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Abstract. A key distribution scheme for dynamic conferences is a method 
by which initially an (off-line) trusted server distributes private individ- 
ual pieces of information to a set of users. Later any group of users of a 
given size (a dynamic conference) is able to compute a common secure 
key. In this paper we study the theory and applications of such per- 
fectly secure systems, In this setting, any group of t users can compute 
a common key by each user computing using only his private piece of 
information and the identities of the other t - 1 group users. Keys are 
secure against coalitions of up to k users, that is, even if E users pool 
together their pieces they cannot compute anything about a key of any 
t-size conference comprised of other users. 
First we consider a non-interactive model where users compute the com- 
mon key without any interaction. We prove a lower bound on the size of 
the user's piece of information of ("2;') times the size of the common 
key. W e  then establish the optimality of this bound, by describing and 
analyzing a scheme which exactly meets this limitatioii (the construction 
extends the one in [2]). Then, we consider the model where interaction is 
allowed in the common key computation phase, and show a gap between 
the models by exhibiting an interactive scheme in which the user's infor- 
mation is only k + t - 1 times the size of the common key. We further 
show various applications and useful modifications of our basic scheme. 
Finally, we present its adaptation to network topologies with neighbor- 
hood constraints. 

1 Introduction 

Key distribution is a central problem in cryptographic systems, and is a ma- 
jor component of the security subsystem of distributed systems, communication 
systems, and data networks. The  increase in bandwidth, size, usage, and ap- 
plications of such systems is likely to pose new challenges and to  require novel 
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ideas. A growing application area in networking is “conferencing” a group of 
entities (or network locations) collaborate privately in an interactive procedure 
(such as: board meeting, scientific discussion, a task-force, a classroom, or an 
bulletin-board). In this work we consider perfectly-secure key distribution for 
conferences. (Note that key distribution for two-party communication (session- 
keys) is a special case of Conferences of size two). 

If users of a group (a conference) wish to communicate in a network us- 
ing symmetric encryption, they must share a common key. A key distribution 
scheme (denoted KDS for short) is a method to distribute initial private pieces 
of information among a set of users, such that each group of a given size (or up 
to a given size) can compute a common key for secure conference. This informa- 
tion is generated and distributed by a trusted server which is active only at the 
distribution phase. 

Various key distribution schemes have been proposed so far, mainly to pairs of 
users (session keys). -A basic and straightforward perfectly-secure scheme (which 
is useful in small systems) consists of distributing initial keys to users in such 
a way that each potential group of users shares a common key. In the case of 
session keys, if n is the number of users, the server has to generate n(n - 1)/2 
keys and each user holds n - 1 keys, one for each possible communication. When 
n gets large it becomes problematic or even impossible to manage all keys. This 
is known as the n2 problem. For conferences, when we allow all possible subsets 
of a given size to join together (what we call the dynamic conference setting), 
the number of keys becomes prohibitively large. 

Given the high complexity of such a distribution mechanism, a natural step is 
to trade complexity for security. We may still require that keys are perfectly se- 
cure, but only with respect to an adversary controlling coalitions of a limited size. 
This novel approach was initiated by Blom [2] for the case of session keys (other 
related schemes are given in [lo, 141). We are motivated by Blom’s (somewhat 
forgotten) pioneering work. We consider key-distribution for dynamic confer- 
ences and study the theory and applications of such systems. Our scheme has 
two parameters: t ,  the size of the conference (group), and I c ,  the size of adversary 
coalitions. Another characteristic of such schemes is whether they are interactive 
(users discuss during common-key establishment phase) or non-interactive. 

1.1 The results 

We give a precise model of our setting and then we analyze and design perfectly- 
secure key distribution schemes for dynamic conferences. We show the following: 

1. Lower bound: We consider the non-interactive model and prove that the size 
of the piece of a user’s information is at least (‘T:;’) times the size of the 
common key. 

2. Matching upper bound: We propose a concrete scheme and show that it indeed 
gives pieces of this size, thus establishing the optimality of the bound. 

3. Gap: We compare the interactive to the non-interactive settings. We show an 
interactive scheme where the user’s information is only k + t - 1 times the 
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size of the common key, proving a separation between the interactive and 
the non-interactive cases. 
Constrained Conferencing: In Section 7 we present modifications of the schemes 
to systems in which conferences are generated according to neighborhood 
constraints (of the network communication graph). 
Applications: We then extend the ideas to show numerous applications and 
uses of the scheme, such as: hierarchical key distribution schemes, asymmet- 
ric user-population, access-control validation, partial key revocation, etc. 

4.  

5. 

Our analysis applies information-theory and its basic notions of entropy and 
mutual information, as well as their conditional versions. In Section 2 we review 
these notions and present basic equations to be used in the analysis. 

1.2 Related work 

The two common approaches to key distribution, taken in order to reduce the 
inherent complexity of the basic straightforward scheme are schemes based on 
public-key cryptography [5] or on an authentication server [19]. Numerous sug- 
gestions €or key distribution schemes based on computational assumptions are 
known, as well as a number of suggestions for conference keys. We note that 
“Merkle’s puzzles” [17] is also a pioneering key generation scheme which is com- 
putational, for a seemingly negative result concerning such methods see [ll]. 
The interactive model is related to (but different from) the recent models basing 
perfectly-secure common key generation on an initial card deal [6, 71. Blom’s 
innovative method (and thus our setting) is a key distribution which is ID-based 
that predated the formal definition of this notion by Shamir [21]; his technical 
tool was MDS linear codes.’Later, Matsumoto and Imai [16] extended the work 
of [2] to general symmetric functions, and systematically defined key distribution 
schemes based on such general function; our scheme can actually be viewed as 
a special case of their general system. (Another related recent work is in [23]). 
Fiat and Naor have suggested recently a key distribution scheme which is not al- 
gebraic, and Alon has given a lower bound for their scheme [18]. Remark: finally 
we note that various suggestions for computational key distribution in different 
settings (e.g., [15, 20, 25, 24,8]) and conferencing (e.g., [12,3,22]) have appeared 
in the la& years, (mainly in the Crypto and Eurocrypt conferences proceedings 
series). 

Organization: In Section 2 we recall the definition of the entropy and some 
of its property. In Section 3 we formally describe the model of a KDS in terms 
of the entropy. In Section 4 we prove the lower bound on the entropy of each 
user in a k-secure t-conference KDS. In Section 5 we then describe and analyze 
the actual schemes for k-secure t-conference KDS. In Section 6 we show how 
interaction can be used to dramatically decrease the amount of information 
held by each user. In Section 7 we present another result: a protocol to realize 
a conference KDS when not all of pairs of users are able to communicate. In 
Section 8 we present applications, in particular the scheme can be combined with 
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authentication procedures, as the ID of the owner and other meaning attached 
to a key owner can be naturally supported by such a system. 

2 Background 

In this part we review the information theoretic concepts we are going to use. 
For a complete treatment of the subject the reader is advised to consult [4] and 

Given a probability distribution {~(Z)}~~X on a set X, we define the entropy 
[91. 

of x, H(X), as 
H(X) = - c P ( 4  logP(42. 

x cx 
The entropy H ( X )  is a measure of the average information content of the ele- 
ments in X or, equivalently, a measure of the average uncertainty one has about 
which element of the set X has been chosen when the choices of the elements 
from X are made according to the probability distribution { ~ ( Z ) } ~ ~ X .  It is well 
known that H(X) is a good approximation to the average number of bits needed 
to faithfully represent the elements of X. The following property of H(X) can 
somehow illustrate the soundness of our first claim: 

0 I H ( X )  I log 1x1, (1) 

where H(X) '= 0 if and only if there exists 20 E X such that p(t0) = 1; 
H(X) = log 1x1 if and only if p(x) = l/lXl, Vx E X. 

Given two sets X and Y and a joint probability distribution { p ( z ,  y)}xcx,yfy 
on their Cartesian product, the conditional entropy H ( X I Y ) ,  also called the 
equivocation of X given Y, is defined as 

The conditional entropy can be written as H ( X J Y )  = zy,yp(y)H(XIY = y) 
where H(XIY = y) = - Czcx p(zly) logp(s1y) can be interpreted as the average 
uncertainty one has about which element of X has been chosen when the choices 
are made according to the probability distribution ~ ( z l y ) ~ ~ ~ ,  that is, when it 
is known that the value chosen ifrom the set Y is y. F'rom the definition of 
conditional entropy it is easy to see that 

If w e  have R + 1 sets X I , .  . . , X,, Y the entropy of XI . . . X ,  given Y can be 
written as 

~ ~~ 

All logarithms in this paper are of base 2 
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The mutual information between X and Y is defined by 

qx; Y )  = H ( X )  - H ( X 1 Y )  

I ( X ;  Y) = I (Y;  X), 

(4) 

(5) 

and enjoys the following properties: 

and I ( X ; Y )  2 0, from which one gets 

H(X) 2 H(XIY) (6) 

with equality if and only if X and Y are independent. Given sets XI Y, Z and a 
joint probability distribution on their Cartesian product, the conditional mutual 
information between X and Y given 2 can be written a s  

qx; Y 12) = H ( X I 2 )  - H ( X I 2  Y). (7) 

H ( X I 2 )  2 H ( X I 2  Y). (8) 

Since a property of the conditional mutual information is I ( X ;  Y 12) 2 0 we get 

3 The Model 

In this section we present the key distribution problem and model. A key distri- 
bution scheme (indicated by KDS for short) distributes some information among 
a set of users, so that any t of them can  join and generate a secure key, We as- 
sume a trusted off-line server active only at initiation (unlike an on-line server 
approach put forth in [I91 w+hich we call server-based KDS). We say the system 
is k-secure if any k users, pooling together their pieces, have no information on 
keys they should not know. These schemes can be further classified into two cat- 
egories: interactive (where users are engaged in a protocol, prior to usage of the 
common key), and non-interactive where keys are generated privately by the in- 
dividuals. Next, we formally define non-interactive key.distribution schemes. Our 
definition of security is based on the notion of entropy and is thus unconditional. 

Let U = {Ul , . . . , Un} be a set of users. The algorithm used by the server to 
generate the pieces of information, that will be distributed to the users, is ran- 
domized. The server generates the vector ( ~ 1 , 1 4 2 ,  . . . , un) according to some prob- 
ability distribution'on the Cartesian product U1 x + + x U,. The piece u; denotes 
the information given by the server to user U;. In order to simplify notation we 
denote by U, both the user U, and the random variable induced by the value ui ,  
and by S;,  ,.,,,it we denote both the set of common keys among users Ui, , . . . , U;( 
and the random variable induced by these common keys. Each user Uij  can de- 
terministically compute, on input only uij and il, . . . , ij - 1  ij+l, . . . , it, his com- 

keys %(i+.,s(i*) 3 for all permutations u : { i l , i z , .  . ., it} ---f { i I , i 2 , .  . .,it}, 
to be used with users U;, , . . . , Uij-l , Uij+l,. . . , Ui,. Each common key sil ,__,, i t  is 
generated according to a probability distribution {p(s i l  , induced by 
the fact that each user calculates deterministically the common key by using the 
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initial information received ifrom the server, which has been generated by a ran- 
domized algorithm. The probability p(ql ,.,,,,t ) denotes the a priori  probability 
that the common key among users Ui, , . . . Ui, is s , ~  ,.,.,, 1 .  

The maximum value that the security parameter k can take in any t-conference 
KDS for n users is n - t since any adversary coalition can contain at most n - t 
users. Formally we define a k-secure t-conference key distribution scheme for n 
users as follows. 

Definition 3.1 Let U be a set of userg andAei k, k 5 1241 - t ,  be an integer. A 
non-interactive key distribution scheme for'U is k-secure if 

1. Each t-uple of users can non-interactively compute the common key. 
For all uil . . . Ui, E U, it holds P(s,, ,...,, la,,) = - * . = P(s,, ,...,, IU.,) = 1. 

2. A n y  group of k users have n o  information on  a key they should not know. 
For all Ui, ,  . . . , U j t , q l , .  . ., V,k E U such that j,, . . . , jk 4 { i ~ , .  . .,it}, it 
holds 
P(SSl,.. ,.t bJ1 3 * * * 1 y,) = Pb.,,.. ,*J 

Property 1. means that given the value held by the user Ui t ,  1 = 1,2 ,  . . . , t ,  a 
unique value of the common key exists. Property 2. states that the probability 
that the common key among users U,, . . . Ui, is sll , , . . , I t  given the information 
held by users V,,,.  . . , lLk is equal to the a prior: probability that the common 

and Xl x ... x q,, 
are statistically independent, so the values y, , . . . , pf, reveal no information on 
the common key s,,,,..,,, . By using the entropy function it is possible to give an 
equivalent definition of a k-secure non-interactive t-conference KDS. 

This means that random variables 8, key is 4 , . . . . , L 1 '  

Definition 3.2 Let U = { U I ,  . . . , U,,} be a set of users an'd let E ,  k 5 n - t ,  
be an integer. A non-interactive t-conference key distribution scheme for U is 
k-secure i f  

1'. Each t users can non-interactively compute the common key. 
Foralldifferent i l , . . . l i t  € { 1 , 2 ,  ..., n},H(xl ,..., i , l u , l ) = . . . =  H(SI...;,,lI~t)= 
0. 

For all users Yl , . . . , qk such that j1 . . . , jk $ {ill :. . , it), 
2'. A n y  group of k users have n o  information on a key they should not-know. 

,...,,, lql . . . qk )= 
m l,...,., 1. 
Noticethat H ( Z I  ,..,,, Jql) = - - - = H ( X I  ,_,,, itIU,l)=O,foralldifferent il,. . .,it€ 

{112 ,..., n},meansthateachsetofvaluesheldbytheuserU,I1l= 1 , 2  , . . . ,  t,cor- 
responds to a unique value of the common key. In fact, by definition, H(q1 ,...,,t IU,, ) = 
0 is equivalent to the fact that for all y, E q, with p ( q )  > 0, a unique value 
sil ...., i t  E 8, ,...,it such that ~ ( 8 , ~ :  ...,it ly,) = 1 exists. Moreover, H(SL ,..., ir 
H($l,,.,,it) is equivalent to  saying that ,,,,,,t and ql x * + x V, are statistically 
independent, i.e.,for all (ujl , .  . . , uj,) E 

. . -q,  ) = 

X .  - . x q k  we havep(sil ,,.,,, lujl,. . . , ti. ) = Jk 

P(Si1  ,...,it 1. 
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Property 1'. in Definition 3.2 states that any t users can compute the same 
common key. Actually, each user Ui can calculate t !  keys for the same con- 
ference. Property 1'. does not say anything on the relationship among these 
t !  keys: all t !  keys could be equal so one key uniquely determines the other 
keys, that is H(Sr(il)  ,.,,, r ( i t )  Isl ,,,., i t )  = 0, for all permutation u : {il ,  i 2 ,  . . .,it} - 
{ i l ,  i 2 ,  . . . , i t } ;  or the )keys could be all different and given one key we do not know 

Our lower bounds are valid in both cases, since they are based only on Property 
1'. and 2'.. On the other hand, in this paper all schemes that realize k-secure 
t-conference KDS are symmetric, that is schemes in which the common key 
is symmetric: si1, ..., i t  = Sr(i1) ,__., -(it) for all permutations u : {il, i2,. . .,it) + 

{ i l ,  i 2 ,  * . . , i t } *  

Definition 3.2 does not say anything on the entropies of random variables 
Zl ,.... ' 1  and 5; i, . For example, we could have either H(Z1 ,) > H(.S; ,_,,, ;,) 
or H(XI ,.,,,, ,) 5 B(qi ,..,,,, ). Our results apply for the general case of arbitraiy 
entropies on keys, but for clarity we often state our results for the simpler case 
that all entropies on keys are equal, i.e. H($l,,. , , ,t) = H(.S', '...'*, .,) for all t-uples 
of users (Uj l , .  . . ,Ujt) and (Up,. . . U p ) ,  and we denote this entropy by H ( S ) .  

The next simple-lemma proves that if a t-conference KDS is k-secure then it 
is &'-secure for all integers k' < k. 

mything on the other keys, that is H(Siil) ,._., r ( i t ) lS t l  ,..., i t )  = H(%(sl) ,_.., r ( i , ) ) *  

L 

Lemma 3.1 Let U = { U l ,  . . . , Un} be a set of users and let k ,  k 5 n - t ,  be an 
integer. In any &-secure key distribution scheme for 2.4, for any integer Ic' < k it 
holds 

For all users Ql,. . . , q l ,  q,l , .  . . , q,, such that j , , . . . , j p  4 {il, . . . , it}. 

Thus, H(qI ,.,., i t  lq1 * -qk,) = H(8l,,..,if). 0 

From Lemma 3.1 one has that Property 2'. can be equivalently written as 

2". Any group of k' 5 k users have no information on Q key they should nod 
know. 
For all users ql,. . . , V , ( ,  q l , .  . ., qkI such that j,, . . . , j k r  $! { ; I , .  . . , i t } ,  it 
holds 
H(ql )...). 1 Iql - * .q,, 1 = H(X1 ,..... 1 ) .  

$ 
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4 

In thiss&tion we prove a lower bound on the size of user's information for a 
R-secure t-conference KDS. Let ql . . . Cr,, be t users and let A = { j l  '. . . j t }  be 
a set o f t  indices. With S, we denote both the set of common keys among the 
users q, . . . qt and the random variable induced by these common keys, and 
with U' we denote both the set of users { ql . . . , q, } and the random variable 
induced by the value u,, , . . . , y, . 

In a k-secure t-conference KDS the knowledge of Ic keys does not convey any 
information on another key. This is formalized by next lemma. 

Lower Bound: Conference Key Distribution 
L. 

Lemma 4.1 Let U = {Ul, .. . , U,,} be a set of n users and let r and k ,  k 5 n - t ,  
be iniegers. Lei X , Y I , .  . . , Yrl 2 be subsets of {1,2' . .  . n} such that (21 = k, 
znx = 0, znx # 8 and 1x1 = 1x1 = t ,  f o r i  = 1, .  . . ' T .  Then, in any k - secwe  
t-conference key distribution scheme for U 

Proof: From (6) we have H(S') 2 H(Sx I,$,l . . .S.;). To prove the lemma it is 
enough to prove that H(S, Isl . . . &T) 2 H ( S x ) .  Note that Z n X = 0. 
First note that the conditional mutual information between S' and . . . Sr 
given Uz is 

Since the mutual information is non-negative we have 

-.*%r ;S,l4) = 0 

From ( 5 )  it follows I(S, ; s/, . . . S;; lUz) = I(&, . . . ; S, IU,) and thus 

Finally, one gets 

which proves the lemma. 
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We assume that all keys have the same entropy, i.e. H(q,,.,.,,, ) = H ( S )  for all 
different j, , . . . , j,. Next theorem states a lower bound on the size of information 
held by each user. 

Theorem 4.1 Let U be a set of n users and let k ,  k 5 n - t ,  be an inleger. 
In any k-secure t-conference key distribution scheme, the entropy H( Ui)  of each 
user Ui satisfies 

Proof: Consider the set of indices I = {jl,. . . ,jk+t-l} and an index d such that 
i I. Let m = (kT:;l) -i. Construct A ,  B ~ ,  . . . , B,, c as follows. Set c is equal 
to C = ( j , ,  . . . ,jk}, set A is equal to A = {i, jk+l,. . . ,jk+<-,], and, finally, set 
El, for 1 = 1,. . . , m is constructed taking the element i along with any (t - 1) 
elements from the set I ,  with the exception of {j,,, , . . . , that is, 

We have 

Sets Z = A ,  X = C, = Bi for I = 1,.  . . , m satisfy the hypothesis of 
Lemma 4.1. Thus we have H(SA ISBl . . .SBm) = H(SA).  Moreover, for each h, 
15 h 5 m, sets X = Bh, 2 = I\Bh and Yl = Bl, for 1 = 1,. . ., h -  1, satisfy 
the hypothesis of Lemma 4.1. Thus, iY(SBh ISBl . . .SB,-, 1 = H ( S B * )  and, 

k + t - 1  
t - 1  

c 

Hence the theorem follows. 0 
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A particular case of Theorem 4.1 is when t = 2 and k = n - 2. In this case 
the key of a pair of users cannot be computed (even one of its bits cannot be 
computed) by an adversary coalition of the other n - 2 users. Each user holds 
at least n - 1 pieces of information of size equal to the size of the common key. 
The total number of pieces of information held by all users is at least n(n - 1). 
This is the well know problem of n2 keys. The bound H ( U i )  >. ("fl;')H(S) is 
achieved by the protocol we next propose. 

5 Protocols for Key Distribution 

In this section we design and analyze protocols for k-secure t-conference key 
distribution which are applicable to hierarchical KDS as well (as will be later 
explained). The scheme we propose whw-applied to 2-party KDS is a particular 
case of the Blom's scheme [2] based 6n $IDS linear codes, and, in particular 
based on polynomials. 

Blom's protocol for a k-secure (2-conference) KDS for n users is as following. 
Let G be a (publicly known) generator matrix of a (n, k + 1) MDS linear code 
over GF(q) (see [13] for definitions and analysis of such codes) and let D be 
a secret random matrix with elements in GF(q).  mom the matrices G and D, 
construct a n x n symmetric matrix K whose entries will be the users' keys. The 
matrix K is equal to K = (DG)TG. The information given to user Ui consists 
of the row i of (DG)*. If user U; wants to communicate with user Uj then he 
computes the inner product of the held vector with the column j of G and he 
obtains the common key si , j  = K ( i , j ) .  

We propose the following protocol (to be extendible to various other ap- 
plications in the sequel) for a k-secure t-conference KDS. Let P(z1, . . . , zt)  
be a symmetric polynomial in t variables of degree k with coefficients over 
GF(q),  q > n, that is, P(z1, .  . . , z t )  = P ( X ~ ( ~ ) ,  . . . , ~ ~ ( ~ 1 )  for all permutations 
u : {I, 2 , .  . . , t }  + (1,2,. . . , t}. To each user Ui the server gives the polynomial 
f,-(zz, . . . , z t )  = P(i,  2 2 .  . . , q), that is the polynomial obtained by evaluating 
P ( q ,  . . . , z t )  at z1 = i. If users Yi , . . . , V,* want to set up a conference key then 
each user qi evaluates Ai (22, . . . , zt )  at (z2, . . . , z t )  = (jl , . . . , ji-1, j , + l ,  . . . , jt). 
The conference key is equal to sil ,..., ,+ = P(j1,  . . . ,jt). 

As we mentioned above, when t = 2 our scheme is a particular case of Blom's 
scheme. Indeed, the generator matrix G of the MDS code is constructed by 
setting the entry G(i,  j )  to j ' - l .  

Theorem 5.1 In the scheme based on symmetric polynomial, if  all coeficients 
of the symmetric polynomial in t variables of degree k QTT uniformly chosen in 
GF(q), then the t-conference key distribution scheme is  k-secure, and optimal. 

The scheme proposed meets the bound provided by Theorem 4.1, when all co- 
efficients are uniformly chosen. Indeed, in a symmetric polynomial P(z1 ,  . . . , 2,) 

the coefficient ail ,..., .r is equal to ,.... (,r) , for all permutations n : (il, i2, . . . , ir} -+ 
{il , i z ,  . . . , i,.}. Thus, the number of coefficients of a symmetric polynomial in r 
variables of degree k is equal to the number of possible ways of choosing with 
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repetitions r elements (corresponding to indices il ,  . . . , ir) from a set of k + 1 
elements (each ij can assume k + 1 values). This is equal to (':'). 

6 Non-Interactive versus Interactive Schemes 

In Section 4 we proved that in a non-interactive k-secure t-conference KDS, for 
each user Ui it holds H ( U ; )  2 (":f;')H(S). In this section we prove that if we 
allow interaction among users (not with the server!) to set up a common key, 
then the lower bound can be beaten! 

The idea of the protocol is the following. We construct a non-interactive 
(k + t - 2)-secure 2-conference KDS using the protocol in [2]. Given a group of t  
users that want to compute a conference key, the user with the largest identity 
in the group chooses as conference key a random value in GF(q) .  Then he sends 
this value to the other t - 1 users by using the (12 + t - 2)-secure 2-conference 
KDS. More formally the protocol for users U,, . . . U,,, is the following (based OR 

the scheme presented above). 

1. The server chooses a symmetric polynomial P ( z ,  y) of degree k + t - 2, with 

2. TQ each user Ui the server gives the polynomial i ( y )  = P(i ,  y), that is the 

3. If users Ui, , , . . , U;, , where i l  < iz < . - . < it , want to set up a conference 

coefficients over GF(q) ,  q > n, by randomly choosing its coefficients. 

polynomial obtained by evaluating P(z l  y) at c = i. 

key, then: 
3.1 User U;, randomly chooses a secret key s in GF(q).  
3.2 User U;t evaluates the polynomial i t ( y )  at y = il, for 1 = 

1,. . . , t - 1, and, then, he computes temporary keys s,,;,, = it (ii) 
(which is equal to P(it, il)). 

3.3 User Kt sends to user l& the value cyi = s , + , ~ ~  @s, for 1 = 1, . . . , t -  
1, where @I is the bitwise xor. 

3.4 For I = 1,. . . , t  - 1: 
User lJl, first computes q,,, = s ,,,,, = i , ( i t )  (which is equal to 
P(i1, it) = P(it ,  i,)). Then, q, computes s by taking the bitwise 
xor between snt,,, and the value QI received by g, . 

The above protocol is k-secure, since the KDS that is established at steps 1 
and 2 is (k + t - 2)-secure. 

In the above protocol only k +t - 1 elements of GF(q)  are distributed by the 
server and kept by each user. 

This, proves a separation between the interactive and the non-interactive case 
for information-theoretically key distribution schemes for dynamic conferences. 

7 
Graph 

Cdference Key Distribution and Communication 

In a non-interactive 2-conference KDS for n users each pair of users is able 
to compute a cammon key. It can be the case that some pairs of users will 
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never need to compute a common key. This situation can arise when a computer 
network has a topology which is not the complete graph; here each computer 
takes the place of a user in a KDS, and two computers can communicate if 
and only if there is a link between them. As an example, consider a ring of TI 

computers R = {Co, Cl, . . . , Cn-l}: computer C, can confmunicate with only 
two computers, Ci-1 and C;+l (arithmetic on indices is modulo a)  so it will 
never need to compute a common key with Ci+z. 

In this section we analyze this situation. 
Let U = {Ul,. . . , Un} be a set of users. A communication structure C is a 

subset of U x U. The communication structure contains all pairs of users for 
which the server has to provide a common key. A convenient way to represent a 
communication structure is by a graph G, in which each vertex Ui corresponds 
to user Ui,  and there is an edge (Ui, Uj) if and only if (V,, Uj) E C. We call the 
graph associated to a communication structure the communication graph. 

Definition 3.2 can be extended to a key distribution scheme for any commu- 
nication structure C, as follows. 

Definition 7.1 Let U = {UI, . . . , U,,} be a set of users, let k 5 n - 2 ,  be an 
integer, and let C U x U be a communication structure. A non-interactive k e y  
distribution scheme for C is k-secure af 

1. 

2. 

Each pair of users in C can non-interactively compute the common key. 

Any group of k users have no information on a key they should no2 know. 
For all users Ui,  Uj ,  U,, , . . . , q, such that i ,  j $ {il,  . . . , ik}, H(Si, j  Iql . . . Kk) = 

For all (U;, U j )  E C, H(Si,j ICri) = H(Si, j  IUj) = 0. 

H( Si, j ) 

Now, we describe a k-secure (2-conference) KDS for a communication struc- 
ture C. First, we do not take into account the communication structure and 
construct a k-secure KDS for all users as if each pair has to compute a common 
key. User Ui could receive more information than needed. If the degree of vertex 
Ui in the communication graph is less than k, then the piece of information given 
to Ui could consist of only the actual keys he needs for communicating. 

Below we describe a non-interactive k-secure key distribution scheme for a 
communication structure C. In the following, deg(Ui) denotes the cardinality of 
the set {Ujl(Vi,  Vj) E C}. 

1. The server chooses a symmetric polynomial P ( z ,  y) of degree k with coeffi- 

2. To each user Uj, the server gives the following pieces of information: 
cients over GF(q),  q > n, by randomly choosing its coefficients. 

2.1 

2.2 

If deg(Uj) > k then the server gives to user U; the polynomial 
fi(y) = P( i ,y) ,  that is the polynomial obtained by evaluating 
P(z,y) at z = i .  
If deg(Ui) 5 k and q1,. . . , qm, where rn = deg(lri) ,  are the adja- 
cent vertices of Ui in the communication graph G, then the server 
gives to user Ui the pieces aj = P ( i , i j ) ,  where j = 1,. . , ,m. 
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This protocol is k-secure. The proof is analogous to the proof of Theorem 5.1.  

Theorem 7.1 The above described non-interactive key distribution scheme for 
Q communication structure C is k-secure. 

It is easy to see that in previous protocol each user Ui receives min{k + 
l , d e g ( u j ) }  pieces of information, that is the size of the information he has is 
min{ k + 1, deg(zl;)} the size of the common key. The following theorem proves 
that the protocol is optimal with respect to the size of the information held 
by each user. In the following theorem we suppose that all keys have the same 
entropy, i.e. H ( S i , j )  = H ( S )  for all i and j .  

Theorem 7.2 Let U = {Ul,.. ., Un) be a sel of users, let k ,  k 5 n - 2 ,  be 
an integer, and lei G be a communication graph on U. In any k-secure key 
distribution scheme for G,  the entropy H(Uj )  of each user U; satisfies 

H ( W  1 /J * H ( S ) ,  

where p = min{Ic + 1, deg(u i ) } .  

Proof : Letr.(Uj, Uj,), ... ,(Ui, Uj,) be elements of the communication structure 
described by graph G. That is, the server has to provide a common key for such 
pairs of users. Then, one has 

H(Ui)  = H($,jl . . & )  - H ( $ , j l  . . .q , jp  lui)+H(u;tq,jl . - . q , j , )  
(from (4) and ( 5 ) )  

P 

2 ~ ( 8 . j ~  * .s~:,j, ) - C ~ ( ~ , j l  ~ui) + H(UilsI:,jl . .<,j,, 1 (from (3) and (8)) 
k 1  

= H(4,jl . . .s , j , )  + H(UiIS,,jl . . .S,,j ,)  (from 1. of Definition 7.1) 

2 H(Si.jl ... S , j , )  (from(')) 
= H(sI:,j,) + H(S,,ja l$,j*) + * * - +  

= P W )  0 

I4*j1 * * .s, ' J p -  ' l )  (from (3)) 
= H(S,,jl)+H(S,,ja)+...+H(S,,j,) (from Lemma4.1) 

Analogously to KDSs, in t-conference KDS we can consider the case when not 
all the t-tuples of users need to set up a common key. Let U = {Ul , . . . , Un) be a 
set of users. A t-communication structure Ct is a subset of Ut . The communication 
structure contains all t-tuple of users for which the protocol has to provide 
a conference key. A convenient way to represent a t-communication structure 
is by an hypergraph H in which each vertex Ui corresponds to user Ui,  and 
there is a hyperedge (q, , . . . , U,+) if and only if (U,, . . . qt) E C,. We will call 
the hypergraph associated with a t-communication structure the communication 
hypergraph. Definition 7.1, the previously described protocol, and Theorem 7.2 
can be extended to a key distribution scheme for any t-communication structure 
ct . 
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8 Applications: Authentication and Master Keys 

The polynomial-based scheme proposed applies to settings where a limited coali- 
tion of up to a certain security parameter k of adversaries are expected. A basic 
application is a secure conference key generation. The setting is ideal for the 
case of a master key generation (to derive further temporal keys), or authentica- 
tion of conference members baaed on conventional cryptosystems using the key 
in authentication protocols (such as the ones described in [l]) and without the 
need of going to an on-line server (as in [19]). For authentication applications 
it has a necessary and elegant feature as it connects the IDS of parties to the 
authentication master key (an ID-based authentication method). Further, addi- 
tional authenticating information can be attached (as explained in the following 
sub-sections). The advantage of the system ifrom operational point of view is 
the disposal of the necessity to contact an on-line remote server, the altefnative 
cost is, naturally, the on-line key computation (evaluation) cost, (this can be 
somewhat reduced if keys are cached). 

8.1 Mixed User Groups 

It may be desired to have an asymmetric protocol where the two parties should 
not be considered equal. For example, one party is a server, and the other a client 
(e.g., a server-user model). The protocol, in this case, will not only authenticate 
the name of the user (say), but also the fact that it is an entity with a status of 
user ‘(rather than a server); users will not be able to claim to be servers. In this 
case we can modify the scheme to use asymmetric polynomials. This asymmetric 
scheme can be used to define status (type) of users in various security domains. 

8.2 Two-level hierarchical polynomial 

Another use for the scheme is for a hierarchical transfer of trust. This can be 
done either in the symmetric or in the asymmetric polynomial methods. Let us 
demonstrate here a two level hierarchy of authority servers (domains) and users. 
The system’s polynomial has four (sets of) variables Q(z, y, z ,  w ) .  Q(z, y, ., -) = 
Q(y,z, - , . )  and & ( ~ , - , a , z o )  = Q(., - ,w ,z ) .  The first half of variables are to be 
evaluated under the servers’ names and the later half to be evaluated under 
the users’ names. This gives an identification of both the user and its domain 
(server) in an authentication process. This can be extended to a few levels. 

the symmetric polynomial 

8.3 Uses for internetworking 

In an inter-enterprise environment, using the above method - an organization 
(company) can issue permits (authentication polynomials) to its own employees, 
without knowing the main polynomial. Whenever an employee of this company 
uses the network, it is clear that he indeed has received its authorization ifrom 
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that company (since he must send C ,  otherwise he will not be able to authen- 
ticate itself). Moreover, if it is desired to revoke the permit of this company, it 
is not necessary to revoke the permit of each of its employees separately, rather 
revoke the server’s authorization and eliminate the right to its users. 

8.4 Additional control variables 

A multi-variate polynomial may have additional uses. Additional meanings can 
be assigned to a few additional variables, for example: 

r 

- Time-stamp: The polynomial can be evaluated at a specific date by the 
distributor. The entity using it will have to specify the date it received it 
(otherwise it will not be able to generate to authentication key). Thus , 
validity and expiration can easily be decided. 

- Group membership: Members of a specific group will be given private poly- 
nomials evaluated also under the name of the group (while others will be 
given the polynomial evaluated under the names of other groups). 

- Permission to access a certain resource for access-confrol mechanism can be 
embedded in the private polynomial computation. 

To conclude, we have modeled, analyzed, and designed dynamic optimal con- 
ference key distribution schemes, presented the advantage of interaction in this 
setting, and presented modifications and essential applications. 
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