
Perfectly-Secure MPC
with Linear Communication Complexity?

Zuzana Beerliová-Trub́ıniová and Martin Hirt

ETH Zurich, Department of Computer Science, CH-8092 Zurich
{bzuzana,hirt}@inf.ethz.ch

Abstract. Secure multi-party computation (MPC) allows a set of n
players to securely compute an agreed function, even when up to t players
are under the control of an adversary. Known perfectly secure MPC proto-
cols require communication of at least Ω(n3) field elements per multipli-
cation, whereas cryptographic or unconditional security is possible with
communication linear in the number of players. We present a perfectly
secure MPC protocol communicating O(n) field elements per multiplica-
tion. Our protocol provides perfect security against an active, adaptive
adversary corrupting t < n/3 players, which is optimal. Thus our proto-
col improves the security of the most efficient information-theoretically
secure protocol at no extra costs, respectively improves the efficiency of
perfectly secure MPC protocols by a factor of Ω(n2). To achieve this,
we introduce a novel technique – constructing detectable protocols with
the help of so-called hyper-invertible matrices, which we believe to be
of independent interest. Hyper-invertible matrices allow (among other
things) to perform efficient correctness checks of many instances in par-
allel, which was until now possible only if error-probability was allowed.

Keywords: Multi-party computation, efficiency, perfect security, hyper-
invertible matrix.

1 Introduction

1.1 Secure Multi-Party Computation

Secure multi-party computation (MPC) enables a set of n players to securely
evaluate an agreed function even when t of the players are corrupted by a cen-
tral adversary. A passive adversary can read the internal state of the corrupted
players, trying to obtain some information he is not entitled to. An active ad-
versary can additionally make the corrupted players deviate from the protocol,
trying to falsify the outcome of the computation. In this work, we consider active
adversaries.

The MPC problem dates back to Yao [Yao82]. The first generic solutions pre-
sented in [GMW87, CDvdG87, GHY87] (based on cryptographic intractability
assumptions) and later [BGW88, CCD88, RB89, Bea91b] (with information-
theoretic security) are rather inefficient and thus of theoretical interest mainly.
? This work was partially supported by the Zurich Information Security Center. It

represents the views of the authors.

1.2 Efficiency of MPC Protocols

In the recent years lots of research concentrated on designing protocols with
lower communication complexity. In this paper we concentrate on bit-complexity,
measured in bits sent by honest players. The following table gives an overview
on the currently most efficient MPC protocols (in the respective security model),
where κ denotes the bit-length of a field element (resp. the security parameter).

Thresh. Security Bits/Mult. Reference
t < n/3 perfect O(n3κ) [HMP00]
t < n/2 unconditional O(n2κ) [BH06]
t < n/2 cryptographic O(nκ) [HN06]
t < n/3 unconditional O(nκ) [DN07]

All above protocols use “player elimination” (or its generalization “dispute
control”) – a technique that enables converting non-robust (but detectable) pro-
tocols into robust protocols, essentially without any efficiency loss. Furthermore,
all but the perfectly secure protocol use circuit randomization [Bea91a], which
reduces the multiplication of two shared values to two reconstructions, given a
precomputed sharing of a random multiplication triple (a, b, c) with c = ab. Such
triples can be non-robustly generated and checked in advance – making use of
parallelization. Checking the correctness of many instances in parallel can be
done very efficiently when negligible error-probability is allowed, however until
now no perfectly secure efficient parallel correctness-checks are known.

1.3 Contributions

In this paper, we present a novel technique which, at the same time, allows to
perfectly and very efficiently verify a bunch of sharings and (if the check says
that they are correct) to extract a set of (new) correct random sharings given
that a sub-set of the original sharings is random.

More precisely, given n supposedly random sharings, up to t of them dis-
tributed by corrupted players (and thus possibly of a wrong degree, non-random,
etc), we can check whether they are all correct and if so (locally) compute n−2t
correct and uniform random sharings. The check is (despite of being perfectly
secure) highly efficient; it only requires the reconstruction of 2t sharings, each
towards a single player.

In other words, we can non-robustly but detectably generate Ω(n) uniform
random sharings, unknown to the adversary, with perfect security and commu-
nicating O(n2) field elements. By now, similarly efficient protocols to generate
random sharings are known only with probabilistic checks, which provides a
lower level of security and is less elegant.

The novel technique is based on so-called hyper-invertible matrices, i.e., ma-
trices whose every square sub-matrix is invertible. Applying n sharings to such
a matrix results in n sharings with the property that (i) if any (up to t) of the
inputs sharings are broken, then this can be seen in every subset of t output

sharings, and (ii) if any n − t input sharings are uniform random, then every
subset of size n− t of output sharings is uniform random.

Using hyper-invertible matrices and some techniques from [Bea91a, HMP00,
DN07], we construct a perfectly secure multi-party protocol with optimal re-
silience and linear communication complexity. This can be seen as an efficiency
improvement (the most efficient known MPC protocol with perfect security com-
municates O(n3) field elements per multiplication [HMP00]), or alternatively as
a security improvement (the most secure known MPC protocol with linear com-
munication provides error probability [DN07]). In either case, we consider the
new protocol to be more elegant, as it employs neither two-dimensional sharings
(like all previous perfectly-secure MPC protocols) nor probabilistic checks (like
all previous MPC protocols with linear communication complexity).

2 Preliminaries

2.1 Model

We consider a set U of users, who can give input and receive output, and a set
P of n players, P = {P1, . . . , Pn}, who perform the computation. The players
and users are connected by a complete network of secure (private and authentic)
synchronous channels.

The function to be computed is specified as an arithmetic circuit over a
finite field F (with |F| > 2n), with input, addition, multiplication, random, and
output gates. We denote the number of gates of each type by cI , cA, cM , cR,
and cO, respectively.

The faultiness of players or users is modeled in terms of a central adver-
sary corrupting players and users. The adversary can corrupt up to t players
for any fixed t with t < n/3 and any number of users, and make them deviate
from the protocol in any desired manner. The adversary is computationally un-
bounded, active, adaptive, and rushing. The security of our protocols is perfect,
i.e., information-theoretic without any error probability.

To every player Pi ∈ P a unique, non-zero element αi ∈ F \ {0} is assigned.
For the ease of presentation, we always assume that the messages sent through

the channels are from the right domain — if a player receives a message which is
not in the right domain (e.g., no message at all), he replaces it with an arbitrary
message from the specified domain.

2.2 Byzantine Agreement

In our multi-party protocol we use Byzantine agreement in both its shapes,
broadcast and consensus. Broadcast allows a sender to distribute a value x, such
that all players receive the same value x′ (even if the sender is faulty), and
x = x′ if the sender is honest. Consensus allows the players, each holding an
input xi, to reach agreement on a value x′, where x = x′ if every honest players
holds xi = x. For t < n/3, both broadcast and consensus can be simulated with

perfect security by a sub-protocol communicating O(n2) bits [BGP92, CW92].
We denote the communication complexity needed for agreeing on a k bit message
as BA(k) = n2k.

2.3 Player-Elimination Framework

Player Elimination [HMP00] is a general technique, used for constructing effi-
cient MPC protocols. It allows to transform (typically very efficient) non-robust
protocols into robust protocols at essentially no additional costs.

The basic idea is to divide the computation into segments and repeat the non-
robust evaluation of each segment until it succeeds, whereby limiting the total
number of times the adversary can cause a segment to fail. Each evaluation of a
segment proceeds in three steps: (1.) detectable computation (2.) fault detection
and (3.) fault localization.

Definition 1. A detectable protocol is a passively secure protocol that can (in
the presence of an active adversary) produce incorrect output, however this will
be detected by at least one honest player. We say that after detecting a fault the
player gets unhappy (sets his happy-bit to unhappy).

In the detectable computation, the actual non-robust (but detectable) pro-
tocol is invoked to compute the segment. In the fault detection the players agree
on whether or not there are some unhappy players. If all players are happy the
computation of the segment was successful, the players keep the output and pro-
ceed to the next segment. Otherwise the segment failed, the output is discarded
and a pair of players E = {Pi, Pj} containing at least one corrupted player is
localized in the fault localization, eliminated from the actual player set and the
segment is repeated with the new player set.1 We denote the original player set
as P (containing n players, up to t of them faulty), and the actual (reduced)
player set as P ′ (containing n′ players, up to t′ of them faulty).

By selecting the size of a segment such that there are t segments, the overall
costs of the resulting robust protocol are at most twice the costs of the non-
robust protocol (plus the overhead costs for the fault detection and the player
elimination).

Special care needs to be taken such that the computation after a (sequence
of) player elimination is “compatible” with the outputs of previous segments. We
ensure this compatibility be fixing the degree of all sharings to t, independent
of the actual threshold t′. Note that a sharing (among P ′) of degree t can be
reconstructed as long as t + 2t′ < n′, what is clearly satisfied when t < n/3.

Technically, a player-elimination protocol proceeds as follows:

1 Note that we eliminate players and not users. If a party playing the role of a player
as well as the role of a user is eliminated from the player set, it still keeps its user
role – can give input and receive output.

Protocol with Player-Elimination.
Let P ′ ← P, n′ ← n, t′ ← t. Divide computation into t segments of similar size,
and do the following for each segment:
0. Every Pi ∈ P ′ sets his happy-bit to happy (i.e., Pi did not observe a fault).
1. Detectable Computation: Compute the actual segment in detectable

manner, such that (i) if all players in P ′ follow their protocol, then the
computation succeeds and all players remain happy, and (ii) if the output is
incorrect, then at least one honest player in P ′ detects so and gets unhappy.

2. Fault Detection: Reach agreement on whether or not all players in P ′

are happy (involves Byzantine Agreement). If all players are happy, proceed
with the next segment. If at least one player is unhappy, proceed with the
following fault-localization procedure.

3. Fault Localization: Find E ⊆ P ′ with |E| = 2, containing at least one
corrupted player.

4. Player Elimination: Set P ′ ← P ′ \E, n′ ← n′− 2, t′ ← t′− 1, and repeat
the segment.

2.4 Circuit Randomization

Circuit randomization [Bea91a] allows to compute a sharing [z] of the product z
of two factors x and y, shared as [x] and [y], at the costs of two public reconstruc-
tions, when a pre-shared random triple

(
[a], [b], [c]

)
with c = ab is available. This

technique allows to first prepare cM shared multiplication triples
(
[a], [b], [c]

)
,

and then to evaluate a circuit with cM multiplication by a sequence of public
reconstructions.

The trick of circuit randomization is that z = xy can be expressed as z =(
(x−a)+a

)(
(y−b)+b

)
, hence z = de+db+ae+c, where (a, b, c) is a multiplication

triple and d = x− a and e = y − b. For a random multiplication triple, d and e
are random values independent of x and y, hence a sharing [z] can be linearly
computed as [z] = [de] + d[b] + e[a] + [c], by reconstructing [d] = [x] − [a] and
[e] = [y] − [b].

3 Hyper-Invertible Matrices

3.1 Definition

A hyper-invertible matrix is a matrix of which every (non-trivial) square sub-
matrix is invertible.

Definition 2. An r-by-c matrix M is hyper-invertible if for any index sets R ⊆
{1, . . . , r} and C ⊆ {1, . . . , c} with |R| = |C| > 0, the matrix MC

R is invertible,
where MR denotes the matrix consisting of the rows i ∈ R of M , MC denotes
the matrix consisting of the columns j ∈ C of M , and MC

R =
(
MR

)C .

3.2 Construction

We present a construction of a hyper-invertible n-by-n matrix M over a finite
field F with |F| ≥ 2n. A hyper-invertible r-by-c matrix can be extracted as a
sub-matrix of such a matrix with n = max(r, c).

Construction 1. Let α1, . . . , αn, β1, . . . , βn denote fixed distinct elements in F ,
and consider the function f : Fn → Fn, mapping (x1, . . . , xn) to (y1, . . . , yn)
such that the points (β1, y1), . . . , (βn, yn) lie on the polynomial g(·) of degree
n−1 defined by the points (α1, x1), . . . , (αn, xn). Due to the linearity of Lagrange
interpolation, f is linear and can be expressed as a matrix M = {λi,j}j=1,...n

i=1,...,n,
where λi,j =

∏n
k=1
k 6=j

βi−αk

αj−αk
.

Lemma 1. Construction 1 yields a hyper-invertible n-by-n matrix M .

Proof. We have to show that for any index sets R,C ⊆ {1, . . . , n} with |R| =
|C| > 0, MC

R is invertible. As |R| = |C|, it is sufficient to show that the mapping
defined by MC

R is surjective, i.e., for every ~yR there exists an ~xC such that ~yR =
MC

R ~xC . Equivalently, we show that for every ~yR there exists an ~x such that ~yR =
MR~x and ~xC = ~0, where C = {1, . . . , n} \C. Remember that M is defined such
that the points (α1, x1), . . . , (αn, xn), (β1, y1), . . . , (βn, yn) lie on a polynomial
g(·) of degree n − 1. Given the n points

{
(αj , 0)

}
j /∈C

and
{
(βi, yi)

}
i∈R

, the
polynomial g(·) can be determined by Lagrange interpolation, and ~xC can be
computed linearly from ~yR. Hence, MC

R is invertible. ut

3.3 Properties

The mappings defined by hyper-invertible matrices have a very nice symmetry
property: Any subset of n input/output values can be expressed as a linear
function of the remaining n input/output values:

Lemma 2. Let M be a hyper-invertible n-by-n matrix and (y1, . . . , yn) =
M(x1, . . . , xn). Then for any index sets A,B ⊆ {1, . . . , n} with |A| + |B| = n,
there exists an invertible linear function f : Fn → Fn, mapping the values
{xi}i∈A, {yi}i∈B onto the values {xi}i/∈A, {yi}i/∈B.

Proof. We have ~y = M~x and ~yB = MB~x = MA
B ~xA + MA

B ~xA. Due to hyper-
invertibility, MA

B is invertible, and ~xA =
(
MA

B

)−1(
~yB − MA

B ~xA

)
. ~yB can be

computed similarly. ut

4 Protocol Overview

The new MPC protocol proceeds in two phases: the preparation phase and the
computation phase.

In the preparation phase, degree-t sharings of random (a, b, c)-triples are
generated (in parallel), one for every multiplication gate. Furthermore, for every

random gate as well as for every input gate, a t-sharing of a random r is gener-
ated. For the sake of simplicity, we generate cM + cR + cI random triples, where
for random and input gates, only the first component is used. The preparation
phase makes use of the player-elimination technique.

In the computation phase, the actual circuit is computed. Input gates are
evaluated with help of a pre-shared random value r. Due to the linearity of the
used secret-sharing, the linear gates can be computed locally – without commu-
nication. Random gates are evaluated simply by picking an unused pre-shared
random value r. Multiplication gates are evaluated with help of one prepared
(a, b, c)-triple, using Beaver’s circuit randomization technique [Bea91a]. Output
gates involve a (robust) secret reconstruction.

5 Secret Sharing

5.1 Definitions and Notation

As secret-sharing scheme, we use the standard Shamir sharing scheme [Sha79].

Definition 3. We say that a value s is (correctly) d-shared (among the players
in P ′) if every honest player Pi ∈ P ′ is holding a share si of s, such that there
exists a degree-d polynomial p(·) with p(0) = s and p(αi) = si for every Pi ∈ P ′.2

The vector (s1, . . . , sn′) of shares is called a d-sharing of s, and is denoted by
[s]d. A (possibly incomplete) set of shares is called d-consistent if these shares
lie on a degree d polynomial.

Most of the sharings used in our protocol are t-sharings – denoted as [·]t. In
the preparation phase we also temporarily use t′- and 2t′-sharings (denoted by
[·]t′ and [·]2t′ , respectively).

By saying that the players in P ′ compute (locally) ([y(1)]d′ , . . . , [y(m′)]d′) =
f([x(1)]d, . . . , [x(m)]d) (for any function f : Fm → Fm′

) we mean that every
player Pi applies this function to his shares, i.e. computes (y(1)

i , . . . , y
(m′)
i) =

f(x(1)
i , . . . , x

(m)
i). Note that by applying any linear function to correct d-sharings

we get a correct d-sharing of the output. However, by multiplying two correct
d-sharings we get a correct 2d-sharing of the product, i.e. [a]d[b]d = [ab]2d.

5.2 The Share Protocol

The following (trivial) Share protocol allows an honest dealer PD to correctly
d-share a secret s among the players in P ′, while communicating O(nκ) bits. We
stress that this protocol does not ensure that the resulting sharing is consistent;
a corrupted dealer might distribute totally inconsistent shares. The consistency
of sharings must be verified separately.

2 Where αi denotes the unique fixed value assigned to Pi.

Protocol Share(PD ∈ (P ∪ U), s, d).
1. PD chooses a random degree-d polynomial p(·) with s = p(0) and sends

si = p(αi) to every Pi ∈ P ′.

5.3 The Reconstruct Protocols

We use two reconstruction protocols: one for private and one for public recon-
struction. Both can be either robust or only detectable – depending on the degree
of the sharings to be reconstructed.

In the private reconstruction protocol the players simply send their shares to
the receiver PR (a player or a user) who interpolates the secret (if possible).

Protocol ReconsPriv(PR ∈ (P ∪ U), d, [s]d).
1. Every player Pi ∈ P ′ sends his share si of s to PR.
2. If there exists a degree-d polynomial p(·) such that at least d + t′ + 1 of the

received shares lie on it, then PR computes the secret s = p(0). Otherwise
PR gets unhappy.

Lemma 3. For d < n′ − 2t′, the protocol ReconsPriv robustly reconstructs [s]d
towards PR. For d < n′− t′, ReconsPriv detectably reconstructs [s]d towards PR

(i.e., PR either outputs s or gets unhappy, where the latter only happens when
some players are faulty). ReconsPriv communicates O(nκ) bits.

The public reconstruction protocol ReconsPubl takes T = n′ − 2t′ = n −
2t = Ω(n) correct d-sharings [s1]d, . . . , [sT]d and publicly (to all players in P ′)
outputs the (correct) values s1, . . . , sT or fails (with at least one honest player
being unhappy). In ReconsPubl we use the idea of [DN07]: first the T sharings
[s1]d, . . . , [sT]d are expanded (using a linear error-correcting code) to n′ sharings
[u1]d, . . . , [un′]d,3 each of which is reconstructed towards one player in P ′ (using
ReconsPriv). Then every Pi ∈ P ′ sends his reconstructed value ui to every other
player in P ′, who tries to decode (with error correction) the received code word
(u1, . . . , un′) to s1, . . . , sT . ReconsPubl communicates O(n2κ) bits to reconstruct
T = Ω(n) sharings.

Protocol ReconsPubl(d, [s1]d, . . . , [sT]d).
1. For every j = 1, . . . , n′ the players in P ′ (locally) compute [uj]d as:

[uj]d = [s1]d + [s2]dβj + [s3]dβ2
j + . . . + [sT]dβT−1

j

2. For every Pi ∈ P ′, ReconsPriv is invoked to reconstruct [ui]d towards Pi.
3. Every Pi ∈ P ′ sends ui (or ⊥ if unhappy) to every Pj ∈ P ′.

3 for this we interpret s1, . . . , sT as coefficients of a degree T − 1 polynomial and
u1, . . . , un′ as evaluations of this polynomial at n′ fixed positions β1, . . . , βn′ .

4. ∀Pi ∈ P ′: If Pi received at least T + t′ (T − 1)-consistent values (in the
previous step), he computes s1, . . . , sT from any T of them. Otherwise he
gets unhappy.

Lemma 4. For d < n′ − 2t′, the protocol ReconsPubl robustly reconstructs
[s1]d, . . . , [sT]d towards all players in P ′. For d < n′− t′, ReconsPubl detectably
reconstructs [s1]d, . . . , [sT]d towards all players in P ′ (i.e., every Pi ∈ P ′ either
outputs s1, . . . , sT or gets unhappy, where the latter only happens when some
players are faulty). ReconsPubl communicates O(n2κ) bits.

6 Preparation Phase

6.1 Overview

The goal of the preparation phase is to generate correct t-sharings of cM +cR+cI

secret random triples
(
ak, bk, ck

)
, such that ck = akbk for k = 1, . . . , cM +cR+cI .

We stress that all resulting sharings must be t-sharings (rather than t′-sharings)
among the player set P ′.4

The preparation phase uses player elimination, i.e. the generation of the
triples is divided into t segments of length ` = d cM+cR+cI

t e. In every segment
the non-robust protocol GenerateTriples is invoked, which either generates correct
triples, or fails with at least one honest player being unhappy.

The generation of the triples follows the approach of [DN07]: First, the players
generate random a and b values, both simultaneously shared with degree t (for
outputting) and degree t′ (for multiplication). Additionally, the players generate
random value r, simultaneously shared with degree t and degree 2t′. Then, they
locally compute the 2t′-sharing [ab]2t′ (by every player multiplying his respective
shares), publicly reconstruct the difference [ab]2t′ − [r]2t′ and add it (locally) to
[r]t, resulting in [ab]t. Finally, the players output the triple

(
[a]t, [b]t, [ab]t

)
.

Definition 4. A value x is (d, d′)-shared among the players P ′, denoted as
[x]d,d′ , if x is both d-shared and d′-shared. We denote such a sharing as a double-
sharing, and the pair of shares held by each player as his double-share.

We (trivially) observe that the sum of correct (d, d′)-sharings is a correct (d, d′)-
sharing of the sum.

6.2 Generating Random Double-Sharings

The following non-robust protocol DoubleShareRandom(d, d′) either generates T
independent secret random values r1, . . . , rT , each independently (d, d′)-shared
among P ′, or fails with at least one honest player being unhappy.

The generation of the random double-sharings employs hyper-invertible ma-
trices: First, every player Pi ∈ P ′ selects and double-shares a random value
4 Remember that as t ≤ n′ − 2t′ (according to Lemma 3 and 4), such sharings can be

robustly reconstructed (regardless of the actual player set P ′).

si. Then, the players compute double-sharings of the values ri, defined as
(r1, . . . , rn′) = M(s1, . . . , sn′), where M is a hyper-invertible n′-by-n′ matrix.
2t′ of the resulting double-sharings are reconstructed, each towards a different
player, who verify the correctness of the double-sharings (and gets unhappy in
case of a fault). The remaining n′ − 2t′ = T double-sharings are outputted.
This procedure guarantees that if all honest players are happy, then at least n′

double-sharings are correct (the n′− t′ double-sharings inputted by honest play-
ers, as well as the t′ double-sharings verified by honest players), and due to the
hyper-invertibility of M , all 2n′ double-sharings must be correct (the remain-
ing double-sharings can be computed linearly from the good double-sharings).
Furthermore, the outputted double-sharings are random and unknown to the
adversary, as there is a bijective mapping from any T double-sharings inputted
by honest players to the outputted double-sharings.

Protocol DoubleShareRandom(d, d′).
1. Secret Share: Every Pi ∈ P ′ chooses a random si and acts (twice in

parallel) as a dealer in Share to distribute the shares among the players in
P ′, resulting in [si]d,d′ .

2. Apply M : The players in P ′ (locally) compute
(
[r1]d,d′ , . . . , [rn′]d,d′

)
=

M
(
[s1]d,d′ , . . . , [sn′]d,d′

)
. In order to do so, every Pi computes his double-

share of each rj as linear combination of his double-shares of the sk-values.
3. Check: For i = T +1, . . . , n′, every Pj ∈ P ′ sends his double-share of [si]d,d′

to Pi, who checks that all n′ double-shares define a correct double-sharing
of some value si. More precisely, Pi checks that all d-shares indeed lie on a
polynomial g(·) of degree d, and that all d′-shares indeed lie on a polynomial
g′(·) of degree d′, and that g(0) = g′(0). If any of the checks fails, Pi gets
unhappy.

4. Output: The remaining T double-sharings [r1]d,d′ , . . . , [rT]d,d′ are out-
putted.

Lemma 5. If DoubleShareRandom(d, d′) succeeds (i.e., all honest players are
happy), it outputs T = n′ − 2t′ correct and random (d, d′)-sharings (among P ′),
unknown to the adversary. DoubleShareRandom communicates O(n2κ) bits to
generate Ω(n) double-sharings.

Proof. Correctness: Assume that all honest players remain happy during the
protocol. Then for all honest Pi with i ∈ {T +1, . . . , n′}, the sharing of ri checked
by Pi in Step 3 is a correct (d, d′)-sharing. As T = n′ − 2t′, there are at least t′

correct sharings of the values rk. Furthermore, every sharing of an si distributed
by an honest Pi in Step 1 is a correct (d, d′)-sharing. Thus there are at least
n′ − t′ correct sharings of the values sk. Given these (at least) n′ correct (d, d′)-
sharings, the sharings of all other values sk and rk can be computed linearly.
As a linear combination of a correct (d, d′)-sharing is again a (d, d′)-sharing, it
follows that all values s1, . . . , sn′ , r1, . . . , rn′ are correctly (d, d′)-shared.

Privacy: The adversary knows (at most) t′ of the input sharings sk (those
provided by corrupted players), and t′ of the output sharings rk (with k > T ,

those reconstructed towards corrupted players). When fixing these 2t′ shar-
ings, then there exists a bijective mapping between any other (honest) T in-
put sharings and the first T output sharings (Lemma 2), hence the sharings
[r1]d,d′ , . . . , [rT]d,d′ are uniformly at random, unknown to the adversary.

Communication: The stated communication can easily be verified by in-
specting the protocol. ut

6.3 Generating Random Triples

Now we present the non-robust protocol GenerateTriples that either generates
T = n′ − 2t′ correctly t-shared (a, b, c)-triples, or fails (with at least one hon-
est player being unhappy). The idea of the protocol GenerateTriples is the fol-
lowing: First DoubleShareRandom is invoked 3 times to generated the random
double-sharings [a1]t,t′ , . . . , [aT]t,t′ , [b1]t,t′ , . . . , [bT]t,t′ , and [r1]t,2t′ , . . . , [rT]t,2t′ ,
respectively. Then for every pair ak, bk, a t-sharing of the product ck = akbk is
computed by reducing the locally computed 2t′-sharing [ck]2t′ = [ak]t′ [bk]t′ to a
t-sharing [ck]t using the t-sharing [rk]t and the 2t′-sharing [rk]2t′ of the random
value rk.

Protocol GenerateTriples.
1. Generate Double-Sharings: Invoke DoubleShareRandom three

times in parallel to generate the double-sharings [a1]t,t′ , . . . , [aT]t,t′ ,
[b1]t,t′ , . . . , [bT]t,t′ , and [r1]t,2t′ , . . . , [rT]t,2t′ .

2. Multiply:

2.1 For k = 1, . . . , T , the players in P ′ compute (locally) the 2t′-sharing
[ck]2t′ of ck = akbk as [ck]2t′ = [ak]t′ [bk]t′ (by every player computing
the product of his shares).

2.2 For k = 1, . . . , T , the players in P ′ compute (locally) a 2t′-sharing of
the difference [dk]2t′ = [ck]2t′ − [rk]2t′

2.3 Invoke ReconsPubl (R = P ′, d = 2t′, [d1]2t′ , . . . , [dT]2t′) to reconstruct
d1, . . . , dT towards every player in P ′.

2.4 For k = 1, . . . , T , the players in P ′ compute (locally) the t-sharing
[ck]t = [rk]t + [dk]0, where [dk]0 denotes the constant sharing [dk]0 =
(dk, . . . , dk).

3. Output: The t-shared triples
(
[a1]t, [b1]t, [c1]t

)
, . . . ,

(
[aT]t, [bT]t, [cT]t

)
are

outputted.

Lemma 6. If GenerateTriples succeeds (i.e., all honest players are happy),
it outputs independent random t-sharings of T = Ω(n) random triples(
a1, b1, c1

)
, . . . ,

(
aT , bT , cT) with ak, bk independent uniform random values and

ck = akbk for k = 1, . . . , T . GenerateTriples communicates O(n2κ) bits.

Proof. The security of GenerateTriples follows directly from the security of
DoubleShareRandom. ut

6.4 Preparation Phase — Main Protocol

The following protocol PreparationPhase divides the generation of the cM +cR+cI

triples into t segments of length ` = d cM+cR+cI

t e. In each segment the triples are
generated invoking the non-robust protocol GenerateTriples (as often as neces-
sary), then the players reach agreement on whether or not all players are happy.
If yes, they proceed to the next segment. Otherwise, a pair of players is identified
in FaultLocalization, excluded from the actual player set P ′ and the segment is
repeated (with the new P ′ and all players setting their happy-bit to happy).

Protocol PreparationPhase.
For each segment k = 1, . . . , t do:
0. Every Pi ∈ P ′ sets his happy-bit to happy.
1. Triple Generation: Invoke GenerateTriples d `

T e times in parallel.
2. Fault Detection: Reach agreement whether or not at least one player is

unhappy:
2.1 Every Pi ∈ P ′ sends his happy-bit to every Pj ∈ P ′, who gets unhappy

if at least one Pi claims to be unhappy.
2.2 The players in P ′ run a consensus protocol on their respective happy-

bits. If the consensus outputs “happy”, then the generated triples are
outputted and the segment is finished. Otherwise, the following Fault-
Localization step is executed.

3. Fault Localization: Localize E ⊆ P ′ with |E| = 2 and at least one player
in E being corrupted:
3.0 Denote the player Pr ∈ P ′ with the smallest index r as the referee.5

3.1 Every Pi ∈ P ′ sends everything he received and all random values he
chose during the computation of the actual segment (including fault
detection) to Pr.

3.2 Given the values received in Step 3.1, Pr can reproduce every message
that should have been sent (by applying the respective protocol instruc-
tions of the sender), and compare it with the value that the recipient
claims to have received. Then Pr broadcasts (l, i, j, x, x′), where l is the
index of a message where Pi should have sent x to Pj , but Pj claims to
have received x′ 6= x.

3.3 The accused players broadcast whether they agree with Pr. If Pi dis-
agrees, set E = {Pr, Pi}, if Pj disagrees, set E = {Pr, Pj}, otherwise set
E = {Pi, Pj}.

4. Player Elimination: Set P ′ ← P ′ \E, n′ ← n′− 2, t′ ← t′− 1, and repeat
the segment.

Lemma 7. The protocol PreparationPhase generates independent random t-
sharings of cM + cR + cI secret triples (ak, bk, ck) with ak, bk independent uni-
form random values and ck = akbk for k = 1, . . . , cM +cR +cI . PreparationPhase

5 The communication can be balanced by selecting a player who has not yet been
referee in a previous segment.

communicates O
(
(cM + cR + cI)nκ + n2κ + tBA(κ)

)
bits, which amounts to

O
(
(cM + cR + cI)nκ + n3κ

)
bits overall.

7 Computation Phase

In the computation phase, the circuit is robustly evaluated, whereby all inter-
mediate values are t-shared among the players in P ′.

Input gates are realized by reconstructing a pre-shared random value r to-
wards the input-providing user, who then broadcasts the difference of this r and
his input.

Due to the linearity of the secret-sharing scheme, linear gates can be com-
puted locally simply by applying the linear function to the shares, i.e. for any
linear function f(·, ·), a sharing [c] = [f(a, b)] is computed by letting every player
Pi compute ci = f(ai, bi).

With every random gate, one random sharing [r] (from the preparation
phase) is associated and [r]t is directly used as outcome of the random gate.

With every multiplication gate, one ([a], [b], [c])-triple (from the preparation
phase) is associated, which is used to compute a sharing of the product at the
cost of two public reconstruction. For the sake of efficiency, we evaluate T/2
multiplication gates at once (such that we can publicly reconstruct T sharings
at once). This of course requires that these multiplication gates do not depend on
each other, i.e., that they all have the same multiplicative depth in the circuit.6

Output gates involve a (robust) secret reconstruction.

Protocol ComputationPhase.
Evaluate the gates of the circuit as follows:
• Input Gate (User U inputs s):

1. Reconstruct the associated sharing [r]t towards U with
ReconsPriv(U, t, [r]). This is robust because t < n′ − 2t′.

2. User U computes and broadcasts the difference d = s− r.
3. Every Pi ∈ P ′ computes his share si of s locally as si = d + ri.

• Addition/Linear Gate: Every Pi ∈ P ′ applies the linear function on his
respective shares.
• Random Gate: Pick the sharing [r]t associated with the gate.
• Multiplication Gate: Up to bT/2c (where T = n − 2t) multi-

plication gates are processed simultaneously. Denote the factor shar-
ings as

(
[x1], [y1]

)
, . . . ,

(
[xT/2], [yT/2]

)
, and the associated triples as

([a1], [b1], [c1]), . . . , ([aT/2], [bT/2], [cT/2]). The products [z1], . . . , [zT/2] are
computed as follows:
1. For k = 1, . . . , T/2, the players compute [dk] = [xk] − [ak] and [ek] =

[yk] − [bk].

6 The multiplicative depth of a gate is the maximum number of multiplication gates
on any path from input/random gates to this gate.

2. Invoke ReconsPubl to publicly reconstruct the T t-sharings
(d1, e1), . . . , (dT/2, eT/2). Note that this is robust, as t < n′ − 2t′.

3. For k = 1, . . . , T/2, the players compute the product sharings [zk]t =
[de]0 + d[b]t + e[a]t + [c]t, where [de]0 denotes the (implicitly defined)
0-sharing of de.

• Output Gate (output [s] to User U): Invoke ReconsPriv(U, t, [s]t).

Lemma 8. The protocol ComputationPhase perfectly securely evaluates a circuit
with cI input, cR random, cM multiplication, and cO output gates, given cI +
cR +cM pre-shared random multiplication triples, with communicating O

(
(cIn+

cMn + cOn + DMn2)κ + cI BA(κ)
)

bits, where DM denotes the multiplicative
depth of the circuit.

Theorem 1. The MPC protocol consisting of PreparationPhase
and ComputationPhase evaluates a circuit with cI input, cR ran-
dom, cM multiplication, and cO output gates, with communicating
O

(
(cIn + cRn + cMn + cOn + DMn2)κ + (cI + n)BA(κ)

)
bits, which

amounts to O
(
(cIn

2 + cRn + cMn + cOn + DMn2)κ + n3κ
)

bits, where DM

denotes the multiplicative depth of the circuit. The protocol is perfectly secure
against an active adversary corrupting t < n/3 players.

The communication complexity for giving input can be improved from
O(n2κ) per input to O(nκ). Details can be found in Appendix A.

Theorem 2. The MPC protocol given in Appendix A evaluates a circuit with cI

input, cR random, cM multiplication, and cO output gates, with communicating
O

(
(cIn+cRn+cMn+cOn+DMn2)κ+nBA(κ)

)
bits, which amounts to O

(
(cIn+

cRn + cMn + cOn + DMn2)κ + n3κ
)

bits, where DM denotes the multiplicative
depth of the circuit. The protocol is perfectly secure against an active adversary
corrupting t < /n/3 players.

8 Conclusions

We have presented a perfectly secure multi-party computation protocol with
optimal security (t < n/3), which communicates only O(n) field elements per
multiplication.

Compared with the previously most efficient perfectly-secure MPC proto-
col [HMP00], this is a speedup of θ(n2) with the same level of security.

Compared with the previously “most secure” MPC protocol with linear com-
munication complexity [DN07], this improves the security from unconditional to
perfect, and at the same time slightly improves the communication overhead
(from O(n4κ) in [DN07] to O(n3κ) here).

This speed-up was possible due to a new technique, so-called hyper-invertible
matrices. Such matrices allow to detectably generate Ω(n) random sharings at
costs O(n2), with perfect security (i.e., without any probabilistic checks as used

in all previous highly-efficient MPC protocols). We believe that this approach
is much more natural than the previous approach with probabilistic checks (for
example, [DN07] needs to work in an extension field to keep the error-probability
small).

References

[Bea91a] Donald Beaver. Efficient multiparty protocols using circuit randomiza-
tion. In Advances in Cryptology — CRYPTO ’91, volume 576 of Lecture
Notes in Computer Science, pages 420–432, 1991.

[Bea91b] Donald Beaver. Secure multiparty protocols and zero-knowledge proof
systems tolerating a faulty minority. Journal of Cryptology, pages 75–
122, 1991.

[BGP92] Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Bit optimal dis-
tributed consensus. Computer Science Research, pages 313–322, 1992.
Preliminary version has appeared in Proc. 21st STOC, 1989.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness
theorems for non-cryptographic fault-tolerant distributed computation.
In Proc. 20th ACM Symposium on the Theory of Computing (STOC),
pages 1–10, 1988.

[BH06] Zuzana Beerliova-Trubiniova and Martin Hirt. Efficient multi-party com-
putation with dispute control. In Shai Halevi and Tal Rabin, editors,
Theory of Cryptography — TCC 2006, volume 3876 of Lecture Notes in
Computer Science, pages 305–328. Springer-Verlag, March 2006.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty uncon-
ditionally secure protocols (extended abstract). In Proc. 20th ACM Sym-
posium on the Theory of Computing (STOC), pages 11–19, 1988.

[CDvdG87] David Chaum, Ivan Damg̊ard, and Jeroen van de Graaf. Multiparty
computations ensuring privacy of each party’s input and correctness of
the result. In Advances in Cryptology — CRYPTO ’87, volume 293 of
Lecture Notes in Computer Science, pages 87–119. Springer-Verlag, 1987.

[CW92] Brian A. Coan and Jennifer L. Welch. Modular construction of a Byzan-
tine agreement protocol with optimal message bit complexity. Informa-
tion and Computation, 97(1):61–85, March 1992. Preliminary version has
appeared in Proc. 8th PODC, 1989.

[DN07] Ivan Damg̊ard and Jesper Buus Nielsen. Robust multiparty computa-
tion with linear communication complexity. In Alfred Menezes, editor,
Advances in Cryptology — CRYPTO 2007, Lecture Notes in Computer
Science. Springer-Verlag, 2007.

[GHY87] Zvi Galil, Stuart Haber, and Moti Yung. Cryptographic computation:
Secure fault-tolerant protocols and the public-key model. In Advances in
Cryptology — CRYPTO ’87, volume 293 of Lecture Notes in Computer
Science, pages 135–155. Springer-Verlag, 1987.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any men-
tal game — a completeness theorem for protocols with honest majority.
In Proc. 19th ACM Symposium on the Theory of Computing (STOC),
pages 218–229, 1987.

[HMP00] Martin Hirt, Ueli Maurer, and Bartosz Przydatek. Efficient secure multi-
party computation. In Tatsuaki Okamoto, editor, Advances in Cryptology

— ASIACRYPT 2000, volume 1976 of Lecture Notes in Computer Sci-
ence, pages 143–161. Springer-Verlag, December 2000.

[HN06] Martin Hirt and Jesper Buus Nielsen. Robust multiparty computation
with linear communication complexity. In Cynthia Dwork, editor, Ad-
vances in Cryptology — CRYPTO 2006, volume 4117 of Lecture Notes in
Computer Science, pages 463–482. Springer-Verlag, August 2006.

[RB89] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty
protocols with honest majority. In Proc. 21st ACM Symposium on the
Theory of Computing (STOC), pages 73–85, 1989.

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM, 22:612–
613, 1979.

[Yao82] Andrew C. Yao. Protocols for secure computations. In Proc. 23rd IEEE
Symposium on the Foundations of Computer Science (FOCS), pages 160–
164. IEEE, 1982.

Appendix

A Totally Linear Protocol

To construct a totally linear MPC protocol we propose a more efficient input
protocol. For the sake of simpler presentation we assume that all inputs are given
at the beginning of the computation stage.

We first present the input protocol LinearInput that allows a set of dealers
D ⊂ P ∪ U each having T inputs to (robustly) share these inputs among the
players in P ′ (using pre-computed t-sharings of random values). If there is a user
with more than T inputs, he plays a role of more dealers.

Protocol LinearInput (every Dk ∈ D having inputs s
(1)
k , . . . , s

(T)
k with as-

sociated random
t-sharings [r(1)

k]t, . . . , [r
(T)
k]t).

1. Reconstruct: For every Dk ∈ D and every l = 1, . . . , T invoke
ReconsPriv(Dk, [r(l)

k]t) to reconstruct the secret random value r
(l)
k towards

Dk.
2. Compute Difference: Every Dk ∈ D computes for every l = 1, . . . , T the

difference d
(l)
k = s

(l)
k − r

(l)
k .

3. Broadcast: Invoke Broadcast to let every dealer Dk ∈ D broadcast (towards
the players in P ′) the T computed differences d

(1)
k , . . . , d

(T)
k .

4. Compute Locally and Output: For every Dk ∈ D and every l = 1, . . . , T

the players in P ′ (locally) compute the sharing of the input s
(l)
k as [s(l)

k]t =
[d(l)

k]0 + [r(l)
k]t.

The robust protocol Broadcast is constructed in three steps.
We first present a non-robust broadcast protocol for P ′ PE− Broadcast.
Note, that broadcasting a value can be interpreted as sharing this value with

degree zero, thus checking whether every player distributed his value consistently

is the same as checking the correctness of sharings with degree zero, which we
can easily do applying HIM.

Protocol PE− Broadcast(every Pi ∈ P ′ has input xi).
1. Distribute Values: Every Pi shares his input with Share (Pi, xi, d = 0),

i.e. sends xi to every Pj ∈ P ′. Resulting in n′ (supposed) 0-sharings

[x1]0, . . . , [xn′]0

2. Apply HIM M : The players in P ′ compute locally the 0-sharings
[x̂1]0, . . . , [x̂n′]0 as

([x̂1]0, . . . , [x̂n′]0) = M([x1]0, . . . , [xn′]0)

3. Check: Every Pi ∈ P ′ checks the correctness of [x̂i]0. For this every Pj ∈ P ′

sends his share of x̂i to Pi. If the values received by Pi are not 0-consistent
(equal), Pi gets unhappy.

4. Output: Every Pj ∈ P ′ outputs the values received in Step 1.)

Now we construct a robust broadcast protocol for P ′ BroadcastForP ′ using
PE− Broadcast, player elimination and segmentation. BroadcastForP ′ allows the
players in P ′, each holding ` values x

(1)
i , . . . , x

(`)
i to broadcast this values among

the players in P ′.

Protocol BroadcastForP ′.
For each segment k = 1, . . . , t (of length `′ = d `

t e) do:
0. Every Pi ∈ P ′ sets his happy-bit to happy.
1. PE-Broadcast: Invoke PE− Broadcast `′ = d `

t e times in parallel, i.e. for
l = 1, . . . , `′ invoke PE− Broadcast to let every Pi ∈ P ′ broadcast his input
xi = x

(l+(k−1)`′)
i .

2. Fault Detection: Reach agreement whether or not at least one player is
unhappy:
2.1 Every Pi ∈ P ′ sends his happy-bit to every Pj ∈ P ′, who gets unhappy

if at least one Pi claims to be unhappy.
2.2 The players in P ′ run a consensus protocol on their respective happy-

bits. If the consensus outputs “happy”, then the generated triples are
outputted and the segment is finished. Otherwise, the following Fault-
Localization step is executed.

3. Fault Localization: Localize E ⊆ P ′ with |E| = 2 and at least one player
in E being corrupted:
3.0 Denote the player Pr ∈ P ′ with the smallest index r as the referee.7

3.1 Every Pi ∈ P ′ sends everything he received and all random values he
chose during the computation of the actual segment (including fault
detection) to Pr.

7 The communication can be balanced by selecting a player who has not yet been
referee in a previous segment.

3.2 Given the values received in Step 3.1, Pr can reproduce every message
that should have been sent (by applying the respective protocol instruc-
tions of the sender), and compare it with the value that the recipient
claims to have received. Then Pr broadcasts (l, i, j, x, x′), where l is the
index of a message where Pi should have sent x to Pj , but Pj claims to
have received x′ 6= x.

3.3 The accused players broadcast whether they agree with Pr. If Pi dis-
agrees, set E = {Pr, Pi}, if Pj disagrees, set E = {Pr, Pj}, otherwise set
E = {Pi, Pj}.

4. Player Elimination: Set P ′ ← P ′ \E, n′ ← n′− 2, t′ ← t′− 1, and repeat
the segment.

Finally we present the protocol Broadcast that enables a set of dealers D
(players or users), each holding T values to robustly broadcast this values, among
the players in P ′.

The idea of the protocol is to let every dealer expand his T values to n′

values (using an error-correcting code tolerating t′ errors) and to send each of
these values to one player in P ′. Then the players in P ′ invoke BroadcastForP ′

to broadcast the received values and final (locally) compute the original values
from the broadcasted values using error-correction.

Protocol Broadcast(every dealer Dk holding a
(0)
k , . . . , a

(T−1)
k).

1. Expand and Distribute: For every dealer Dk denote the polynomial de-
fined by the values a

(0)
k , . . . , a

(T−1)
k as pk(x), i.e.

pk(x) = a
(0)
k + a

(1)
k x + . . . + a

(T−1)
k xT−1

. The dealer Dk computes for every player Pi ∈ P ′ the point pk(αi) and
sends it to Pi.

2. Broadcast: The players in P ′ invoke BroadcastForP ′ with Pi having input
p1(αi), . . . , p|D|(αi).

3. Compute and Output: For every dealer Dk every Pi ∈ P ′ locally computes
the values a

(0)
k , . . . , a

(T−1)
k from the broadcasted values pk(α1), . . . , pk(αn′)

(using error-correction).

