inner interfaces. For example, in the

corner shown in Fig. 3.1, through the interface between the PML (σx2, σ ∗
x2, 0, 0, σz2, σ ∗

z2)

and the PML (σx2, σ ∗
x2, σy2, σ ∗

y2, σz2, σ ∗
z2), the transverse conductivities σx and σz are equal,

ensuring then zero reflection.
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3.3 INTERPRETATION OF THE PML MEDIUM IN TERMS OF
STRETCHED COORDINATES

Different interpretations and formulations of PML media have been presented and discussed

in the literature. The most important and useful is the interpretation in terms of stretched

coordinates. This interpretation facilitates the extension of the PML concept to more general

media and to other partial differential equations of physics.

Let us consider subequations (3.1a) and (3.1b). By replacing the time derivatives with j

ω and by adding these two subequations, a unique equation is obtained, with components Ex ,

H y , Hz in place of the subcomponents. Merging similarly the other five sets of subequations

results in the following six equations that are equivalent to (3.1) for the considered angular

frequency ω:

jω ε0 Ex =
1

s y

∂Hz

∂y
−

1

s z

∂Hy

∂z
(3.27a)

jω ε0 Ey =
1

s z

∂Hx

∂z
−

1

s x

∂Hz

∂x
(3.27b)

jω ε0 Ez =
1

s x

∂Hy

∂x
−

1

s y

∂Hx

∂y
(3.27c)

jωµ0 Hx = −
1

s ∗
y

∂Ez

∂y
+

1

s ∗
z

∂Ey

∂z
(3.27d)

jωµ0 Hy = −
1

s ∗
z

∂Ex

∂z
+

1

s ∗
x

∂Ez

∂x
(3.27e)

jωµ0 Hz = −
1

s ∗
x

∂Ey

∂x
+

1

s ∗
y

∂Ex

∂y
(3.27f)

where s and s ∗ parameters are coefficients (3.3) and field components are the sum of the

corresponding subcomponents in (3.1), for instance Ex = Exy + Exz and Hz = Hzx + Hzy .

Consider now coefficients s y and s z that may vary with y and z, and let the following change

of variables be defined as

d y ′ = s y (y)d y d z′ = s z (z)d z, (3.28)

or equivalently:

y ′ =
y2

∫

y1

s y (y)d y z′ =
z2

∫

z1

s z(z)d z (3.29)
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that corresponds to a stretch of coordinates, where y1, y2, z1, z2 are the limits of the stretched

region. Then, Eq. (3.27a) can be rewritten as:

jωε0 Ex =
∂Hz

∂y ′ −
∂Hy

∂z′ (3.30)

which is nothing but the x component of the Maxwell–Ampere equation in a vacuum, in

the stretched coordinates defined with (3.28). Applying the same procedure to the other five

equations of (3.27), the PML medium can be regarded as a vacuum where the coordinates are

stretched with the complex factors (3.3). In the general case, the stretching factors are different

for the Maxwell–Ampere and Maxwell–Faraday equations. If the PML medium is matched

the stretching factors are the same for the two equations. The stretching factors of the three

directions of space can be different. Especially, if two conductivities equal zero (σx = σy = 0

for example), only the third direction is stretched (z in this example). This is the case in the

walls of a computational domain where the PML is equivalent to a stretch of the coordinate

perpendicular to the interface. Notice that the stretch of distances is consistent with Eqs. (3.5).

Here the wave numbers are stretched with the inverse of coefficients (3.3). This corresponds to

a stretch of wavelengths with factors (3.3).

With the interpretation in terms of stretched coordinates, the required condition for the

absence of reflection from a vacuum–PML can be reformulated. The coordinates must only

be stretched in the direction perpendicular to the interface. More generally, at a PML–PML

interface the transverse stretches must be identical on the two sides of the interface, an extra

stretch can only be added in the direction normal to the interface.

The interpretation of the PML medium in terms of stretched coordinates was initially

presented in [16], [17], and [18]. In [16], the PML medium is described by a formalism derived

from this interpretation.

3.4 INTERPRETATION IN TERMS OF DEPENDENT CURRENTS
The time domain equations of the PML (3.1) are known as the split equations or the split PML,

because these 12 equations are obtained by splitting the six components of the Maxwell equa-

tions. Other formulations without splitting have been found, such as the unsplit formulation

[18, 19]. To derive this formulation, let us rewrite for example (3.27b) as

jωε0 s z s x Ey = s x
∂Hx

∂z
− s z

∂Hz

∂x
. (3.31)

In the special case where σy = σz = 0 (wall PML perpendicular to x) this yields in time domain:

ε0
∂Ey

∂t
+ σx Ey =

∂Hx

∂z
−
∂Hz

∂x
+
σx

ε0

∂

∂z

∫

Hx dt′. (3.32)
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Similar equations can be derived from (3.27) for the time derivatives of Ez, H y , Hz. The

equations for Ex and Hx are like in a vacuum. With time domain numerical methods, these

equations can be used for the advance on time of the six components of the field in the PML.

From a physical point of view, Eq. (3.32) shows that a wall PML medium—having only

one nonzero conductivity—can be regarded as a physical lossy medium with dependent electric

and magnetic current densities [19] proportional to the integral of the longitudinal components

of the field (Ex and Hx in a PML perpendicular to x). This allows computational codes to

deal with the six components of the fields, but with two additional quantities corresponding to

integrals like the one in (3.32).

3.5 THE PML MATCHED TO GENERAL MEDIA
In the previous chapters, we only considered PML media matched to a vacuum. These PMLs

can only be used to absorb outgoing waves on the boundary of computational domains sur-

rounded with a vacuum. This is the case in many applications of computational electromagnet-

ics, but in some other cases it is worth setting the PML within a medium that may be lossy or

anisotropic. In the following, the PML medium is generalized to PML media matched to any

physical media. This is done in frequency domain. The corresponding time domain equations

are derived in the next chapter.

A trivial generalization is the PML matched to dielectric media. In that case, by replacing

ε0 with ε in the previous paragraphs, the derivations are left unchanged and the conclusions

are the same. No reflection is produced from the interface between a dielectric of permeability

ε and a PML governed by Eqs. (3.1) or (3.7) with ε0 replaced with ε. This also holds if µ0 is

replaced with µ. In the case where ε0 or µ0 are replaced with complex numbers ε or µ in (3.7),

the derivations following (3.7) remain valid. From this, the frequency domain equations of a

PML matched to any isotropic medium can be obtained by stretching the coordinates, as in

the case of a vacuum.

In the case of anisotropic media, either lossy or not, a frequency-domain PML can

also be obtained by stretching the coordinates. This can be proved, rigorously. To this end,

let us consider an electrically and magnetically anisotropic medium where permittivity ε and

permeability µ are real or complex tensors. In frequency and wave vector domains, the Maxwell

equations read

ωε
−→
E0 = −

−→
k ×

−→
H0 (3.33a)

ωµ
−→
H0 =

−→
k ×

−→
E0. (3.33b)

Assume now that the coordinates are stretched by factors like (3.3). As in a vacuum, the stretch

consists in using transformation (3.28) in the derivatives of the curls of the Maxwell equations.
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We assume that the electric and magnetic stretches are equal, that is the matching condition

(1.9) holds. This results in the following equations that replace (3.33), with ks vector (3.6) in

place of k vector:

ωε
−→
E0 = −

−→
ks ×

−→
H0 (3.34a)

ωµ
−→
H0 =

−→
ks ×

−→
E0. (3.34b)

The equation of dispersion obtained by combining the two Eqs. (3.34) is identical to that

obtained from Eqs. (3.33), with ks in place of k. From this, ks in any stretched medium is

identical to k in the corresponding nonstretched medium. This can be written as:

−→
ks

∣

∣

∣

PML
≡

−→
k

∣

∣

∣

medium
(3.35)

where ≡ means that the two vectors are solutions of the same equation of dispersion. In the

special case where the PML is only stretched in z direction, we have

kx |PML ≡ kx |medium (3.36a)

ky

∣

∣

PML
≡ ky

∣

∣

medium
(3.36b)

kz|PML ≡ s z kz|medium . (3.36c)

The phase and attenuation in x and y directions are like in the anisotropic medium. Conversely,

the complex stretch s z attenuates the wave in z direction. This attenuation is added to the

physical attenuation if the anisotropic medium is lossy.

Consider now the reflection from a medium–PML interface perpendicular to z, with

stretch only in z direction within the PML. The equality of transverse wave numbers (3.15)

also holds, so that k1x = k2x = k s 2x and k1y = k2y = k s 2y , where k1 is the wave vector of the

incident wave in the anisotropic medium, and ks2 is the ks vector of the wave transmitted into

the PML. Since k1 and ks2 are solutions of the same equation of dispersion, as expressed by

(3.35), their third components k1z and k s 2z are equal. Then, we have

−→
ks 2 =

−→
k1 . (3.37)

The transverse fields are continuous across the interface, so that in the case where the incident

E field is perpendicular to z direction, set (3.18) also holds. To derive the reflection coefficient,

H field is replaced with E field in (3.18c) and (18.d) by using the Maxwell equations in the

two media. Consider for instance (3.18c). Using (3.33b) and (3.34b), and replacing ks2 with k1

from (3.37) on the right-hand side, we obtain:
[

µ
−1−→

k1 ×
−→
E01

]

x
+

[

µ
−1−→

kr ×
−→
E0r

]

x
=

[

µ
−1−→

k1 ×
−→
E02

]

x
(3.38)
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where kr is the wave vector of the reflected wave. This equation is nothing but the equation

that would be obtained if the media on the two sides of the interface were identical. This also

holds with the equation derived from (3.18d). Finally, the system (3.18) that gives the reflected

field E0r is like at an interface between two identical media. From this, for the considered

polarization, there is no reflection between any anisotropic medium and its PML counterpart

obtained by stretching the coordinate perpendicular to the interface. The same conclusion also

holds with the other polarization, where the H field is perpendicular to z.

Obviously, the absence of reflection also holds in the more general case of an interface

between two PML media obtained by stretching the same anisotropic medium, provided that

the transverse stretches of coordinates are the same in the two media. In that case, ks vectors in

the two PMLs are identical, in place of (3.35), and ks1 replaces k1 in (3.37). This yields a set of

four Eqs. (3.18) like at an interface between two identical PML media.

The time domain equations corresponding to the frequency domain PML (3.34) are

derived in Chapter 4 for lossy, anisotropic, and dispersive media.

3.6 THE PML MATCHED TO NONHOMOGENEOUS MEDIA
In some applications of numerical methods, a PML is needed on the boundary of a compu-

tational domain composed of several media. In this paragraph, we consider the case where a

PML is set perpendicularly to the interface between two physical media, as shown in Fig. 3.2.

For example, this is the case in computational domains that extend both in the air and in the

ground.

PML 2 

x 

z

kar

kr , ksr 

k1 , ks1

k2 , ks2

ka2 

ka1 

ka1

 Medium 1 

Medium 2 

PML 1

FIGURE 3.2: PML for nonhomogeneous media
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We assume that two general anisotropic media are separated with an interface normal to

x, and that two PMLs perpendicular to z have been obtained by stretching the z coordinate

with the same factor s z. Let us consider an incident wave in medium 1 with wave vector ka1.

Relationship (3.37) holds for ka1 and the ks vector of the wave transmitted into PML 1, with

only changes in notations. Here

−→
ks 1 =

−→
ka1. (3.39)

At the interface between PML 1 and PML 2, we have k1y = kr y = k2y and k1z = kr z = k2z.

From this ks 1y = ks r y = ks 2y , and since the stretch of z is the same in the two PMLs, ks 1z =
ks r z = ks 2z. Finally, using (3.39)

ks 2y = ks r y = ka1y ks 2z = ks r z = ka1z. (3.40)

Consider now the wave transmitted in medium 2, with wave vector ka2. Equality of the

components of the k vectors in the interface between the two media yields

ka2y = kar y = ka1y ka2z = kar z = ka1z. (3.41)

Thus, from (3.40) and (3.41) two components of ka2 and ks2 are equal, so that the third

components are also equal from (3.35). This holds for the reflected wave as well, and finally we

can write

−→
ks r =

−→
kar

−→
ks 2 =

−→
ka2. (3.42)

Consider now the continuity of transverse components at the interface between PML 1 and

PML 2. For the E polarization perpendicular to x direction, the set (3.18) holds with z

coordinate in place of x because the interface is perpendicular to x instead of z. Using (3.34),

Eq. (3.18d) becomes
[

µ1
−1−→

ks 1 ×
−→
E01

]

y
+

[

µ1
−1−→

ks r ×
−→
E0r

]

y
=

[

µ2
−1−→

ks 2 ×
−→
E02

]

y
(3.43)

that can be rewritten with (3.39) and (3.42):
[

µ1
−1−→

ka1 ×
−→
E01

]

y
+

[

µ1
−1−→

kar ×
−→
E0r

]

y
=

[

µ2
−1−→

ka2 ×
−→
E02

]

y
. (3.44)

This is the equation that would be obtained at the interface between the nonstretched media

1 and 2. This also holds for the z component of (3.18). Finally (3.18) yields a set of equations

identical to the set corresponding to the interface between the two nonstretched media. The

conclusion is that the reflection coefficient between the two PMLs equals the reflection coef-

ficient between the two media. This also holds for the transmission coefficient, and obviously

for the other polarization of the incident wave as well.
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In summary, in a nonhomogeneous computational domain like the one in Fig. 3.2,

continuity of the reflection and transmission coefficients between media of the inner domain is

ensured within the PML. This means that the reflected and transmitted waves are continuous

at the inner domain–PML interface. No spurious field is produced. The simulation of free space

is perfect in the presence of the media interface, provided that the two PMLs are stretched

with the same factor.

3.7 THE UNIAXIAL PML MEDIUM
With the split PML (3.1) the equations governing the medium differ from the Maxwell

equations, the PML is termed as nonMaxwellian in the literature. This renders its imple-

mentation difficult in such numerical methods as the finite element method. To overcome

this problem, other formulations were developed like the one reported in Section 3.4. But

the most popular unsplit PML is the uniaxial PML initially presented in [20] for use with

the finite element method (FEM). This is an anisotropic Maxwellian medium where the field

differs from that in the initial PML by a scale factor, but whose nonreflecting absorption is

preserved.

The uniaxial PML can be derived from the PML (3.5) by means of the following change

of variables:

E′
0x = s x E0x E′

0y = s y E0y E′
0z = s z E0z (3.45a)

H′
0x = s ∗

x H0x H′
0y = s ∗

y H0y H′
0z = s ∗

z H0z. (3.45b)

With this, Eq. (3.5a) becomes

ωε0
1

s x
E′

0x = −
1

s y s ∗
z

ky H′
0z +

1

s z s ∗
y

kz H′
0y . (3.46)

If the matching condition holds, s x = s ∗
x , s y = s ∗

y , s z = s ∗
z , so that (3.46) can be rewritten as

ωε0
s y s z

s x
E′

0x = −ky H′
0z + kz H′

0y . (3.47)

Similar equations are found from the other five equations of (3.5). The resulting system can be

rewritten as:

ωε0εs

−→
E′

0 = −
−→
k ×

−→
H′

0 (3.48a)

ωµ0µs

−→
H′

0 =
−→
k ×

−→
E′

0 (3.48b)
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where tensors εs and µs read:

εs = µs =















s y s z

s x
0 0

0
s z s x

s y
0

0 0
s x s y

s z















. (3.49)

Equations (3.48) are the frequency domain Maxwell equations of an anisotropic medium of

permittivity and permeability (3.49), called the uniaxial PML medium. Equations (3.48) can

be used in a natural way with the frequency domain finite element method [21]. Time domain

equations will be derived in the next chapter.

The absence of reflection from an interface located between two split PMLs whose

transverse conductivities are equal is preserved with the uniaxial PML. In a computational

domain surrounded with a PML ABC, the fields computed with the split PML (3.1) and

with the uniaxial PML are identical in the inner domain, while in the PMLs they differ with

ratios equal to the scaling factors in (3.45). The split PML is a stretch of coordinates while the

uniaxial PML is a stretch of fields.

3.8 THE COMPLEX FREQUENCY SHIFTED PML
In the previous paragraphs, the stretching factors always are assumed of the form (3.3). In fact,

the absence of reflection from a vacuum–PML interface, or more generally from PML–PML

interfaces, also holds with any stretching factor. This is because the derivations in (3.15)–(3.25),

and later with more general media, are valid with any s x , s y , s z. What is required is only that

the transverse stretches are equal on the two sides of the interface, and that the electric and

magnetic stretches are equal, i.e., su = s ∗
u for u = x, y , z. From this, any other stretching factor

can be envisaged in PMLs. Obviously, a requirement is that the stretching factor renders the

PML lossy.

The simplest stretching factor is a real constant. Such a pure real stretch of the coordinate

perpendicular to the interface produces no absorption. It has been used implicitly in the past

in FDTD computer codes where the cells were stretched so as to move away the ABC while

letting unchanged the overall number of cells (see the discussion on the location of traditional

ABCs in Chapter 1). Use of this stretch is limited for numerical reasons because it rapidly

degrades the sampling of the shortest wavelengths. A real stretch was also introduced in the

context of the PML concept either to increase the natural decrease of evanescent waves [22], or

to reduce the conductivity in the PML [23]. This simply consists in replacing unity in (3.3) with

a real constant larger than unity. Nevertheless, use of a real stretch in a PML is also limited in

magnitude because it increases the numerical reflection of traveling waves from the PML, due
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to the coarser sampling of shortest wavelengths. As shown in the following, a better solution

to deal with evanescent waves is provided with the complex frequency shifted (CFS) PML.

The CFS PML was introduced by Kuzuoglu and Mittra [24] with the intention of

rendering the PML medium causal. They added a degree of freedom αu to the stretching

factor. With in addition a real stretch κu in place of unity in (3.3), the CFS PML factors are

defined as

su = κu +
σu

αu + jωε0
(u = x, y, z). (3.50)

Notice that αu is homogeneous to a conductivity. In the following we assume that the PML

medium is a wall PML perpendicular to x direction, only stretched in x direction. It is obvious

from (3.50) that the features of the CFS-PML medium depend on the ratio of the frequency

of interest to the frequency

fα =
αx

2πε0
. (3.51)

For f ≫ fα, parameter αx is negligible in (3.50), so that the medium is a regular PML.

Conversely, for f ≪ fα the stretch of x coordinate is real and the medium no longer absorbs

the waves.

Due to the absence of absorption at low frequency, the CFS PML could appear as of

little interest for use as an ABC in numerical methods. In fact, it is very well suited to the

optimum absorption of frequency spectra composed of both evanescent and traveling waves

present in many realistic physical problems. As derived in Chapter 2, the theoretical absorption

of evanescent waves within a regular PML (2.35) may be so enormous that it cannot be properly

sampled in space by finite methods. This results in a strong or even total numerical reflection

from the PML ABC. As shown in the following, the CFS PML based on the stretching factor

(3.50) allows the enormous absorption of evanescent waves to be reduced to a more reasonable

value that can be sampled by numerical methods without significant spurious reflection [25].

We are now mainly interested in the waveform within the CFS PML. We consider the

2D case that has been generalized to evanescent waves in Chapter 2. In the CFS PML the

wave numbers (2.27) also hold, with s u factors (3.50) instead of (2.6). By inserting these wave

numbers into the sinusoidal waveform (2.4), the counterpart of (2.30) is obtained for a matched

CFS-PML perpendicular to x (σy = 0). If in addition the (X, Y ) coordinates defined in

Fig. 2.6 are used, the CFS-PML waveform can be expressed as follows:

ψ = ψ0 e
jω

[

t− coshχ
c X

]

e− ω
c sinhχY e

− j ωc

[

κx−1+ σx
jωε0+αx

]

C(χ,θ )x
. (3.52)

The first two exponentials are nothing but the waveform of a nonhomogeneous wave propa-

gating in X direction and evanescent in Y direction in a vacuum. The additional exponential
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accounts for the CFS-PML. As expected, at high frequency, i.e., if f ≫ fα, with κx = 1 the

waveform (3.52) reduces to the waveform in the split PML (2.31). Conversely, if f ≪ fα,

(3.52) can be rewritten as

ψ = ψvacuum e
− j ωc

(

κx−1+ σx
αx

)

coshχ cos θx
e
ω
c

(

κx−1+ σx
αx

)

sinhχ sin θx
(3.53)

where ψvacuum is the product of the first two exponentials in (3.52). The first exponential in

(3.53) is an additional phase term. The second exponential is an absorbing term. Its argument

is negative for waves propagating toward +x and evanescent toward +x, because the signs of θ

and χ are opposite in that case (either θ > 0 and χ < 0, or θ < 0 and χ > 0). The attenuation

rate mainly depends on σ x sinhχ/αx. In the case where κx = 1, using (3.51) the magnitude of

the wave can be rewritten as

|ψPML| = |ψvacuum| e
f

fα
σx
ε0 c sinhχ sin θx

. (3.54)

Notice that the behavior of the wave in x direction could also be obtained by inserting the

wave number kx (2.27a) into exp(− j kx x). For f ≪ f α this yields the following attenuation

coefficient:

Cx = e
ω
c

(

κx+ σx
αx

)

sinhχ sin θx
. (3.55)

Coefficient (3.55) gives the overall decrease of the wave in x direction, while the coefficients

in (3.53) and (3.54) only give the extra decrease due to the CFS-PML. The natural decrease is

included in ψvacuum.

Since sinhχ = 0 for traveling waves, only evanescent waves are attenuated below fα.

Strictly speaking, coefficients (3.54) and (3.55) are not absorbing coefficients. It is evident

from (3.55) that they only account for the natural decrease of the evanescent wave upon the

stretched length (κx + σx/αx) x. Whatever the interpretation of these coefficients may be, what

is important is that the extra attenuation in (3.54) is far smaller than its counterpart in a normal

PML (2.35) for strongly evanescent waves and f ≪ fα. This is because sinhχ ≈ coshχ for

χ ≫ 1 so that coefficients in (3.54) and (2.35) are about equal for f = fα, and then coefficient

in (3.54) is far closer to unity for f ≪ fα. From this, and by means of an adequate choice of

the transition frequency (3.51), the CFS PML can allow the attenuation to be reasonable, i.e.,

neither too strong nor too weak, at both the evanescent and traveling frequencies present in

actual physical problems. This is illustrated in the following with a waveguide problem.

Let us consider a parallel-plate waveguide where the modes are evanescent (1.4) below

the cutoff frequency. Notice that the waveform (1.4a) is consistent with the general waveform in

a vacuum, given by (2.30) with σx = 0. For a wave evanescent toward +x, (1.4a) corresponds to

θ = π/2 and χ < 0, or θ = −π/2 and χ > 0, in (2.30). Far below cutoff (1.4c), the following
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fα0

Stretched  vacuum

 (no absorption) 

fcutoff

Traveling waves Evanescent waves

Regular absorbing PML
f

FIGURE 3.3: Coincidence of the transition frequency of the CFS-PML with the cutoff frequency of

the parallel-plate waveguide

holds:

ω sinhχ = ±
nπ c

a
for ω ≪

nπ c

a
(3.56)

so that the CFS-PML attenuation in (3.54) no longer depends on frequency. By an adequate

choice of the free parameter αx this attenuation can be set equal to that of traveling waves at

f > fα and normal incidence. This is realized by equating the argument of the exponential in

(3.54) with the argument of exp(−σx x/ε0 c ). Using (3.51) and since θ = ±π/2 and θχ < 0

in the guide, this yields

−
σx

ε0c
= −

2πε0

αx

σx

ε0c

1

2π

nπ c

a
. (3.57)

This equation gives αx that renders the attenuation of low frequency evanescent waves equal to

that of high frequency traveling waves:

α0 = n
π c ε0

a
. (3.58)

From (3.51), (3.58), and (1.4c), frequency fα corresponding to α0 is then

fα0 =
nc

2a
= fcutoff . (3.59)

Thus, with αx = α0 (3.58) the frequency fα of the transition between the two regimes of the

CFS PML is also the frequency f cutoff of the transition between the evanescent and traveling

waves of the considered mode in the waveguide. This is summarized in Fig. 3.3.

In summary, with αx (3.58) the absorption is about uniform at all the frequencies, with

the exception of a narrow band centered about the cutoff frequency where the attenuation

vanishes because at the cutoff the propagation is parallel to the vacuum–PML interface. As will

be shown in Chapter 5, a uniform attenuation is preferable in numerical methods, because an

enormous attenuation as that produced by the regular PML (2.35) results in a strong numerical

reflection. The CFS PML is very well suited to the considered waveguide problem. This also

holds in other physical problems where evanescent waves are present at low frequency with
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the product ω sinhχ about constant like in (3.56), allowing then the attenuation to be about

uniform and reasonable at all the frequencies of interest. This is the case in wave-structure

interaction problems and in problems involving Floquet modes. Both problems are addressed

in Chapter 6.
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C H A P T E R 4

Time Domain Equations
for the PML Medium

In Chapter 3, the PML medium matched to a vacuum has been introduced in time domain

(3.1), from which the frequency domain equations (3.5) were derived. The PML (3.1) is known

as the split PML. In the first part of the present chapter, it is shown that other time domain

equations can be derived from (3.5). These time domain PMLs are the convolutional PML

(CPML) and the near PML (NPML). The field components are not split within the CPML

and the NPML, but auxiliary variables are needed to account for the PML medium, as with the

dependent current interpretation addressed in Section 3.4. In this part, time domain equations

are also provided for the uniaxial PML (3.48).

The last three parts of this chapter are devoted to the derivation of time domain counter-

parts of the frequency domain equations of the PML matched to general media (3.34). In the

second part, time domain equations are derived for the split PML, the CPML, the NPML,

and the uniaxial PML, in the case of a PML matched to isotropic lossy media. In the third

part, time domain equations are provided for PMLs matched to anisotropic media. And in the

fourth part, PMLs matched to dispersive media are addressed.

4.1 TIME DOMAIN PML MATCHED TO A VACUUM
In the following, three sets of time domain equations are derived from the frequency domain

equations (3.5), namely the split PML, the CPML, and the NPML. Equations for the uniaxial

PML are derived from (3.48).

4.1.1 The Split PML
Since the introduction of the PML concept [5], the time domain equations of the split PML

(3.1) have been widely used in computational electromagnetics. Nevertheless, in a recent paper

[26], it was shown that the requirements of the split PML can be reduced to only eight variables

to be stored in the walls of the PML, in place of ten variables with (3.1). These new equations

are derived in the following. To this end, let us consider a PML perpendicular to x, where
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σy = σ z = 0 so that the loss term is only present in Eqs. (3.1d), (3.1e) and (3.1j), (3.1k). Let

us define two auxiliary variables as

χe x(t) =
1

µ0

∫ t

−∞
Ex(t′)dt′ (4.1a)

χhx(t) =
1

ε0

∫ t

−∞
Hx(t′)dt′ (4.1b)

where Ex = Exy + Exz and Hx = Hxy + Hxz. By integrating on time equations (3.1c), (3.1f),

(3.1i), (3.1l), we can write

Eyz =
∂χhx

∂z
Ezy = −

∂χhx

∂y
(4.2)

Hyz = −
∂χe x

∂z
Hzy =

∂χe x

∂y
. (4.3)

This shows that subcomponents Eyz and Ezy can be obtained at any time from a unique quantity

χ hx . Similarly,H yz and Hzy can be obtained from χ e x . From this, the four Eqs. (3.1c)–(3.1f)

can be replaced with only three equations, namely (4.1b) and two modified Eqs. (3.1d) and

(3.1e):

ε0
∂Eyx

∂t
+ σx Eyx = −

∂Hzx

∂x
−
∂2χe x

∂x∂y
(4.4a)

ε0
∂Ezx

∂t
+ σx Ezx =

∂Hyx

∂x
−
∂2χe x

∂x∂z
. (4.4b)

Similarly (3.1i)–(3.1l) are replaced with (4.1a) and two dual equations of (4.4). Finally, system

(3.1) reduces to eight equations involving eight variables to be stored, Ex , χ e x , Eyx , Ezx , Hx ,

χ hx , H yx , Hzx . In the edge and corner regions, the number of variables cannot be reduced so

that (3.1) must be used in numerical methods.

4.1.2 The Convolutional PML
The convolutional PML (CPML) is a set of time domain equations [27] derived from the

frequency domain equations (3.5). The major interest of the CPML equations is its easy

generalization to any physical medium. Consider for instance (3.5a), or equivalently (3.27a). In

time domain the latter can be written as:

ε0
∂Ex

∂t
= s y (t) ∗

∂Hz

∂y
− s z(t) ∗

∂Hy

∂z
(4.5)

where ∗ is the convolution product, and s y (t) and s z(t) are the inverse Laplace transforms of

the inverses of the stretching factors s y (ω) and s z(ω). Consider now stretching factors of the
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form (3.3). The inverse Laplace transform of the inverse of (3.3) reads:

su(t) = δ(t) + ζu(t) (4.6a)

where δ(t) is the Dirac function, and

ζu(t) = −
σu

ε0
e
− σu
ε0

t
u(t) (4.6b)

where u(t) is the unit step function. Then, Eq. (4.5) can be rewritten as

ε0
∂Ex

∂t
=
∂Hz

∂y
−
∂Hy

∂z
+ ψhzy − ψhyz (4.7)

where

ψhzy = ζy (t) ∗
∂Hz

∂y
(4.8a)

ψhyz = ζz(t) ∗
∂Hy

∂z
. (4.8b)

Five equations similar to (4.7) are obtained from (3.5b)–(3.5f) for the time derivatives of the

other five components of the field. This system is equivalent to the Maxwell equations, with the

addition of auxiliary quantities ψ e zy , ψe yz, . . . , ψhxy , ψhyx . There are 12 additional quantities

in the case of a PML medium stretched in the three dimensions. In the walls of a PML, where

only one direction is stretched, there are only four ψ variables, for instance ψe yz, ψe xz, ψhxz,

ψhyz in a PML perpendicular to z. In the walls, the storage requirements are then the same as

with the split PML (3.1), while in the edge and corner regions 18 variables have to be stored

and advanced, instead of 12 with (3.1).

In time domain methods, the advance of the auxiliary quantities requires a convolution.

In general this is a large computational burden. In the case of exponential impulses like (4.6b)

the convolution is recursive and can be performed with a small number of operations. This is

illustrated with the FDTD method in Chapter 5.

In the case where the CFS stretching factor (3.50) is used, the inverse Laplace transform

(4.6) is replaced with:

su(t) =
δ(t)

κu
+ ζu(t) (4.9a)

ζu(t) = −
σu

ε0κ2
u

e
− 1
ε0

(

σu
κu

+αu

)

t
u(t) (4.9b)



52 PERFECTLY MATCHED LAYER (PML) FOR COMPUTATIONAL ELECTROMAGNETICS

and Eq. (4.5) yields in place of (4.7)

ε0
∂Ex

∂t
=

1

κy

∂Hz

∂y
−

1

κz

∂Hy

∂z
+ ψhzy − ψhyz (4.10)

where ψhzy and ψhyz are also given by (4.8).

4.1.3 The Near PML
The near PML (NPML) was introduced [28] with the intention of simplifying the implemen-

tation of the PML ABC in problems where the inner medium is the gyrotropical ionosphere.

It was called a near PML because it is equivalent to a true PML only in the case where the con-

ductivity does not depend on space coordinates. Nevertheless, numerical experiments in [28]

showed no more reflection from the NPML ABC than from the regular PML ABC. The ab-

sence of reflection from vacuum–NPML or NPML–NPML interfaces was proved theoretically

later [29, 30].

Let us start from Eqs. (3.5) or (3.27). Assuming that the conductivities and then the

stretching factors are constant in the PML, (3.27a) can be rewritten as

jωε0 Ex =
∂

(

Hz/s y

)

∂y
−
∂

(

Hy/s z

)

∂z
(4.11)

or equivalently

jωε0 Ex =
∂ξhzy

∂y
−
∂ξhyz

∂z
(4.12a)

where

ξhzy =
Hz

s y
ξhyz =

Hy

s z
. (4.12b)

Similar manipulations can be done with (3.5b)–(3.5f), resulting in the definition of 12 variables

ξ e and ξ h in addition to the six components of the field. The time domain counterpart of

(4.12a) reads

ε0
∂Ex

∂t
=
∂ξhzy

∂y
−
∂ξhyz

∂z
(4.13)

and by using (3.3) the time domain counterpart of (4.12b) can be written as

∂ξhzy

∂t
+
σy

ε0
ξhzy =

∂Hz

∂t
(4.14a)

∂ξhyz

∂t
+
σz

ε0
ξhyz =

∂Hy

∂t
. (4.14b)
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Equation (4.13) and the other five equations obtained from (3.5b)–(3.5f) are identical to the

Maxwell equations, with E and H components replaced with auxiliary quantities ξ e and ξ h in

the curls. From this, in computational methods the algorithm used in the inner domain can also

be used in the NMPL. In addition, two differential equations have to be solved per component,

for instance (4.14) for Ex .

As assumed in the above as incorporating the stretching factors in the space derivatives in

(4.11), the NPML is identical to the true PML only in the case where the stretching factors do

not depend on space coordinates. Nevertheless, as proved in [29, 30], at the interface between

two NPMLs having different conductivities, or between a vacuum and a NPML, there is no

reflection. From this, for use as an ABC in numerical methods, the NPML is equivalent to a

true PML, because in that case the conductivity is constant in the elementary volumes or cells,

so that the actual PML ABC is a juxtaposition of different NPMLs of constant conductivity

with no reflection from their interfaces.

As with the CPML, in the general case there are 18 variables in the NPML, instead

of 12 with the split PML. Nevertheless, in the walls of the NPML only ten variables have to

be computed and stored, as with the split PML. For instance in a wall NPML perpendicular

to z, only ξ e xz, ξ e yz, ξ hxz, ξ hyz differ from the field components, because s x = s y = 1. The

NPML can be implemented easily in any physical medium. For example, if the permittivity ε0

is replaced with a tensor in (4.13) and in the corresponding Ey and Ez equations, the algorithm

used in the inner domain is left unchanged in the NPML. The only modification is the solution

of 12 differential equations like (4.14) in the NPML (four equations in the walls).

4.1.4 The Uniaxial PML
Let us consider frequency domain equations (3.48) of the uniaxial PML. In the following the

prime is omitted, the fields in the uniaxial PML are simply denoted as Ex, . . . , Hz. The first

component of (3.48a) can be rewritten as

jωε0
s y s z

s x
Ex =

∂Hz

∂y
−
∂Hy

∂z
. (4.15)

In time domain, a convolution is needed in the left-hand member. To remove it, an auxiliary

variable Dx is introduced [31],

Dx = ε0
s z

s x
Ex, (4.16)

so that (4.15) becomes

jωs y Dx =
∂Hz

∂y
−
∂Hy

∂z
. (4.17)
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Replacing then s x , s y , s z with their explicit values (3.3) and performing an inverse Fourier

transform, that is replacing jω with the time derivative, the time domain counterparts of (4.16)

and (4.17) read

ε0
∂Ex

∂t
+ σzEx =

∂Dx

∂t
+
σx

ε0
Dx (4.18)

∂Dx

∂t
+
σy

ε0
Dx =

∂Hz

∂y
−
∂Hy

∂z
. (4.19)

Five similar sets of two equations are derived from the remaining five components of (3.48).

Equation (4.19) is like a component of the Maxwell–Ampere equation in a lossy medium, and

(4.18) is a differential equation, so that the uniaxial PML can be regarded as a lossy medium

with a set of six differential equations.

The application of the uniaxial PML to the FDTD method is described in [31]. In some

papers, the uniaxial PML is denoted as unsplit PML, although other unsplit PMLs do exist,

namely the CPML and the NPML. But the uniaxial PML has the unique feature of being

Maxwellian, that is satisfying the Maxwell equations.

4.2 TIME DOMAIN PML FOR LOSSY MEDIA
In the following, the time domain equations of the PML matched to an isotropic lossy medium

are derived. As in the case of a vacuum, four versions of the PML for lossy media are derived,

namely the split PML, the CPML, the NPML, and the uniaxial PML.

4.2.1 Split PML for Lossy Media
Let us consider the frequency domain Maxwell equations of a lossy medium of conductivity σ .

As shown in Chapter 3 for any general medium, the equations of the corresponding PML are

obtained by stretching the coordinates. From this, the PML equations for lossy media read

ωε0

(

1 +
σ

jωε0

)

−→
E0 = −

−→
ks ×

−→
H0 (4.20a)

ωµ0
−→
H0 =

−→
ks ×

−→
E0. (4.20b)

The x component of (4.20a) can be written as

ωε0

(

1 +
σ

jωε0

)

E0x = −
ky

s y
H0z +

kz

s z
H0y . (4.21)
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As in a vacuum, (4.21) can be split into two subequations with E0x component split into two

subcomponents E0xy and E0xz:

ωε0

(

1 +
σ

jωε0

)

E0xy = −
ky

s y
H0z (4.22a)

ωε0

(

1 +
σ

jωε0

)

E0xz =
kz

s z
H0y . (4.22b)

By replacing the stretching factor s y with (3.3), Eq. (4.22a) becomes
(

jωε0 + σ + σy +
σσy

jωε0

)

E0xy = − jky H0z. (4.23)

Since dividing with jω in frequency domain corresponds to integrating on time, the time

domain counterpart of (4.23) is

ε0
∂Exy

∂t
+ (σ + σy )Exy +

σσy

ε0

∫ t

−∞
Exy dt′ =

∂Hz

∂y
. (4.24)

From (4.22b) a similar equation gives the time derivative of subcomponent Exz. The y and

z components of (4.20a) can also be split into subequations, with Ey and Ez split into sub-

components, resulting in four equations similar to (4.24). Finally, since Eq. (4.20b) is like in a

PML matched to a vacuum, the time domain equations in the split PML matched to a lossy

medium are those in the PML matched to a vacuum (3.1), with only the modification of the

first six Eqs. (3.1a)–(3.1f) according to (4.24). The modification consists of the addition of

the conductivity of the medium σ to the PML conductivity, and the addition of an extra term

proportional to the medium conductivity, the PML conductivity, and the integral on time of

the corresponding electric subcomponent.

As shown in the next chapter, the six equations like (4.24) can be discretized easily with

the FDTD method. The above PML for lossy media was first presented in [32]. This was

probably the first extension of the PML absorbing boundary to a medium that differs from a

vacuum or a dielectric.

4.2.2 CPML for Lossy Media
Equation (4.21) in the PML matched to lossy media can be rewritten in time domain as:

ε0
∂Ex

∂t
+ σEx = s y (t) ∗

∂Hz

∂y
− s z (t) ∗

∂Hy

∂z
(4.25)

that is similar to (4.5), with only the addition of the term σ Ex on the left-hand side of the

equation. From this, the convolutions and the corresponding ψ variables defined in the case of

the PML matched to a vacuum are left unchanged in the presence of a loss term in the medium.
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This yields the following counterpart of (4.10):

ε0
∂Ex

∂t
+ σEx =

1

κy

∂Hz

∂y
−

1

κz

∂Hy

∂z
+ ψhzy − ψhyz (4.26)

where ψ quantities are also given by (4.8). Equation (4.26) is like that in the lossy medium,

with the addition of the ψ quantities to the curl. Two similar equations are obtained for the

evolution on time of Ey and Ez components. The three equations governing the components

of the H field are left unchanged in comparison with the CPML matched to a vacuum. The

implementation of the CPML in marching on time finite methods is easy. The discretized

equations are like in the corresponding lossy medium, with only the trivial addition of ψ

variables governed by equations like (4.8).

4.2.3 NPML for Lossy Media
In that case, with the variable changes (4.12b) Eq. (4.21) becomes in time domain:

ε0
∂Ex

∂t
+ σEx =

∂ξhzy

∂y
−
∂ξhyz

∂z
(4.27)

where ξ hzy and ξ hyz are governed by (4.14) as well. Two similar equations hold for the evolution

in time of Ey and Ez components. Finally, the six equations governing the field components in

the PML are identical to the Maxwell equations of the lossy medium, with ξ variables instead

of E or H components in the curls. From this, the implementation of a NPML matched to a

lossy medium is trivial in finite methods. Only the advance of the ξ e and ξ h quantities by means

of differential equations like (4.14), that are independent of the medium, has to be added to

the algorithm.

4.2.4 Uniaxial PML for Lossy Media
A uniaxial PML for isotropic lossy media was presented in [33]. In the frequency domain it can

be obtained from the PML matched to a vacuum by replacing ε0 with the complex permittivity

of the medium. From this, Eq. (3.48a) is replaced with

ωε0

(

1 +
σ

jωε0

)

εs
−→
E0 = −

−→
k ×

−→
H0 (4.28)

whose first component can be written as

jωε0

(

1 +
σ

jωε0

)

s y s z

s x
Ex =

∂Hz

∂y
−
∂Hy

∂z
. (4.29)
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Let us now define two auxiliary variables as

D′
x = s y Dx (4.30a)

Dx = ε0
s z

s x
Ex . (4.30b)

Then (4.29) can be rewritten as

jω

(

1 +
σ

jωε0

)

D′
x =

∂Hz

∂y
−
∂Hy

∂z
(4.31)

or in time domain:

∂D′
x

∂t
+
σ

ε0
D′

x =
∂Hz

∂y
−
∂Hy

∂z
. (4.32)

Moreover, (4.30) yields in time domain:

∂Dx

∂t
+
σy

ε0
Dx =

∂D′
x

∂t
(4.33a)

ε0
∂Ex

∂t
+ σzEx =

∂Dx

∂t
+
σx

ε0
Dx . (4.33b)

Equations (4.32) and (4.33b) are like (4.19) and (4.18) in the uniaxial PML matched to a

vacuum, and (4.33a) is a special case of (4.33b). Then, these three equations can be discretized

easily with finite methods. In marching on time methods, (4.32) is used to advance on time

D′
x , then (4.33a) is used to advance Dx , and finally (4.33b) permits Ex to be advanced. Two

sets similar to (4.32), (4.33) are obtained from (4.28) for the advance of components Ey and

Ez. And since (3.48b) also holds in the lossy uniaxial PML, the equations for the advance of

the magnetic field are like in the uniaxial PML matched to a vacuum.

4.3 TIME DOMAIN PML FOR ANISOTROPIC MEDIA
To derive time domain equations from the frequency domain equations (3.34) of a PML

matched to any general medium two methods can be used:

1. incorporating the stretching coefficients on the left-hand side of Eqs. (3.34).

2. incorporating the stretching coefficients on the right-hand side of Eqs. (3.34).

With the isotropic lossy medium considered in the previous paragraph, method 1 corresponds to

the split PML, while method 2 corresponds to the CPML and the NPML. With such a simple

medium, the latter method is trivial and yields time domain equations close to the equations

of the nonstretched lossy medium. That is also true when more general physical media are



58 PERFECTLY MATCHED LAYER (PML) FOR COMPUTATIONAL ELECTROMAGNETICS

considered. Obtaining time domain equations is trivial and always possible by incorporating

the stretching factors on the right-hand side of (3.34), whatever the medium may be.

4.3.1 Split PML for Anisotropic Media
Several papers were published in the literature on the generalization of the split PML to

anisotropic media [34–39]. Two approaches are possible for nondispersive media. The first one

consists of deriving equations and sub-equations involving only components and subcompo-

nents of the E and H fields. The second one is based on use of fields D and B that are split

in place of E and H . Discussions about the former approach can be found in [37]. The latter

approach, which is more general and more easily derived, is presented in the following. To this

end, the first component of (3.34) is rewritten as

ωD0x = −
ky

s y
H0z +

kz

s z
H0y (4.34a)

where D0x is the x component of the left-hand member of (3.34a):

D0x =
[

ε
−→
E0

]

x
. (4.34b)

Equation (4.34a) and component D0x can be split as

ωD0xy = −
ky

s y
H0z (4.35a)

ωD0xz =
kz

s z
H0y . (4.35b)

This yields the time domain equations that govern subcomponents Dxy and Dxz

∂Dxy

∂t
+
σy

ε0
Dxy =

∂Hz

∂y
(4.36a)

∂Dxz

∂t
+
σz

ε0
Dxz = −

∂Hy

∂z
. (4.36b)

Four similar equations are obtained from the other two components of (3.34a). With marching

on time methods, this permits the six subcomponents of D to be advanced. Assuming that the

medium is nondispersive, field E can then be computed by solving for E the algebraic equation:

−→
D = ε

−→
E (4.37)

where each D component is the sum of the corresponding two subcomponents. If only the

permittivity is anisotropic in (3.34), (3.34b) is like in a vacuum and yields the same split

equations (3.1g)–(3.1l). In the case where the permeability is a tensor, a B field is introduced in
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(3.34b) and split into subcomponents as done in the above with D. This yields dual equations

of (4.36), (4.37).

4.3.2 CPML for Anisotropic Media
In time domain, the first component of frequency domain equation (3.34a) can be written as:

∂
[

ε
−→
E

]

x

∂t
= s y (t) ∗

∂Hz

∂y
− s z(t) ∗

∂Hy

∂z
(4.38)

where it is assumed that tensor ε is not frequency dependent. The convolutions are identical to

those in a PML matched to a vacuum (4.5), so that (4.38) can be rewritten as

∂
[

ε
−→
E

]

x

∂t
=

1

κy

∂Hz

∂y
−

1

κz

∂Hy

∂z
+ ψhzy − ψhyz (4.39)

where theψ parameters again are given by (4.8). This equation is nothing but the corresponding

equation in the anisotropic nonstretched medium, with the addition ofψ variables. Five similar

equations are obtained from (3.34). Finally, the time domain equations of the PML are those

of the corresponding anisotropic medium with only the addition of ψ variables to the curls, as

in (4.39). The ψ variables are governed by the same Eqs. (4.8) as in a CPML matched to a

vacuum. From this, the implementation of the CPML for anisotropic media in marching on

time finite methods is straightforward.

4.3.3 NPML for Anisotropic Media
With the variable changes (4.12b), the x component of Eq. (3.34a) becomes in time domain:

∂
[

ε
−→
E

]

x

∂t
=
∂ξhzy

∂y
−
∂ξhyz

∂z
(4.40)

where ξ hzy and ξ hyz are governed by (4.14) as well. Five similar equations hold for the evolution

in time of Ey , Ez, Hx , H y , and Hz components. Finally, the six equations governing the field

components in the PML are identical to the Maxwell equations of the anisotropic medium,

with ξ e and ξ h variables instead of E or H components in the curls. That is true whatever

the tensors ε and µ may be. From this, the implementation of the NPML matched to any

anisotropic medium is trivial in finite methods. Only the advance of the ξ quantities with

equations like (4.14) has to be added to the algorithm.
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4.4 TIME DOMAIN PML FOR DISPERSIVE MEDIA
In some physical media, the permittivity or the permeability depends on frequency. These media

may be isotropic or anisotropic. Two important classes of material dispersion are the Debye

relaxation and the Lorentzian resonance where ε depends on frequency. Another example of

dispersive medium is the gyrotropic, i.e., anisotropic, Ionosphere. In such media, use of the

split PML would not be easy nor effective, because a convolution would be present in (4.37).

In the following we limit our purpose to the CPML and NPML cases whose time domain

equations derivation is straightforward. The isotropic uniaxial PML is also addressed.

4.4.1 Time Domain CPML and NPML for Isotropic or Anisotropic Dispersive
Media

Obtaining time domain equations for the CPML and NPML is trivial. In the case of a CPML

matched to a dispersive anisotropic medium, the first component of (3.34a) is like (4.38), with

a convolution in the left-hand member due to the frequency dependence of the permittivity

tensor:

∂
[

ε ∗
−→
E

]

x

∂t
= s y (t) ∗

∂Hz

∂y
− s z(t) ∗

∂Hy

∂z
. (4.41)

The convolutions in the right-hand member are identical to those in the CPML matched to a

vacuum (4.5), so that (4.41) can be rewritten as

∂
[

ε ∗
−→
E

]

x

∂t
=

1

κy

∂Hz

∂y
−

1

κz

∂Hy

∂z
+ ψhzy − ψhyz (4.42)

where ψ variables are given by (4.48). Five similar equations hold for the other five compo-

nents of the field. Once again, the CPML equations are like the ones in the corresponding

nonstretched medium, with the addition of ψ variables to the curls. If a numerical algorithm is

available for the inner domain, implementing the corresponding PML is straightforward.

Similarly, in the NPML the first component of (3.34a) yields:

∂
[

ε ∗
−→
E

]

x

∂t
=
∂ξhzy

∂y
−
∂ξhyz

∂z
(4.43)

so that the equations in the NPML are identical to those in the corresponding inner domain

with ξ e and ξ h variables (4.14) in place of E or H components in the curls.
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4.4.2 Time Domain Uniaxial PML for Isotropic Dispersive Media
Use of the uniaxial PML with the FDTD method was reported [33] in the case of isotropic

dispersive media where ε = ε0 εr (ω). In that case, (4.15) is replaced with

jωε0εr (ω)
s y s z

s x
Ex =

∂Hz

∂y
−
∂Hy

∂z
(4.44)

that is close to (4.29) in the lossy medium case. It can be solved by the variable changes

D′
x = εr (ω)Dx (4.45a)

Dx = ε0
s z

s x
Ex (4.45b)

so that (4.44) becomes

jω

(

1 +
σy

jωε0

)

D′
x =

∂Hz

∂y
−
∂Hy

∂z
. (4.46)

Equations (4.45b) and (4.46) are identical to (4.30b) and (4.31) and yield time domain equations

(4.33b) and (4.32). Equation (4.45a) is like the auxiliary equation used in the corresponding

nonstretched dispersive medium [33], so that its time domain counterpart is like in this medium.
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C H A P T E R 5

The PML ABC for the FDTD
Method

The finite-difference time-domain method (FDTD) [40] is probably the most used numerical

technique in electromagnetics. The basic FDTD scheme introduced by K. S. Yee in 1966

[2] is simple and versatile. It has been extended to most existing physical media, such as

anisotropic, dispersive, chiral, and even nonlinear media. The original Yee scheme is a second-

order approximation of the Maxwell equations, both in time and space.

More sophistical schemes have been developed over the years, mainly with the intention of

reducing the numerical dispersion of the Yee scheme. Four order schemes, pseudospectral time-

domain (PSTD) schemes, multi-resolution time-domain (MRTD) schemes, all are schemes

with widely smaller numerical dispersion [40]. But they are more complex and less versatile, so

that nowadays the basic Yee scheme remains the most popular in applications. In this chapter

we only address the implementation of the PML ABC in the Yee scheme. PMLs for other

FDTD schemes can be found in the literature. References are provided in Chapter 7.

5.1 FDTD SCHEMES FOR THE PML MATCHED TO A VACUUM
FDTD schemes for the split PML, the CPML, the NPML, and the uniaxial PML are derived

in the following.

5.1.1 FDTD Scheme for the Split PML
In the three-dimensional PML, 12 subcomponents have to be advanced on time (3.1) in each

FDTD cell. The regular FDTD grid [40] is left unchanged, simply two subcomponents are

computed at the location of each component. For instance, Exy and Exz are computed at Ex

nodes of the regular FDTD grid. Discretization of (3.1) is straightforward. As an example, for

the advance of Exy from time n to time n + 1 at grid node (i + 1/2, j, k), Eq. (3.1a) yields,

with usual FDTD notations [40]:

Exy

∣

∣

n+1

i+1/2, j,k
= Ay Exy

∣

∣

n

i+1/2, j,k
+
1t

ε0
By

[Hzx + Hzy ]n+1/2
i+1/2, j+1/2,k − [Hzx + Hzy ]n+1/2

i+1/2, j−1/2,k

1y
(5.1)
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where coefficients Ay and B y , evaluated at Ex node (i + 1/2, j, k), are of the form

Au(σu) =
2ε0 − σu1t

2ε0 + σu1t
(5.2a)

Bu(σu) =
2ε0

2ε0 + σu1t
, (5.2b)

or alternatively with an exponential discretization, valid with any value of the conductivity σu :

Au(σu) = e
−σu

1t
ε0 (5.3a)

Bu(σu) =
ε0(1 − Au)

σu1t
. (5.3b)

Eleven equations similar to (5.1) are obtained for the advance of the other 11 subcomponents.

In the walls of the PML (Fig. 3.1), two conductivities equal zero. From this, two sets

of two subequations merge into single equations identical to the equations in a vacuum. For

example, in a wall PML perpendicular to x, subequations (3.1a)–(3.1b) and (3.1g)–(3.1h) merge

into two equations where Exy and Exz are replaced with Ex , and Hxy and Hxz are replaced

with Hx . From this, only ten variables have to be advanced in time and stored in the walls of

the PML. In the edges of the domain, where one conductivity equals zero, the conductivities

that govern the two subcomponents of each couple of subcomponents are different, so that

the 12 subcomponents must be computed and stored separately. This also holds in the corners

where three different conductivities are present in each cell. Finally, with the split PML (3.1),

ten quantities have to be stored in the walls that represent most of the PML, and 12 quantities

in the remaining parts.

For the advance of components in the vacuum–PML interface, equations like (5.1)

have to be slightly modified because the space derivative in the direction perpendicular to the

interface involves one node in the vacuum and one node in the PML. The right equations

are obtained by considering that the vacuum is nothing but a special case of PML media

where the subcomponents are merged. From this, the two subcomponents are replaced with

the corresponding component at the node in the vacuum. For example, Hzx + Hzy is replaced

with Hz in one bracket of (5.1) at an interface perpendicular to y . Similarly, at the nodes in the

vacuum located half a cell from the interface, a component involved in the space derivative of

the regular FDTD equation is in the interface, that is in the PML. This component is replaced

with the sum of the corresponding two subcomponents.

In the case where the regular split equations (3.1) are replaced in the walls with the

eight-variable split PML derived in Section 4.1.1, Eqs. (4.1) and (4.4) have to be discretized

for the advance of the χ variables and the remaining subcomponents of the field. This can be



THE PML ABC FOR THE FDTD METHOD 65

done easily. For example (4.1a) and (4.4a) yield, respectively:

χe x |n+1/2
i+1/2, j,k = χe x |n−1/2

i+1/2, j,k +
1t

µ0
Ex |n

i+1/2, j,k (5.4)

Eyx

∣

∣

n+1

i, j+1/2,k
= Ax Eyx

∣

∣

n

i, j+1/2,k
−
1t

ε0
Bx

1Hzx

1x

∣

∣

∣

∣

n+1/2

i, j+1/2,k

−
1t

ε0

Bx

1x1y

[

χe x |n+1/2
i+1/2, j+1,k − χe x |n+1/2

i+1/2, j,k −χe x |n+1/2
i−1/2, j+1,k + χe x |n+1/2

i−1/2, j,k

]

(5.5)

where 1Hzx/1x is the discretized space derivative of Hzx in x direction, and Ax and Bx are

given by (5.2) or (5.3).

5.1.2 FDTD Scheme for the Convolutional PML
The six convolutional PML equations like (4.5) involve convolutions of the space derivatives

of the field components with ζ u(t) functions given either by (4.6b) for the regular PML or by

(4.9b) for the CFS PML. In both cases ζ u(t) is an exponential function. This makes it possible

to perform a recursive convolution. Consider the convolution g (t) of an exponential exp(−a t)

with a function f (t):

g (t) =
t

∫

0

f (t′)e−a(t−t′)dt′. (5.6)

It can be shown easily that, provided that1t is small enough in order that the variation of f (t′)
is small during interval [t, t +1t], so as to approximate it with f (t +1t/2), the following

holds:

g (t +1t) = e−a1t g (t) + f (t +1t
/

2)
1 − e−a1t

a
. (5.7)

This will permit the calculation of the ψ functions in (4.8) at FDTD time n + 1 in function of

their values at the previous time n.

Consider now Eq. (4.10). It can be discretized as

En+1
x = En

x +
1t

ε0

[

1

κy

1Hn+1/2
z

1y
−

1

κz

1Hn+1/2
y

1z
+ ψ

n+1/2
hzy − ψ

n+1/2
hyz

]

(5.8)

where the space index (i + 1/2, j , k), where all the variables are localized, is omitted. The

advance in time of ψ functions can be performed using the recursive formula (5.7). In the CFS

PML case, (4.8a), (4.9b), and (5.7) lead to, at node (i + 1/2, j , k):

ψ
n+1/2
hzy = pyψ

n−1/2
hzy + q y

1Hn+1/2
z

1y
(5.9)
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where

pu = e
−

(

σu
κu

+αu

)

1t
ε0 (5.10a)

qu =
σu

κu(σu + κuαu)
(pu − 1). (5.10b)

Five equations like (5.8) are obtained for the advance of the other five components of the field,

and 11 equations like (5.9) for the advance of the other ψ variables. For the six ψ e variables,

p and q are also given by (5.10), provided that the matching condition holds. In summary,

using six equations like (5.8) and 12 equations like (5.9), the CPML algorithm consists in

computing the E components and ψ e variables at times n, n + 1, and the H components and

ψh variables at times n − 1/2, n + 1/2. Notice that the H field in (5.9) is not centered in time.

The average with the previous value could be used, but in actual FDTD calculations (5.9) yields

quite satisfactory results.

5.1.3 FDTD Scheme for the NPML
The FDTD discretization of the NPML equations is straightforward. The six equations for

the advance of the components of the field, like (4.13), are nothing but the Maxwell equations.

They are discretized as Maxwell equations, with ξ e or ξ h variables on the right-hand side in

place of E or H components. The ξ variables are advanced in time with differential equations

(4.14) and five similar sets. For instance, (4.14a) yields for ξhzy

ξ
n+1/2
hzy = Ayξ

n−1/2
hzy + By

[

Hn+1/2
z − Hn−1/2

z

]

(5.11)

where Ay and B y are given by (5.2) or (5.3).

In summary, using the six regular FDTD equations and 12 equations like (5.11), the

NPML algorithm consists of computing the E components and ξe variables at times n, n + 1,

and the H components and ξh variables at times n − 1/2, n + 1/2. Notice that the ξ variables

can be advanced at all the points of the grid just after the advance of the E or H corresponding

components, so that no previous values of E or H need to be stored. For example ξ hzy can be

advanced with (5.11) just after advancing Hz, in the same space loop.

5.1.4 FDTD Scheme for the Uniaxial PML
The time domain equations of the uniaxial PML are composed of a set identical to the Maxwell

equations in a lossy medium, with in addition a set of six differential equations. The Dx equation

(4.19) can be discretized as follows:

Dn+1
x = Ay Dn

x +1t By

[

1Hn+1/2
z

1y
−
1Hn+1/2

y

1z

]

(5.12)
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where Ay and B y are given by (5.2) or (5.3). The differential equation (4.18) is discretized in

[31] as

Dn+1
x − Dn

x

1t
+
σx

ε0

Dn+1
x + Dn

x

2
= ε0

En+1
x − En

x

1t
+ σz

En+1
x + En

x

2
(5.13)

that leads to

En+1
x = C En

x +
1

ε0

[

F Dn+1
x − G Dn

x

]

(5.14)

where

C =
2ε0 − σz1t

2ε0 + σz1t
; F =

2ε0 + σx1t

2ε0 + σz1t
; G =

2ε0 − σx1t

2ε0 + σz1t
. (5.15)

Assuming that Ex and auxiliary variable Dx are known at time n, and that H components are

known at time n + 1/2, Eq. (5.12) allows Dx to be advanced to n + 1. Then, (5.14) provides us

with Ex at time n + 1. Equations like (5.12) and (5.14) hold for Ey and Ez, with corresponding

Dy and Dz. Finally, dual discretized equations can be derived in the same way for the advance

of the H field from n − 1/2 to n + 1/2, with also three auxiliary variables and three auxiliary

equations.

We notice that in the most general PML where three conductivities are different there

are 12 variables to be stored and advanced in time, as with the split PML. Conversely, in the

walls of a PML, where two stretching factors equal unity, only eight quantities have to be stored

and advanced. Consider for instance a wall perpendicular to x, then in tensor (3.49) only s x

differs from unity so that only s x is present in the Ey and Ez counterparts of (4.15). These

two equations are then like equations in a regular lossy medium so that no auxiliary equation is

needed for the advance of Ey and Ez. Finally, in the walls of a PML, an auxiliary variable is only

required for the longitudinal components, that is Ex and Hx in a wall normal to x direction. In

terms of memory, the requirements of the uniaxial PML are then identical to those of the split

PML with the eight-variable discretization in Section 4.1.1.

5.1.5 A Comparison of the Requirements of the Different Versions
of the PML ABC

The computational requirements of the different PMLs are compared in Table 5.1. The

requirements are those of the wall PML that corresponds to most of the PML ABC with a 3D

computational domain. Storage requirements and numbers of additions and multiplications per

time step are given for one FDTD cell.

In terms of storage requirements, the uniaxial PML and the eight-variable split PML

are the least demanding. In terms of computational time, multiplications are more costly than
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TABLE 5.1: Number of Variables to be Stored and Number of Operations per FDTD Cell in

the Walls of the Different PML Versions

STORAGE OPERATIONS MULTIPLICATIONS ADDITIONS

Regular 10 56 16 40

split PML

Eight-variable 8 60 18 42

split PML

Uniaxial PML 8 48 20 28

CPML 10 56 20 36

NPML 10 52 20 32

additions, so that the best two PMLs are probably the uniaxial PML and the regular split

PML. Choosing the best PML in view of building a computational code may depend on

such parameters as the computer where the code will be used, the encoding method, and the

envisaged extensions to general media. Nevertheless, nowadays the NPML appears as a very

attractive choice in many cases since it combines a moderate number of operations per cell with

an easy and trivial extension to any dispersive or anisotropic medium.

5.2 FDTD SCHEMES FOR PMLS MATCHED TO LOSSY
ISOTROPIC MEDIA

As in the above for the PML matched to a vacuum or any isotropic lossless medium, in the case

of a PML matched to a lossy medium, various FDTD schemes can be used. They are based on

the different time domain equations presented in Section 4.2.

Consider first the split PML. Equation (4.24) can be discretized easily as follows at Ex

mesh nodes:

En+1
xy = A(σ + σy )En

xy +
1t

ε0
B(σ + σy )

[

1(Hn+1/2
zx + Hn+1/2

zy )

1y
+
σσy

ε0
Sn+1/2

xy

]

(5.16)

where Sxy is an auxiliary variable computed at Exy nodes, and A and B are given by (5.2)

or (5.3) with σ + σ y in place of σ u . The auxiliary variable Sxy is the integral in (4.24). It is

advanced in time with

Sn+1/2
xy = Sn−1/2

xy +1t En
xy . (5.17)

Five FDTD equations like (5.16) are obtained for the advance of the other five electric sub-

components. The advance of the magnetic subcomponents is left unchanged in comparison
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with a PML matched to a vacuum. In the most general case, six auxiliary variables S have to be

stored and advanced in time. In the walls of a PML ABC, only two S variables are present.

In the case of the CPML, Eq. (4.26) is like in a CPML matched to a vacuum (4.10) with

an additional term σEx on the left-hand side. It can be discretized as the equation in a regular

lossy medium:

En+1
x = A(σ )En

x +
1t

ε0
B(σ )

[

1

κy

1Hn+1/2
z

1y
−

1

κz

1Hn+1/2
y

1z
+ ψ

n+1/2
hzy − ψ

n+1/2
hyz

]

(5.18)

where A and B are (5.2) or (5.3) with σ in place of σ u and ψ quantities are advanced in time

with (5.9). Two similar equations hold for Ey and Ez. Thus, the advance of the E field in the

PML is like in the corresponding nonstretched lossy medium with two ψh variables added to

the discretized components of the H curl. And the advance of the H field is like in the CPML

matched to a vacuum.

Consider now the NPML. Equation (4.27) is like in the corresponding nonstretched

lossy medium, so that the FDTD advance of Ex is performed with the FDTD equation of the

lossy medium, with ξ h quantities instead of the H components in the curl. This also holds for

Ey and Ez. In addition, the same equations as in a PML matched to a vacuum (5.11) are used

for advancing the ξ variables.

Finally, consider the uniaxial PML. The advance of Ex component involves three equa-

tions, namely (4.32), (4.33a), (4.33b). The first one and the last one are like (4.19) and (4.18)

in a PML matched to a vacuum. So, firstly D′
x is advanced using (5.12) with D′

x in place of

Dx and σ in place of σ y . Secondly Dx is advanced with the discretized form of (4.33a):

Dn+1
x =

2ε0 − σy1t

2ε0 + σy1t
Dn

x +
2ε0

2ε0 + σy1t

[

D′n+1
x − D′n

x

]

, (5.19)

and finally, Ex is advanced with (5.14). Ey and Ez are advanced in the same way.

5.3 FDTD SCHEMES FOR PMLS MATCHED
TO ANISOTROPIC MEDIA

The split PML time domain equations (4.36) are like the split equations (3.1a), (3.1b) in a

PML matched to a vacuum, with D in place of E. The FDTD equations are also like those

in a vacuum, for instance of the form (5.1) for (4.36a). This allows the six subcomponents of

auxiliary field D to be advanced in time, that is Dn advanced to Dn+1. Then, En+1 is computed by

solving for the E components the algebraic system (4.37). If the permittivity is also anisotropic,

the advance of H field by one time step is similar, with B and H in place of D and E.

With the CPML or the NPML, obtaining the discretized equations of the correspond-

ing PML is straightforward, provided that the time domain equations and their discretized



70 PERFECTLY MATCHED LAYER (PML) FOR COMPUTATIONAL ELECTROMAGNETICS

counterparts do exist in the considered anisotropic medium. Like with a PML matched to a

vacuum or to an isotropic lossy medium, described in detail in the above:

r in the CPML, the FDTD equations are the same as in the corresponding medium,

with only the addition of ψ variables to the discretized curls. The ψ variables are

advanced in time with (5.9), (5.10) that do not depend on the constitutive parameters

of the medium.

r in the NPML, the FDTD-PML equations are the same as in the corresponding

medium, with ξ variables instead of E and H components in the curls. The ξ vari-

ables are advanced with equations like (5.11) that do not depend on the constitutive

parameters of the medium.

In terms of effort to encoding the scheme, the CPML and the NPML are very attractive,

because most of the code used in the inner domain can be reused in the PML ABC. The only

modification in the PML is the addition of the advance of the auxiliary variables ψ or ξ , and

the introduction of these variables in the right-hand side of the FDTD equations.

5.4 FDTD SCHEMES FOR PMLS MATCHED
TO DISPERSIVE MEDIA

In the cases of the CPML and the NPML, the comments in the previous paragraph also

hold. The FDTD equations in the PML are identical to those in the dispersive medium,

with only the addition of ψ variables to the curls in the CPML, and with ξ variables instead

of E and H components in the curls of the NPML. So, once again, on condition that a

FDTD scheme is available for the dispersive medium, deriving the FDTD scheme for the

corresponding CPML or NPML is trivial, even in the case where the medium is dispersive and

anisotropic.

In the case of the uniaxial PML matched to isotropic dispersive media reported in [33],

using (4.45) and (4.46) three time domain equations are obtained for each component of the

E field, as using (4.30) and (4.31) in the PML for lossy media. Since (4.45b) and (4.46) are

like (4.30b) and (4.31), the FDTD advance of component Ex is also performed in three steps.

Two steps are like in the lossy case. The third step that replaces (5.19) is governed by the

time domain counterpart of (4.45a) that involves the frequency-dependent permittivity of the

medium. For the discretization of this equation, the reader is referred to [33, 40].

5.5 PROFILES OF CONDUCTIVITY IN THE PML ABC
As mentioned in Section 2.4, in numerical methods a spurious reflection is produced from

vacuum–PML and PML–PML interfaces. To reduce this reflection the conductivity in the

PML must grow from a small value in the vacuum–PML interface to a larger value beside
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the PEC that ends the PML. Two profiles of conductivity are of current use, namely the

polynomial profile and the geometrical profile [41]. Only the electric conductivity is considered

in the following. The magnetic conductivity can be obtained using the matching condition

(1.9).

With the polynomial profile, the PML conductivity σ ρ , either σ x , σ y , or σ z, varies as

σρ(ρ) = σm

(ρ

δ

)n
(5.20)

where n is the degree of the polynomial, δ is the PML thickness, ρ is the distance from the

interface, and σm is the conductivity on the outer side of the PML (for ρ = δ). Using (2.26b)

the theoretical reflection at normal incidence is then

R(0) = e−(2/(n+1))(σmδ/ε0c ). (5.21)

From this, for a given reflection R(0), σm reads

σm = −
(n + 1)ε0c

2δ
ln R(0). (5.22)

The actual conductivity implemented at FDTD mesh node of index L (L = 0 in the interface)

is computed as

σρ(L) =
1

1ρ

∫ ρ(L)+1ρ/2

ρ(L)−1ρ/2
σρ(u)du (5.23)

where 1ρ is the space step. At mesh points of indexes L = 0, 1/2, 1, . . . , N − 1/2, this leads

to

σρ(0) =
σm

(n + 1)2n+1 Nn
= −

ε0c ln R(0)

2n+21ρNn+1
(5.24a)

σρ(L > 0) = σρ(0)
[

(2L + 1)n+1 − (2L − 1)n+1
]

(5.24b)

where N is the number of FDTD cells in the PML thickness.

With a geometrical profile the conductivity grows as a geometrical progression of the

form

σρ(ρ) = σ0

(

g 1/1ρ
)ρ

(5.25)

so that the conductivity is multiplied with factor g from one FDTD cell to the next. The

corresponding normal reflection (2.26b) is then

R(0) = e−(2/ε0c )[(g N−1)/ ln g]σ01ρ, (5.26)
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and for a given reflection R(0), σ 0 reads

σ0 = −
ε0c

21ρ

ln g

g N − 1
ln R(0). (5.27)

Finally, using (5.23) the numerical conductivity at indexes L = 0, 1/2, 1, . . . , N − 1/2, reads

σρ(0) = σ0

√
g − 1

ln g
=
ε0c (1 − √

g ) ln R(0)

21ρ(g N − 1)
(5.28a)

σρ(L > 0) = σ0
g − 1

√
g ln g

g L =
ε0c (1 − g ) ln R(0)

21ρ
√

g (g N − 1)
g L. (5.28b)

The polynomial profile is the most used in the literature, with degrees ranging from 2 to 5. The

geometrical profile has an interesting property. The ratio of successive numerical conductivities

(5.28b) is constant throughout the PML. Since a PML with a growing conductivity is nothing

but a juxtaposition of successive PMLs with different conductivities, a spurious reflection

occurs from every inner interface. This reflection mainly depends on the ratio of the successive

conductivities. From this, the constant ratio of the geometrical profile is better suited to reduce

the spurious reflection. This is especially the case when evanescent waves are present. In that

case, the geometrical profile allows the PML thickness to be thinner than with the polynomial

profile. This was investigated in [15, 41], and is discussed in Chapter 6.

5.6 THE PML ABC IN THE DISCRETIZED FDTD SPACE
In the previous chapters, the properties of PML media are derived in the continuous space. In

view of application as an ABC, the most important feature is the absence of reflection from

the interface between an inner medium and its corresponding PML. Unfortunately, in the

discretized space of the FDTD method, or more generally with any finite method, things are a

little different. An amount of reflection is produced from vacuum–PML, or from PML–PML,

interfaces, despite the fact that the continuous theory predicts no reflection. It can be shown

easily by means of numerical experiments that this spurious reflection may be either quite small,

smaller than −80 dB for example, or quite large, close to total reflection. It also appears that

the reflection strongly depends on parameters such as the thickness of the PML expressed in

cells, the conductivity profile σ ρ(ρ) in the PML, or the separation between the PML and the

object of interest. All this implies that a theory is needed in view of predicting the spurious

reflection, so as to be able to control it and to optimize the parameters of the PML ABC.

A number of experiments showing the presence of numerical reflection can be found in

the literature. Here we show three experiments drawn out from [5], [41], and [42]. The first

one deals with the reflection of traveling plane waves from a plane PML boundary like the one

in Fig. 2.4. Details of the calculation can be found in [5]. Results in Fig. 5.1 give the theoretical
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FIGURE 5.1: Comparison of the theoretical reflection R(θ ) with results of FDTD experiments from

[5], for R(0) = −60 dB and R(0) = −100 dB. The PML is four cells in thickness with a parabolic

profile of conductivity (n = 2 in (5.20))

reflection (2.26), and the observed reflection from FDTD simulations, for two values of the

normal reflection (2.26b). As observed, the actual FDTD reflection significantly differs from

the theoretical reflection. Notice that the smaller the theoretical reflection R(0), the larger the

difference between the actual value and the theoretical value.

The second experiment is provided in Fig. 5.2. In that case, a 20-cell-long thin plate is

placed within a domain surrounded with a PML ABC. A unit-step incident wave strikes the

plate. What is reported in Fig. 5.2 is the field normal to the surface of the plate at its end.

Besides a reference solution computed within a very large domain, denoted as the exact solution,

results are given for various plate–PML separations, from 2 FDTD cells to 20 FDTD cells. As

clearly observed, the results strongly depart from the reference solution when the PML–plate

separation is small. From the discussion in Chapter 1 about the location of ABCs with respect

to the sources, such a behavior in function of the plate–PML separation suggests that the PML

does not absorb properly the evanescent fields that surround the plate. This will be confirmed

later in this chapter by means of the theory of the numerical reflection.

The last experiment shows the field radiated from a short dipole antenna. The upper

part of Fig. 5.3 compares the fields computed using Higdon operators, the matched layer ABC

[13, 14], and three PML ABCs of thicknesses 4, 8, 12 FDTD cells, respectively. As observed,

the PML ABC yields about perfect results, even with a 4-cell-thick PML. Nevertheless, in

frequency domain it appears that the results strongly depart from the analytical solution below

a certain frequency with the 4- and 8-cell-thick PMLs. This will be interpreted later with the

theory of the numerical reflection.
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FIGURE 5.2: Electric field normal to the surface of a 20-cell-long 2D thin plate. The space step is 5 cm,

the PML conductivity is linear (n = 1 in (5.20)), and the incident wave is of the form [1 − exp(t/τ )],

where τ = 1 ns

In the following, the theory of the propagation and reflection of waves in the FDTD

PML is derived in the 2D case. As mentioned in Chapter 2, use of a PML medium as an

ABC is mainly a 2D problem, even in 3D applications. Moreover, in realistic applications of

the FDTD method, the theory cannot predict with great accuracy the reflection from a PML

ABC, because the waves that will strike the ABC are not known before the calculation. The

objective of the numerical theory is only to allow us to understand why an amount of spurious

reflection is present, so as to be able to design the parameters of the PML in view of reducing

its thickness and placing it as close as possible to the region of interest of the computational

domain. To this end, the 2D case is sufficient.
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FIGURE 5.3: Electric field radiated by a short dipole. FDTD results from [42] are compared with

analytical results in time domain (upper part) and in frequency domain (lower part). The conductivity

in the PMLs varies geometrically (5.25) with g = 2.15 and R(0) = −40 dB. The dipole and the point

of observation are 2 FDTD cells from two corners of a 14-14-14-cell vacuum surrounded with the

ABCs

5.6.1 Propagation of Plane Waves in the Split FDTD-PML
In this paragraph, we consider the split PML, in the 2D case of Chapter 2. The CPML, the

NPML, and the uniaxial PML will be addressed later. The stretching factor is (2.6), the case

of the CFS-PML factor (3.50) will also be addressed later.
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Let us consider the 2D FDTD equations corresponding to the continuous equations

(2.3), in the case where the matching condition (1.9) holds:

En+1
x = Ay En

x +
1t

ε0
By
1Hn+1/2

zx +1Hn+1/2
zy

1y
(5.29a)

En+1
y = Ax En

y −
1t

ε0
Bx
1Hn+1/2

zx +1Hn+1/2
zy

1x
(5.29b)

Hn+1/2
zx = Ax Hn−1/2

zx −
1t

µ0
Bx

1En
y

1x
(5.29c)

Hn+1/2
zy = Ay Hn−1/2

zy +
1t

µ0
By
1En

x

1y
(5.29d)

with A and B from (5.2) or (5.3). By enforcing a plane wave of the form (2.4) in (5.29), we

obtain

ε06y E0x = −
1t

1y
By sin

k y1y

2
H0z (5.30a)

ε06x E0y =
1t

1x
Bx sin

kx1x

2
H0z (5.30b)

µ06x H0zx =
1t

1x
Bx sin

kx1x

2
E0y (5.30c)

µ06y H0zy = −
1t

1y
By sin

k y1y

2
E0x (5.30d)

where kx and k y are the components of the wave vector in the discretized space, and:

6u =
e jω1t/2 − Aue− jω1t/2

2 j
(u = x, y). (5.31)

System (5.30) is identical to (2.5) with the changes

ku →
1

1u
sin

ku1u

2
(u = x, y) (5.32a)

su = s ∗
u →

6u

ω1t

1

Bu
(u = x, y) (5.32b)

so that the solutions of (5.30) can be obtained from the solutions of (2.5) with the changes

(5.32). This yields the following equation of dispersion in the FDTD PML,

1

c 21t2
=

1

�2
x1x2

sin2 kx1x

2
+

1

�2
y1y2

sin2 ky1y

2
(5.33)



THE PML ABC FOR THE FDTD METHOD 77

where

�u = 6u
/

Bu
(u = x, y), (5.34)

and the following wave numbers, in the general case of nonhomogeneous waves:

sin
kx1x

2
=
1x

c1t
�xC(χ, θ ) (5.35a)

sin
k y1y

2
=
1y

c1t
�y S(χ, θ ). (5.35b)

Notice that (5.35) yields (2.27) if the space and time steps vanish. Using (5.32) in (2.12) the

ratio E0/H0 (2.14) is left unchanged, it equals the impedance of a vacuum, as in the continuous

PML.

5.6.2 Reflection from a PML–PML Interface
Let us now consider the transmission and reflection of a wave at an interface between two

infinite PMLs, with uniform conductivities σ x1 and σ x2 in the PMLs and σ x0 in the interface

(Fig. 5.4). As in the continuous case, the k y wave numbers in the two media are equal, that is

k y1 = k yr = k y2. From this and from (5.35b), the set (2.33) also holds. Because in the FDTD

grid there are Ey nodes in the interface, the same Ey values are used in the two media for the

advance of field components half a cell from the interface, so that continuity of Ey is retained in

the interface. This reads Ey1 + Eyr = Ey2, or with x = 0 in the interface, E0y1 + E0yr = E0y2,

Ey   nodes

Hzx

Hzy

Interface

Interface

 x = 0

σx0 
σx1 σx2 

PML 1 PML 2 

a) 
nodes

σx(1) σx(N-1)
σx(1/2)

Vacuum N-cell PML

σx(0)
σx(N-1/2)

L = 0 L = 1 L = N-1 L = N

PEC

b) 

FIGURE 5.4: An interface between, (a) two infinite PML media of conductivities σ x1 and σ x2, (b) a

vacuum and a N-cell-thick PML ABC with conductivity growing in the PML
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as in the continuous case (2.18a). There is no Hz node in the interface. In place of (2.18b), a

second equation connecting the incident, reflected, and transmitted waves is provided with the

FDTD equation of the interface (5.29b)

En+1
y (x = 0) = Ax0 En

y (x = 0)

+
1t

ε0

Bx0

1x

[

Hn+1/2
z

(

x =
1x

2

)

− Hn+1/2
z

(

x = −
1x

2

)]

(5.36)

where Ax0 and Bx0 are (5.2), (5.3) for conductivity σ x0. Consider now components Ey and

Hz. At location x in medium 1, with x = 0 in the interface they can be written as

Ey1 + Eyr =
[

E0y1e− jkx1x + E0yr e− jkxr x
]

e jωt− jk y1 y (5.37a)

Hz1 + Hzr =
[

H0z1e− jkx1x + H0zr e− jkxr x
]

e jωt− jk y1 y , (5.37b)

and in medium 2:

Ey2 = E0y2e jωt− jkx2x− jk y1 y (5.38a)

Hz2 = H0z2e jωt− jkx2x− jk y1 y . (5.38b)

Moreover, using (5.30b), (5.34), and (5.35a), H0z can be expressed as

H0z =
√

ε0

µ0

1

C(χ, θ )
E0y , (5.39)

so that H0z1, H0zr , H0z2 can be replaced with E0y1, E0yr , E0y2, in (5.37b) and (5.38b). Defining

then R as the ratio of the reflected to the incident E fields in the interface, that is R = E0yr /E0y1,

we have E0yr = RE0y1 and from the continuity of Ey in the interface, E0y2 = (1 + R)E0y1.

Finally, since with (2.33) we have kxr = −kx1 and C(χ1, θ1) = −C(χ r ,θ r ) = C(χ2, θ2), Eqs.

(5.37) and (5.38) become

Ey1 + Eyr = E0y1

[

e− jkx1x + Re jkx1x
]

e jωt− jk y1 y (5.40a)

Hz1 + Hzr =
√

ε0

µ0

1

C(χ1, θ1)
E0y1

[

e− jkx1x − Re jkx1x
]

e jωt− jk y1 y (5.40b)

Ey2 = (1 + R)E0y1e jωt− jkx2x− jk y1 y (5.41a)

Hz2 = (1 + R)

√

ε0

µ0

1

C(χ1, θ1)
E0y1e jωt− jkx2x− jk y1 y . (5.41b)
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Using these field components in (5.36), we obtain

(1 + R)e jω1t/2 = Ax0(1 + R)e− jω1t/2

−
1t

√
ε0µ01x

Bx0
1

C(χ1, θ1)

[

(1 + R)e− jkx21x/2 − (e jkx11x/2 − Re− jkx11x/2)
]

. (5.42)

By solving for R, the reflection from the PML–PML interface is then

R = −
2 j�x0 + c1t

1x
1

C(χ1,θ1)

[

e− jkx21x/2 − e jkx11x/2
]

2 j�x0 + c1t
1x

1
C(χ1,θ1)

[

e− jkx21x/2 + e− jkx11x/2
] . (5.43)

The exponentials involving kx wave numbers can be removed using (5.35a). This leads to

R = −
2 j�x0 +3x2 − j�x2 −3x1 − j�x1

2 j�x0 +3x2 − j�x2 +3x1 − j�x1
(5.44)

where

3xi =

√

1

C(χ1, θ1)2

c 21t2

1x2
−�2

xi . (5.45)

Notice that R depends on conductivities σ x1, σ x2, σ x0 from �x1, �x2, �x0 (5.34). It also

depends on the incidence angle θ1 and on the evanescence parameter χ1 from3x1,3x2 (5.45).

As can be shown, (5.43) holds as a special case (χ1 = 1, so that C(χ1, θ1) = cos θ1) the

reflection coefficient given in [43] and [44]. A software package for computing reflection (5.44)

is provided at www.morganclaypool.com/page/berenger.

An important simplification of (5.44) is obtained in the case where the parameter coshχ1

of the incident wave is large enough (strongly evanescent waves). In this case 3xi → j�xi so

that R tends to

R∞ = −
�x0 −�x1

�x0
. (5.46)

Moreover, by assuming that ω1t ≪ 1 and σx1t/ε0 ≪ 1 for all the conductivities, two as-

sumptions that usually hold in PMLs, the �xi parameters can be approximated as

�xi ≈
1

2 j
( jω1t + σxi1t/ε0) (5.47)

so that (5.46) becomes

R∞ =
σx1 − σx0

jωε0 + σx0
. (5.48)
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Finally, at a vacuum–PML interface (σ x1 = 0) the limit of R as coshχ1 tends to infinity reads

R∞ =
jσx0

/

ε0 ω

1 − jσx0

/

ε0 ω
. (5.49)

An example of reflection R from (5.44) is shown in Fig. 5.5, for the incidence θ1 = ±π/4

and coshχ1 in the range 1–1000 (θ1 = +π/4 and χ1 < 0, or θ1 = −π/4 and χ1 > 0, so

that the wave propagates and is evanescent toward + x). As observed, from traveling waves

(coshχ1 = 1) to strongly evanescent waves (large coshχ1) R grows up to R∞. In accordance

with (5.49), the strongly evanescent waves are reflected in totality (R = −1) at frequencies far

smaller than cutoff

fc =
σx0

2πε0
(5.50)

that equals 10 MHz in the case of Fig. 5.5.

Validity of (5.46)–(5.48) is that of the assumption 3xi → j �xi , for i = 1, 2. Using

(5.47) and with χ1 = χ2 and θ1 = θ2 from (2.23), this yields the condition

|C (χ1, θ1)| ≫
c1t

1x

∣

∣

∣

∣

2 j

jω1t + σxi1t/ε0

∣

∣

∣

∣

(i = 1, 2). (5.51)

At low frequency, for f ≪ σxi/2πε0, (5.51) reduces to

coshχ1 ≫
2c ε0

σxi1x
(i = 1, 2). (5.52)

Condition (5.52) can be interpreted by considering the absorption coefficient of a plane wave

in a continuous PML (2.35). If (5.52) holds the exponential coefficient in (2.35) is close to zero

for x = 1x. This means that the evanescent wave in the PMLs must be absorbed in totality

upon a range shorter than the FDTD cell size 1x, i.e., within one cell. This is summarized in

Fig. 5.6. This cannot be achieved, resulting in a strong numerical reflection from the interface.

Notice that in the case of an interface between a vacuum (σ x1 = 0) and a PML, (5.52) requires

coshχ1 to be infinite. In fact, in that special case, using (5.47) in (5.44) it can be shown

easily that a sufficient condition for the reflection to be total below frequency f c (5.50) is that

(5.52) holds for conductivity σ x0 (and for σ x2 because σ x0 < σ x2). In the general case, for

f > σxi/2πε0 (5.51) shows that smaller values of coshχ1 make R∞ valid. This also holds with

a vacuum–PML interface for f > f c , as observed in Fig. 5.5.

Let us now consider the case of homogeneous waves, where C(χ1,θ1) = cosθ1. Assuming

as in the above that ω01t ≪ 1 and σx1t/ε0 ≪ 1, the following approximation to (5.44) can
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FIGURE 5.5: Reflection (5.44) from the interface between a vacuum and an infinite PML medium,

for incidence θ = ±π/4 and various values of the evanescence coefficient coshχ , from traveling waves

(coshχ = 1) to strongly evanescent waves (large coshχ )

be derived:

R ≈ −
cos θ1

4ε0c
(2σx0 − σx1 − σx2)1x −

cos2 θ1

16ε2
0c 2

(σx1 + σx2 + 2 jωε0)(σx2 − σx1)1x2. (5.53)

The first-order term does not depend on frequency. At an interface between a vacuum and a

PML of constant conductivity (σx1 = 0 and σx0 = σx2), this term is proportional to the PML

conductivity σ x2. In the case where σx0 = (σx1 + σx2)/2 the first-order term vanishes and the

reflection is proportional to 1x2, as noted in [43]. With σ x1, σ x2, σ x0, 1x, θ in Fig. 5.5,

(5.53) yields R = −97.46 dB for ωε0 ≪ σx2, in accordance with the low frequency plateau of

the traveling wave curve in the figure.

In summary, at a single interface between two infinite PMLs the refection of homo-

geneous traveling waves mainly depends on the difference of the two conductivities. At a

vacuum–PML interface the reflection can be reduced by decreasing the conductivity in the

PML. But for a PML of finite thickness the overall absorption is then decreased. This is why a

conductivity growing from a small value in the vacuum–PML interface to a larger value beside
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FIGURE 5.6: Theoretical decrease of a wave in the PML medium versus the FDTD grid, for various

evanescence parameters χ

the outer side of the PML is used in actual FDTD PMLs. The reflection coefficient for such

PMLs of finite thickness is derived in the next paragraph. The most important conclusion of

the present paragraph is that evanescent waves may be strongly reflected from FDTD PMLs.

This reflection is total below frequency (5.50) if (5.52) holds. This is the case in Fig. 5.2 where

the low frequencies are strongly reflected when the PML is close to the plate, that is within the

evanescent region, resulting in a late time spurious reflection in time domain. Such a strong

reflection of evanescent waves is present in most physical problems. From this, one could con-

clude that the PML ABC suffers from the same drawback as the previously used ABCs that

could not be placed within the evanescent regions. In fact, some remedies discussed later will

render the PML ABC capable of absorbing evanescent waves with a relatively small spurious

reflection, so that it can be placed within evanescent regions, close to the region of interest of

actual calculations.

5.6.3 Reflection from a N-Cell-Thick PML
We now consider an incident wave with parameters χ1, θ1, and a PML N cells in thickness

with a nonuniform conductivity, i.e., a conductivity depending on the mesh index L (Fig. 5.4).

The wave transmitted into the PML is of the form (2.12), (2.13), with the sine and cosine

replaced with (2.28). At every interface, k y is left unchanged and (2.33) holds, so that k y = k y1,

χ = χ1, and θ = θ1 in the whole PML. The incident and reflected waves can be written as

with a single interface (5.37), (5.40). Denoting by T(L) an unknown quantity at row L, let the

electric field Ey be written as

Ey (L) = E0y1T(L)e jωt− jk y1 y (L = 1, . . . , N − 1). (5.54)
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Similarly, at row L + 1/2, using (2.12), (2.13) and (5.39), let the magnetic field be written as

Hz(L + 1/2) =
√

ε0

µ0
E0y1

1

C(χ1, θ1)
T(L + 1/2)e jωt− jk y1 y (L = 0, . . . , N − 1) (5.55a)

Hzx(L + 1/2) = C(χ1, θ1)2 Hz(L + 1/2) (L = 0, . . . , N − 1). (5.55b)

And finally, at the end of the PML

Ey (N) = 0. (5.56)

Using (5.40a), (5.54) and (5.55) into the N FDTD equations of the advance on time of Ey ,

and into the N equations of the advance of Hzx (5.29c), from L = 0 to L = N − 1, we obtain

a set of 2N equations for the 2N unknowns R,T(1/2), . . . ,T(N − 1/2). After eliminating the

incident wave number using (5.35a), this set can be written in the form

M ·
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T(N − 1/2)
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αD(1/2)

0
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(5.57)

where M is the tridiagonal matrix

M =





















U αD(0)...........................................................

...............................................................................

............− αD(L) 1 αD(L)..........................

............− αD(L + 1/2) 1 αD(L + 1/2)......

...............................................................................

..............................................− αD(N − 1/2) 1





















and:

α =
c1t

1x

1

C(χ1, θ1)
; D(L) =

1

2 j�x(L)

U = 1 + αD(0)
[

√

1 − Q2 − j Q
]

; Q =
1

α
sin

ω1t

2

V = −1 + αD(0)
[

√

1 − Q2 + j Q
]

.

System (5.57) can be solved recursively for the unknown of interest R. Notice that the reflection

depends on the conductivity profile σ x(L) in the PML through �x(L).
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For strongly evanescent waves, i.e., if coshχ1 is large enough, α vanishes and then all the

nondiagonal terms of matrix M vanish, and finally (5.57) reduces to the scalar equation RU =
V . Under the same conditions as in the previous paragraph (ω1t ≪ 1 and σx(0) 1t/ε0 ≪ 1)

reflection R from (5.57) also tends to the limit R∞ (5.49), with just σ x(0) in place of σ x0. The

reflection is total below frequency σx(0)/2πε0, on condition that (5.52) holds for σ x(0).

In conclusion, the FDTD reflection from a vacuum–PML interface can be predicted

easily with (5.57) for any N-cell-thick PML with conductivity varying in the PML. To do

this, a software package is provided at www.morganclaypool.com/page/berenger. What is of

primordial importance is that the strongly evanescent waves are totally reflected below frequency

(5.50) that is proportional to the conductivity in the interface σ x(0). Such a reflection is observed

clearly with the field radiated from a dipole in the lower part of Fig. 5.3, where frequency f c

(5.50) equals 50.3 MHz with the 4-cell PML and 2.25 MHz with the 8-cell PML. In time

domain this means that a total reflection will appear after a delay tc of the order of the inverse

of f c (5.50). This is exactly what is observed in Fig. 5.2. Thus, the conductivity in the interface

σ x(0) is a critical parameter as designing a PML ABC, especially in problems of interaction of

an incident wave with a scattering structure that are discussed in the next chapter.

Fig. 5.7 shows a comparison of the continuous reflection (2.26a) with the discrete reflec-

tion (5.57) for the same PMLs as in Fig. 5.1. The agreement of Fig. 5.1 with Fig. 5.7, that is of

FDTD experiments with reflection (5.57), is good. The small difference is due to uncertainties

in the measurements of the FDTD reflection in [5].
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5.6.4 Reflection from the CPML, the NPML, and the Uniaxial PML
The numerical reflection R in the 2D TE case is derived for the uniaxial PML and the CPML

in [25], and for the NPML in [29]. The derivations are close to that of the split PML in the

previous paragraph, details can be found in the two papers. The results are as follows:

r the numerical reflection from the uniaxial PML and from the NPML are identical,

rigorously, to that from the split PML. This means that the uniaxial PML and NPML

reflections are also given by (5.44) for a single interface between two infinite PMLs,

and by (5.57) for a PML of finite size like the ones used as an ABC in the FDTD

method. The equality is rigorous on condition that the same discretization, either a

linear one (5.2) or an exponential one (5.3), is used in the three PMLs.

r the numerical reflection from a convolutional PML (CPML) is also given by (5.44)

and (5.57), but with a little change in two parameters. Coefficients Au and Bu defined

in (5.2)–(5.3) and used both in (5.44) and in (5.57) through�u (5.34) must be replaced

with:

Au = 1; Bu =
1

κu
+

qu

1 − pue− jω1t
(5.58)

where pu and q u are given by (5.10) and κu is a real stretch. Bu in (5.58) is valid for

a CFS-PML with stretching factor (3.50) and for a regular stretch (2.6) with κu =1

and αu = 0. Then, even with a regular stretch the reflection from the CPML differs

from that of the split PML, the uniaxial PML, or the NPML. From a few experiments

provided in [25] it seems that the reflection of homogeneous waves from the CPML

is slightly smaller than that from the other three PML implementations. Nevertheless,

the difference is not significant. The interest of the CPML implementation is mainly

in using a CFS stretching factor (3.50) in place of (2.6).

5.6.5 Reflection from the CFS-PML
The complex frequency shifted PML (CFS-PML) consists in using the stretching factor (3.50)

in place of the regular factor (2.6). The factor (3.50) can be used with the uniaxial PML [45]

or with the NPML, but the most used implementation is the convolutional CFS-PML [27].

As stated in the previous paragraph, in that case the numerical reflection is given by (5.44) and

(5.57) with (5.58).

Let us now consider the case where the parameter coshχ1 of the incident wave is large

(strongly evanescent waves). By a derivation similar to that performed with the regular PML
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for various values of the evanescence coefficient coshχ , from traveling waves (coshχ = 1) to strongly

evanescent waves (large coshχ )

in Section 5.6.2, it can be shown easily that reflection (5.44) tends to

R∞ =
j αx0+σx0

ε0ω

1 − j αx0+σx0

ε0ω

σx0

αx0 + σx0
(5.59)

where σ x0 and αx0 are σ x and αx in the interface. An example of reflection R from (5.44)

with (5.58) is shown in Fig. 5.8 for the same PMLs as in Fig 5.5. This figure clearly shows

that the total reflection of strongly evanescent waves can be removed with the CFS-PML. The

reflection of low frequencies is bounded with a limit R∞ given by the second ratio in (5.59).

In addition, notice that the reflection departs from R∞ below a certain frequency. This is

because the theoretical absorption decreases below f α (3.51), resulting in a smaller numerical

reflection.

Fig. 5.9 shows another comparison of the regular PML with the CFS PML [25]. The

upper part shows that the CFS reflection can be widely smaller than the regular one around

and below f α (=18 MHz). However, the CFS reflection grows at low frequency, in the region

where the coefficient in (3.54) grows and becomes close to unity. Thus, for the absorption of
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evanescent waves, the CFS PML is only better in a band of frequency. This is in accordance

with (3.54). Because the coefficient in (3.54) only depends on the product ω sinhχ , the CFS

PML can also improve the absorption in a band of coshχ , as illustrated in the lower part of

Fig. 5.9.

In summary to the results in Figs. 5.8 and 5.9, the CFS PML can widely improve the

absorption of evanescent fields. Nevertheless, this improvement depends on many parameters,

namely ω, sinhχ , σx/αx , and θ . Especially, ω and sinhχ are critical parameters in (3.54), so

that one could fear that wide-band applications could not be achieved. Fortunately, as discussed

in Section 3.8, in many physical problems ω and sinhχ depend on each other in a favorable
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manner. More precisely, the product ω sinhχ does not depend on frequency. This allows a

reasonable coefficient (3.54) to be achieved at any evanescent frequency, resulting in a quite

good absorption of evanescent waves in realistic problems. Such an achievement is illustrated

in the next chapter for wave-structure interaction problems and waveguide problems.
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C H A P T E R 6

Optmization of the PML ABC in
Wave-Structure Interaction and

Waveguide Problems

In this chapter, use of the PML ABC in two typical applications of the FDTD method is

described in detail. The numerical reflection observed from the PML is interpreted and the

PML parameters are optimized so as to reduce the computational cost of the PML while

preserving a satisfactory simulation of free space.

The considered applications are, first a typical wave-structure interaction problem like

the ones faced in electromagnetic compatibility (EMC), second a waveguide problem.

6.1 WAVE-STRUCTURE INTERACTION PROBLEMS
Numerous applications of the FDTD method are wave-structure interaction problems, in the

fields or Radar Cross Section (RCS), Bioelectromagnetics, or Electromagnetic Compatibility

(EMC). In the latter case, typical problems are calculations of the fields and currents induced

upon an object of interest by such incident waves as a lightning pulse or a nuclear electromagnetic

pulse. These problems are open because the scattered field radiates toward the surrounding free

space, so that an ABC is needed to limit the size of the computational domain.

To compute acceptable results in EMC problems, it is known that such ABCs as the

one-way wave equation [9, 10] or the matched layer [13, 14] must be placed some distance

from the scattering structure, out of the evanescent region. In general, the required distance

is of the order of the largest size of the structure. With the PML ABC, simple numerical

experiments easily show that the PML either can be placed quite close to the structure, or

must be placed some distance away, depending on the PML parameters. In the latter case, the

overall computational domain is as large as with previously used ABCs, while in the former

case it is dramatically reduced. Thus, the design of the PML strongly impacts the overall size

of the computational domain. In the following the optimization of PMLs to be placed in the

evanescent region, close to the structure, is addressed. Two optimum PMLs are possible, the
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FIGURE 6.1: Typical shape of the electric field normal to the surface of a scattering structure, computed

with a FDTD PML ABC placed close to the structure

first one based on use of the regular stretching factor (3.3), the second one based on the CFS

factor (3.50).

6.1.1 The General Shape of the Results Computed with a PML Placed Close
to a Structure

Various examples of wave-structure interaction results computed with PMLs close to the

structure of interest can be found in [5], [41], [42]. If the PML is not properly designed, an

important amount of spurious reflection occurs. This reflection cannot be explained with the

continuous PML theory. It results from the FDTD discretization of space. The numerical

reflection was analyzed empirically in [41] and interpreted theoretically later [46], [15]. In all

the numerical experiments the electric field on the surface of scattering structures is correct

for some time and then strongly departs from the exact solution. An example is shown in

Fig. 5.2. In frequency domain, the electric field on the surface always is shaped as in Fig. 6.1.

Below a certain frequency f c depending on the conductivity implemented in the vacuum–PML

interface σ x (0), a strong reflection is observed, i.e., the results strongly depart from the exact

solution computed with a PML or any ABC set far away from the structure. From f c to the

resonance frequency of the structure, the results oscillate about the exact solution. And finally,

above the resonance frequency no significant numerical reflection is present.

6.1.2 Interpretation of the Numerical Reflection
The shape of the spurious fields that contaminate the electric field on the surface of the structure

(Fig. 6.1) can be interpreted easily by means of the theory of the numerical reflection derived in
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Section 5.6. First, frequency f c found on a pure empirical basis [41] is nothing but frequency

(5.50) derived from the numerical theory. This means that the strong spurious field below f c

in Fig. 6.1 is due to the total reflection of evanescent waves whose coshχ is large enough so

as condition (5.52) holds. In general, below f c the field on the surface is several times larger

than its exact value, because there are multiple reflections between the structure and the PML.

Thus, when the regular stretching factor (3.3) is used, conductivity σ x(0) in the vacuum–PML

interface is a critical parameter that plays a key role in the design of PMLs to be placed in the

evanescent region.

To interpret the oscillatory reflection in Fig. 6.1, we must have an estimate of the

parameter coshχof the evanescent waves surrounding the scattering structure. Assuming that

these waves decay as

e− ω
c sinhχd (6.1)

where d is the distance from the structure, an estimate of sinhχ can be found by observing that

the characteristic length of the decay of evanescent waves around a structure is of the order of

its largest size at any frequency lower than the resonance. For a structure of largest size w this

means that (6.1) is small for d = w, so that we can write:

ω

c
sinhχw = p (6.2)

where p is of the order of, or larger than, unity. For our purpose, the exact value of p is of little

importance, what is important is the frequency dependence of coshχ . From (6.2) we have

coshχ =

√

1 +
p2c 2

ω2w2
(6.3)

which shows that coshχ is close to unity at the resonance frequency of the structureω0 = π c /w.

Finally, (6.3) can be rewritten as

coshχ =

√

1 +
(cosh2

χ0 − 1) f 2
0

f 2
(6.4)

where cosh χ0 is the value of cosh χ at the resonance f 0. Notice that cosh χ and sinhχ vary

as 1/ f for f ≪ f0, like in a waveguide for f ≪ fcutoff (1.4b). Also, notice that ω sinhχ (6.2)

does not depend on frequency, as a consequence of the fact that the characteristic length of the

decay of evanescent waves is not frequency dependent.

Calculation of the numerical reflection from a PML with (5.57) and (6.4) clearly shows

that the oscillatory reflection in Fig. 6.1 is due to the reflection of evanescent waves of the form

(6.4). A detailed analysis can be found in [15]. At frequencies higher than f c the evanescent
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waves penetrate within the PML with only a small reflection from the vacuum–PML interface.

Then, in the PML where the conductivity grows from one FDTD cell to the next, these

frequencies are partially reflected from the inner interfaces of the PML. As frequency grows

the reflection is mainly due to an electric conductivity or a magnetic conductivity, i.e., the

reflection is either positive or negative. From this, the field computed on the structure, which is

the addition of the exact field with the reflected field, oscillates about the exact field in function

of frequency, as represented in Fig. 6.1.

Fig. 6.2 shows an attempt to reconstructing a FDTD result in [41] by means of the

numerical reflection (5.57) and assumption (6.4). The upper part from [41] gives the normal
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electric field on a 2D 20-cell-thin plate surrounded with various 4-cell PMLs set two cells

from it. The lower part shows quantity 1 − R computed by (5.57) and (6.4) for the same

four PMLs as in the FDTD calculation, at incidence 60◦. As observed, the oscillatory region

closely resembles that of the FDTD result. The low frequency plateau is also like its FDTD

counterpart, although its magnitude, which does not depend on θ (R = −1 in this region), is

lower than the FDTD one. The difference is due to multiple reflections between the PML and

the structure so that the field upon the structure is not simply 1 − R. In conclusion, although

such little arbitrary parameters as coshχ0 are of concern, the theory of numerical reflection

allows all the characteristics of the FDTD results to be well reconstructed and interpreted in

the evanescent region of the frequency spectrum, below the resonance frequency. This clearly

demonstrates that the spurious reflection in interaction problems is due to evanescent fields

with frequency dependence like (6.2).

6.1.3 Design of the PML Using a Regular Stretching Factor
In this paragraph, we consider PMLs with stretching factors (3.3). A practical method for

designing a PML to be placed very close to the scattering structure, only two FDTD cells from

it, has been proposed in [41] and [47]. The design of the PML is based on the existence of

three critical parameters that impact the reflection from the PML ABC placed in evanescent

fields.

The first critical parameter is the conductivity in the interface σ x(0) that must be small

enough in order that all the frequencies of interest are above frequency f c (5.50), because below

f c the reflection is total from the vacuum–PML interface. This can be written as

σx(0) =
2πε0 fmin

θ
(6.5)

where f min is the smallest frequency of interest and θ is a margin factor that will not be larger

than 10 in actual computations. For time domain calculations, f min is about the inverse of the

duration of the computation Dc , so that (6.5) can be rewritten as

σx(0) =
2πε0

θDc
. (6.6)

The second critical parameter is the rate of increase of the conductivity in the PML, from

σ x(0) in the vacuum–PML interface to its maximum value on the outer side of the PML. The

magnitude of the numerical reflection in the oscillatory region in Fig. 6.1 depends on the ratio

of successive conductivities. The larger this ratio, the larger the magnitude of the oscillatory

reflection. This can be verified easily by means of FDTD experiments [41] and by means of

numerical theory [15].
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The third critical parameter is the theoretical reflection at normal incidence R(0) which

must be large enough so as to absorb the traveling waves. In EMC applications, moderate

absorptions of the order of 40 dB are sufficient.

As a consequence of the three critical parameters, in a PML placed close to a scattering

structure, in the evanescent region, the conductivity must grow from a small value given by

(6.6) to a value large enough so as to render R(0) equal to a prescribed value, while the step of

increase of the conductivity from one FDTD cell to the next must remain smaller than another

prescribed value. From these three constraints, the profile of conductivity that yields the thinner

PML, in terms of FDTD cells, is the geometrical profile of conductivity (5.25). Conversely,

with a polynomial profile the ratio of successive conductivities varies in the PML, leading to a

thicker PML for a given level of residual reflection [41, 47].

The values to be set to the critical parameters in actual applications were estimated

empirically [41, 47]. Fortunately, it was observed that they do not depend too much on the

geometry and size of the scattering structure, with the exception of the ratio g of the geometrical

profile of conductivity that depends on the size of the structure expressed in FDTD cells. Five

consistent sets of critical parameters are given in [41, 47] in function of a synthetic parameter

that expresses the expected accuracy of the results. Once the critical parameters θ , g , R(0) are

chosen, the PML thickness N, in cells, is given by the following formula obtained using (5.28a)

and (6.6):

N =
1

ln g
ln

[

1 −
c

4π
(
√

g − 1) ln R(0)
θ

1x
Dc

]

. (6.7)

With the critical parameters in [47], quite good results can be obtained on structures that are

several hundreds of cells in length, with PMLs that are typically 10–15 cells in thickness. Two

examples are shown in Figs. 6.3 and 6.4. The electric field at several points on a 500-cell-thin

plate and on a 237-cell-long airplane is shown. The results were computed with the five sets

of critical parameters corresponding to the five accuracies proposed in [47]. From the poorest

accuracy to the highest one, the values of the synthetic parameter, denoted as p, read −2, −1, 0,

+1, +2, respectively. The PML–plate separation was only 2 FDTD cells. For every calculation

the thickness of the PML and the three critical parameters (g , R(0) in dB, and θ ) are reported in

the figures. With the best accuracy (p = +2) the results are superimposed to the exact solution

computed with an ABC placed far from the structure (not shown in the figures). With the

medium accuracy (p = 0) they are quite close to the exact solution. The corresponding PML

thicknesses equal 15 cells with the plate, and 12 cells with the airplane. Even with the poorest

accuracy (p = −2) the results can be viewed as acceptable in the context of EMC applications.

In summary, the critical parameters given in [47] permit reliable calculations to be

performed with relatively thin PMLs placed only two FDTD cells from the scattering structure.
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FIGURE 6.3: Electric field at three locations on a 500-50-cell plate stricken by an incident wave of the

form [1 − exp(t/τ )] with τ = 1 ns. The space step is 5 cm. The PML ABC is placed 2 FDTD cells

from the plate. Results are graphed for the five PMLs corresponding to the five consistent sets of PML

parameters proposed in [47]. The p = +2 results are superimposed to the exact solution

In comparisons with previous ABCs that must be placed far from the structure [48], the

computational times are typically reduced with a factor of 10 or more, while the results are

better and more reliable.

Some refinements based on [23] allow the thickness of the above-optimized PML to

be reduced by 2–3 FDTD cells [47]. They are not discussed here, because a new major

improvement to the simulation of free space with a PML ABC is now at hand for solving wave-

structure interaction problems [49]. This improvement consists of using the CFS stretching

factor (3.50) in place of the regular factor (3.3).

6.1.4 Design of the PML Using the CFS Stretching Factor
With the stretching factor (3.50), the attenuation of evanescent waves (3.54) at frequencies

lower than f α (3.51) is widely smaller than with the regular stretching factor. Moreover, since

around scattering structures ω sinhχ is constant from (6.2), in a CFS-PML placed close to a
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FIGURE 6.4: Electric field at four locations on a 126-237-60-cell airplane structure stricken by an

incident wave of the form [1 − exp(t/τ )] with τ = 2 ns. The cell size is 25 × 16.66 × 16.66 cm.

The PML ABC is placed 2 FDTD cells from the airplane. Results are graphed for the five PMLs

corresponding to the five consistent sets of PML parameters proposed in [47]. The p = +2 results are

superimposed to the exact solution

structure the attenuation (3.54) does not depend on frequency below f α. In consequence, by

means of an adequate choice of f α (3.51), or equivalently of αx , the attenuation can be set

equal to that of high frequency ( f ≫ f α) traveling waves that is like in a regular PML. This

results in a reasonable attenuation of evanescent waves in the PML, neither too small nor too

high, so as to remove the strong numerical reflection present when using the regular stretching

factor.

To make equal the absorptions of evanescent waves (at f ≪ f α) and traveling waves (at

f ≫ f α), let us equal the coefficient in (3.54) with the attenuation in a regular PML at normal
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incidence exp(−σx x/ε0c ). This yields

f

fα

σx

ε0c
sinhχ sin θ x = −

σx

ε0c
x (6.8)

where χθ < 0 because it is assumed that the waves propagate and are evanescent toward +x.

Using (3.51) and (6.2), the following αx is obtained:

αx =
c ε0

w
|p sin θ | . (6.9)

Quantities p and sinθ are unknown parameters of the evanescent waves that surround the

scattering structure. What we know is that they are of the order of unity, so that we can say that

the optimum αx that permits the absorptions of evanescent and traveling waves to be equal is

about:

α0 =
c ε0

w
. (6.10)

Frequency f αcorresponding to α0 can be found from (3.51). Inserting the resonance frequency

of the structure of size w, that is f0 = c /2w, we obtain

fα0 =
f0

π
(6.11)

which shows that the resonance is close to frequency (3.51) if αx = α0. As in the case of

the waveguide problem discussed in Chapter 3, the frequency of the transition between the

two regimes of the CFS-PML is close to the frequency separating the evanescent waves with

the traveling waves. Fig. 3.3 is valid for the wave-structure interaction problem, with only a

correction with factor π from (6.11).

Fig. 6.5 shows a FDTD experiment, for the same 20-cell-thin plate problem as in Fig. 6.2.

The upper part shows the E field at the end of the plate, for different values of αx , from αx =
0 to αx = 10 α0. The 4-cell-thick PML is placed 2 cells from the plate. For αx = 0 the result

is close to that in Fig 6.2. As αx grows the reflection at low frequency decreases. For αx =
α0 the result is about undistinguishable from the exact solution. For αx = 10α0 the result

departs from the reference, both at low frequency and around the resonance (150 MHz) where

the attenuation is too small. The lower part of Fig. 6.5 shows an attempt to reconstructing

the numerical reflection of the evanescent waves by means of the numerical theory (5.57) and

assumption (6.2). As with the regular stretching factor in Fig. 6.2, the reconstruction is in a

good agreement with the actual FDTD calculations. More details about the interpretation of

the results in this example can be found in [25].
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FIGURE 6.5: Comparison of the normal electric field computed using the FDTD method (upper part)

with quantity 1 − R computed using (5.57) and (6.4) with coshχ0 = 1.1 (lower part), for a CFS-PML

ABC and a 20-cell-thin plate

Fig. 6.6 shows a 3D numerical experiment with a 500-cell-thin plate stricken with a

unit-step incident wave. As in the 2D case of Fig. 6.5, the improvement is dramatic with αx

value (6.10). For αx < α0 a strong reflection of low frequency evanescent waves is observed. For

αx > α0 the absorption around the resonance frequency of the plate is too small (oscillations in

the result). This confirms that the best value of αx is close to (6.10).

By increasing the thickness of the CFS-PML, which equals four FDTD cells in Fig. 6.6,

the results for αx = α0 become closer to the exact solution. With a 6-cell CFS-PML the results

are as good as with the 10-cell regular PML in Fig. 6.3. One may think that the accuracy could

be improved at will by increasing the thickness of the CFS-PML. That is not true. Actually, as
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FIGURE 6.6: E field on a 500-50-cell plate computed with a CFS-PML ABC placed 2 cells from it,

with various values of the CFS-PML parameter α

the thickness grows the computed results tend to a limit which slightly differs from the exact

solution. This is because the absorption of traveling waves is smaller than the prescribed R(0)

at frequencies around transition f α0.

In order to improve and control the accuracy of the results computed with αx =
α0, various solutions were envisaged and tested [49]. These investigations have shown

that:

r using a parameterαx decreasing from the vacuum–PML interface to the outer boundary

of the PML is an improvement. Doing this, the transition frequency f α decreases from

a value f α1 > f α0 in the interface to a value f α2 < f α0 on the outer boundary. This

improves the attenuation in the critical region of the transition between evanescent and

traveling waves, close to f α0.

r the ratio σ x(0)/αx(0) is a critical parameter, where σ x(0) and αx(0) are σ x and αx

implemented in the vacuum–CFS–PML interface. The following must hold:

σx(0)

αx(0)
≤ 1 (6.12)

From this, an optimum CFS-PML has been proposed as follows [49]. In the PML, from

the interface to the outer boundary, αx decreases geometrically from 50α0 to α0/5, and the
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FIGURE 6.7: E field on a 500-50-cell plate computed with the optimized CFS PML. The conductivity

grows geometrically in the PML, from σ 1 to 10 σ 1, and α decreases geometrically from 50α0 to

α0/5. Results are graphed for PMLs 3, 4, 5, 6 cells in thickness, set 2 cells from the plate, with

R(0) = −40 dB

conductivity grows geometrically by a factor of 10, from σ x(0) to 10 σ x(0). For a PML of

thickness N, the ratio g is given by g = 101/N, and the conductivity is set by means of (5.27)

in order that the normal reflection equals a prescribed value R(0) = −40 dB.

Results computed with such profiles of αx and σ x are shown in Fig. 6.7 for the 500-cell

plate, with various thicknesses of the PML from 3 FDTD cells to 6 FDTD cells. As observed,

with the 5-cell PML the results are about superimposed to the reference solution. With the

4-cell PML the results are as good as those computed with the optimum 10-cell regular PML

in Fig. 6.3. The performance of the CFS-PML is widely better than that of the regular PML

for this example. This also holds with other structures, as shown in Fig. 6.8 for the same

airplane as in Fig. 6.4. The results are quite good with a CFS-PML only 3 cells in thickness,

and are perfect (superimposed to the exact solution) with a 4-cell CFS-PML. With other

incident waves like nuclear pulses or lightning pulses whose low frequency content is poorer,

the results are better than with the unit-step wave. Several tests were performed with plates

of various lengths from 100 cells to 1000 cells. The required thickness of the CFS-PML, in

FDTD cells, does not depend too much on this length, so that the results in Figs. 6.7 and 6.8

can be viewed as representative of the worst case for scattering structures than can be handled

by current computers, that is for structures 200–1000 FDTD cells in size. From this, the con-

clusion is that a CFS-PML placed two FDTD cells from the structure, with conductivity,
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FIGURE 6.8: E field on a 126-237-60 airplane computed with the optimized CFS PML. The com-

putational conditions are like in Fig. 6.7

αx parameter, and R(0) prescribed in the above, allows the following solutions to be

computed:

r reference solutions with a 6-cell CFS-PML.

r accurate solutions with a 4-cell CFS-PML.

r acceptable solutions with a 3-cell CFS-PML.

This is significantly better than with the optimized PML based on the regular stretching

factor. The thickness of the PML is reduced with a factor larger than 2. As a conclusion, in

wave-structure interaction problems, the optimized CFS-PML placed only two cells from the

scattering structure allows the cost of the simulation of free space to be negligible in comparison

with the cost of the region of interest of the computational domain.

6.2 WAVEGUIDE PROBLEMS
Modes in waveguides are evanescent in the longitudinal direction below the cutoff frequency.

For a 2D parallel plate, the waveform and the evanescence parameter χ are given by (1.4). The

phase propagates in the transverse direction y and the magnitude decreases in the longitudinal

direction x, according to (1.4a). Consider a PML perpendicular to x with the stretching factor

(2.6). The waveform in the PML is given by (2.30) with θ = ±π/2 and θχ < 0. For instance,

in the case θ = π/2:

ψ = ψ0 e
jω

[

t− coshχ
c y− σx

ε0 cω sinhχx
]

e
ω
c sinhχx . (6.13)
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FIGURE 6.9: Reflection of evanescent waves from a PML ending a waveguide. The phase varies in

the transverse direction y and the amplitude is evanescent in the longitudinal direction x. The lines with

arrows symbolize planes of constant phase of the incident and reflected waves. The arrows are oriented

toward the decrease of the magnitude, to the right for the incident waves, to the left for the reflected

waves

The real exponential in (6.13) is the natural decrease of an evanescent wave in a vacuum. There

is no additional attenuation in the PML, because the propagation of the phase is perpendicular

to the vacuum–PML interface (cos θ = 0). Nevertheless, the waveform in the PML differs

from the waveform in a vacuum (1.4) due to the presence of an additional term in the phase.

This term grows as the frequency decreases. If the frequency is small enough, the phase varies

rapidly with distance. This may result in a strong numerical reflection from the PML if the

variation is rapid in comparison with the size of the FDTD cell, because then the discretized

space cannot sample accurately the field. This phenomenon was first analyzed in [50]. Finally,

two spurious reflections occur as using a PML ABC to absorb the evanescent waves at the end

of a waveguide (Figs. 6.9 and 6.10). First the PML does not absorb these waves, in theory, so

that they are reflected from the PEC that ends the PML. This mainly results in the reflection

of frequencies that are close to the cutoff, because their natural decrease is weak. Second, at

low frequency a strong numerical reflection occurs from the vacuum–PML interface, due to

the phase term in (6.13). This has been illustrated clearly in [50], where FDTD experiments

and results of calculations with the FDTD numerical theory have been reported. The reflection

from the interface is also clearly visible in Fig. 6.10, where the low frequency reflection is larger

than the natural decay of the waves.

6.2.1 Improvement of the Absorption by Means of a Real Stretch of Coordinates
In order to increase the decay of evanescent waves in the PML, a real stretch was introduced

[32] in the stretching factor (2.6), like the parameter κ in the CFS factor (3.50). This extends

the physical thickness of the PML so that the natural decay of the waves is increased. A factor
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FIGURE 6.10: Reflection of the TM1 mode from a PML ABC ending a 2D parallel-plate waveguide.

The cutoff frequency equals 3.75 GHz (waveguide width 40 mm). The FDTD results are computed

with a regular stretching factor (2.6) in the PML. The natural decrease is for a range equal to two PML

thicknesses

κ growing from the vacuum–PML interface to the outer boundary of the PML is used, but the

maximum value of the stretch is limited because large FDTD cells result in numerical reflection

of the highest frequencies. Moreover, the method does not reduce the strong reflection due to

the phase term in (6.2). Nevertheless, this simple modification of the PML results in a reduction

of the overall reflection, but limited to a band of frequency below the cutoff, as illustrated in

[32].

6.2.2 Improvement of the Absorption by Using a CFS Stretching Factor
A far better method to absorb effectively the evanescent waves at the end of a waveguide [51]

consists of using the CFS stretching factor (3.50). Above frequency f α (3.51) the CFS-PML

is like a regular PML, but below f α the CFS-PML reduces to a real stretch of coordinates

and the waveform becomes (3.53), (3.54). In the case of a waveguide the evanescent waves

(θ = π/2) are absorbed in the CFS-PML, due to the real exponential in (3.53), (3.54), and

the phase term that tends to infinity at low frequency in (6.13) is removed. From this, the two

kinds of spurious reflections present with a regular PML (Fig. 6.9) are removed below f α.

As discussed at the end of Chapter 3, because the product ω sinhχ is constant far below

the cutoff frequency of the considered mode, the absorption of evanescent waves in (3.54) is

not frequency dependent. This absorption can be set equal to that of traveling waves at f ≫
f α by choosing αx equal to α0 (3.58). Then f α coincides with the cutoff frequency (3.59) so

that the CFS-PML is very well suited to the absorption of the entire spectrum of waves present

in the waveguide (Fig. 3.3).
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FIGURE 6.11: Reflection of the TM1mode from a PML ABC ending the same parallel-plate waveguide

as in Fig. 6.10. The stretching factor is the CFS factor (3.50). Various parameters α are considered around

the optimum value α0 (3.58). The reflections have been computed theoretically using (5.57) and (1.4),

with in addition a FDTD simulation for the case α = α0. Notice the perfect agreement of the simulation

with (5.57)

Results in Fig. 6.11 show the effect of the value of αx on the reflection from a CFS-PML.

With αx = α0 the improvement is dramatic in comparison with the regular PML (Fig. 6.10),

the reflection drops below −80 dB with the 8-cell-thick CFS-PML used in the experiment.

Only a narrow band of frequencies is reflected around the cutoff frequency. This is because

sinhχ vanishes as frequency tends to the cutoff, so that the absorbing term in (3.54) tends to

unity. For αx larger than α0 the reflection grows because the attenuation in (3.54) is too small

( fα too large in the exponential).

From other experiments reported in [51] the reflection is not too much sensitive to the

design of the PML. A quite small reflection in the evanescent region (−80 dB or less) is

obtained with a polynomial profile of conductivity of moderate power (2 or 3), a theoretical

reflection R(0) of the order of −200 dB, and a PML thickness in 6–10 cells.

In the above, it is assumed implicitly that only one mode is present in the waveguide,

because the optimum αx (3.58) depends on the order n of the mode. In the case where several

modes are present, αx cannot be optimum for all the modes. This has never been experienced in

the literature. A way to solve this problem is suggested by Fig. 6.11 where the reflection in the
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evanescent region is about −60 dB from αx = α0/4 to 4α0. This suggests that the reflection

is not very sensitive to the value of αx in the vicinity of α0. From this, when several modes are

present, a good compromise may be choosing αx as the geometric average value of α0 of the

lowest cutoff frequency with α0 of the highest cutoff frequency. As long as the ratio of these two

cutoff frequencies is not too large, all the modes will be absorbed with a small reflection (about

−60 dB in the case of Fig. 6.11 if the ratio of cutoffs is not larger than 16). Another solution

that could be envisaged if several modes are present may be use of a parameter αx decreasing in

the PML, like that used in the optimized CFS-PML for wave-structure interaction problems

in the previous section.

6.3 CONCLUDING REMARKS TO THE APPLICATION OF THE
PML ABC TO FDTD PROBLEMS

In the above the optimization of the PML ABC has been addressed in two cases that are

important applications of the FDTD method. The optimized PMLs do absorb the evanescent

waves so that they can be placed in the evanescent regions, that is as close as possible to the

region of interest, namely the scattering structure or the end of the waveguide. The PML

performance is then far better than that of previously used ABCs that reflect the evanescent

waves.

What has to be noticed is that optimizing a PML for a given application of the FDTD

method requires a good understanding of the propagation and absorption of waves in the

PML, especially of evanescent waves, both in the continuous theoretical space and in the

FDTD discretized space. Another required knowledge is the general form of the waves to be

absorbed. All this permits the origin of the numerical reflection from FDTD PMLs to be

analyzed, and then an optimum PML to be designed accordingly.

As shown with two problems in the above, nowadays the CFS-PML based on the

stretching factor (3.50) seems the best way in view of optimizing PMLs in realistic problems.

This is because in most physical applications, at least as long as wide band or time domain

calculations are of concern, both evanescent and traveling waves are involved. As long as

the evanescence coefficient varies as the inverse of frequency, as in waveguides and around

scattering structures, the CFS-PML permits the absorption to be reasonable and about constant

in the whole spectrum, resulting in a small numerical reflection at any frequency, even with

relatively thin PMLs placed in the close vicinity of the region of interest. The CFS-PML is a

naturally optimized PML well suited to the physics in waveguide and wave-structure interaction

problems. This is also the case in other problems, for instance in the scattering by periodic

corrugated surfaces where the scattered wave can be expanded in Floquet modes [52] that are
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like (1.4a), with (1.4b) replaced with

sinhχ = ±
√

(

sin θ +
nπ c

bω

)2
− 1 (6.14)

where θ is the incidence of the incident wave and b is the half-period. From (6.14), ω sinhχ is

constant at low frequency. This leads to the optimum value of αx given by the same formula as

in the waveguide case (3.58), with half-period b in place of width a .
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C H A P T E R 7

Some Extensions of the PML ABC

In the previous chapters the PML ABC has been derived in Cartesian coordinates for solving

the Maxwell equations, and the only numerical method that has been considered in detail

is the Yee FDTD method. In the following, some extensions of the PML concept to other

coordinates and other numerical techniques are briefly reviewed.

7.1 THE PERFECTLY MATCHED LAYER IN OTHER SYSTEMS
OF COORDINATES

Several papers can be found in the literature about the extension of the PML medium to

various systems of coordinates, mainly in the context of the FDTD method. In [53–60] PML

ABCs are derived for cylindrical and spherical coordinates, generalized curvilinear coordinates,

and nonorthogonal coordinates. In [61], the PML ABC is extended to the body of revolution

(BOR) FDTD method. In most cases the PML is derived by means of a stretch of coordinates

in the direction normal to the interface.

Paper [56] discusses an important issue on the PML ABC. It is shown by means of

theoretical derivations that the FDTD-PML in cylindrical and spherical coordinates must be

concave. The stability is not ensured with convex PMLs. This is in accordance with the intuitive

feeling that the PML can absorb radiated fields but cannot replace sources. Each point in a

volume space bounded with a PML must be in direct visibility from any other point of this

volume, i.e., the interface between the inner medium and the PML must be either plane, that

is the Cartesian case, or concave, in the general case. This is a limitation to the use of the PML

ABC in some special problems addressed in [8].

7.2 THE PERFECTLY MATCHED LAYER WITH OTHER
NUMERICAL TECHNIQUES

Introduced in the context of the FDTD method, the PML ABC has been rapidly extended to

other techniques used in numerical electromagnetics. To do this, the interpretation in terms of

stretched coordinates [16, 17] has been very fruitful.
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First, PML ABCs have been derived for other finite-difference schemes than the Yee

second-order scheme addressed in Chapters 5 and 6. A PML ABC for the four-order scheme

is described in [62]. In [39] the PML is used with the pseudospectral time-domain (PSTD)

method. The PML ABC is also used with the finite-volume time-domain (FVTD) method

[63] and with the finite-difference frequency-domain (FDFD) method [17, 64]. It is also of

current use with the unconditionally stable ADI-FDTD method [65, 66].

In the Transmission Line Matrix (TLM) method, the PML ABC has been implemented

in two ways: first by surrounding the TLM computational domain with a layer of FDTD cells

where the PML is placed [67], second by implementing a true TLM-PML, that is a PML

medium discretized with the TLM method [68, 69].

One of the early extensions of the PML concept was the introduction of the uniaxial

PML (3.48), (3.49) for use as an ABC in the frequency-domain finite-element method [20].

As discussed in Chapter 3 the uniaxial PML corresponds to a stretch of fields in place of the

stretch of coordinates of the regular PML. Conversely to the regular PML, the uniaxial PML

is Maxwellian, i.e., it is governed by the regular Maxwell equations of an anisotropic medium

with permittivity and permeability tensors (3.49). From this it can be implemented in the FEM

method in a natural way [21]. The PML ABC can also be used with the time domain finite

element method [70].

Use of the PML ABC has been reported with the paraxial (parabolic) equation method.

Initially developed in the context of seismic [71], it is also used in numerical electromagnetics

[72]. The PML ABC has also been implemented in the Beam Propagation method based on

the finite difference solution of the Helmoltz equation [73].

The PML ABC has been used for nonlinear calculations in the case of the propagation

of solitons, with the FDTD method [74, 75]. In that case, a special difficulty lies in the fact

that the permittivity is field dependent in the medium, so that the matching condition (1.9) to

be satisfied by the PML conductivities is also field dependent. At least in the cases reported in

[74, 75], this problem has been overcome easily by using a simple iterative procedure.

Finally, in the domain of electromagnetics, use of the PML ABC has been reported in

particle in cell (PIC) finite difference calculations where moving charged particles are taken

into account [76].

In all the numerical methods, the PML ABC widely improves the simulation of free

space in comparison with previously used ABCs. Nevertheless, the PML ABC is never perfect

in the discretized space, especially when evanescent waves are of concern. No analysis of the

numerical reflection like that in [15] has been published in the literature for other methods

than the FDTD one. But we can predict that what is observed with the FDTD method is also

valid with the other techniques, i.e., when the waves are so strongly evanescent that they must

be absorbed upon less than one cell, one volume, or one element, as schematized in Fig. 5.6, the
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FIGURE 7.1: Electric field radiated from a short dipole, computed with the TLM method in [69].

The computational setup is the same as in Fig. 5.3

numerical scheme cannot sample properly the wave, resulting in a strong numerical reflection.

The only numerical experiment performed to assess this expectation is that reported in [69].

This test consisted of computing the field radiated from a dipole using the TLM method. The

results are shown in Fig. 7.1. The computational conditions were exactly the same as in the

FDTD dipole experiment in [42] whose results are reproduced in Fig. 5.3. As observed, the

results in Fig. 7.1 look like the ones in Fig. 5.3. Especially, with both methods the results are

correct at high frequency and then depart from the exact solution below frequency f c (5.50)

that equals 50.3 MHz and 2.25 MHz for the 4-cell and 8-cell PMLs. This means that the

strongly evanescent waves are reflected from the vacuum–PML interface as in the case of the

FDTD method. From this, what is stated in Chapter 6 about the choice and optimization of

FDTD PMLs could also be applied to the choice and optimization of the TLM-PML. That

is probably true with other numerical techniques, although no explicit study of the numerical

reflection has been reported in the literature.

7.3 USE OF THE PERFECTLY MATCHED LAYER WITH OTHER
EQUATIONS OF PHYSICS

By means of a complex stretch of coordinates, the PML ABC has been extended to most partial

differential equations that govern other domains of physics where unbounded problems have

to be solved. In the literature, a number of papers can be found on use of the PML ABC, such

as [77, 78] in acoustics, [79] in elastodynamics, [71] in seismic, or [80, 81] in hydrodynamics.
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computer codes,” Ann. Télécommun., vol. 51, no. 1–2, pp. 39–46 , Jan. 1996.
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