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Abstract

Secure multi-party computation (MPC) is a fundamental problem in secure distributed com-
puting. An MPC protocol allows a set of n mutually distrusting parties to carry out any joint
computation of their private inputs, without disclosing any additional information about their
inputs. MPC with information-theoretic security (also called unconditional security) provides
the strongest security guarantees and remains secure even against computationally unbounded
adversaries. Perfectly-secure MPC protocols is a class of information-theoretically secure MPC
protocols, which provides all the security guarantees in an error-free fashion. The focus of this
work is perfectly-secure MPC. Known protocols are designed assuming either a synchronous or
asynchronous communication network. It is well known that perfectly-secure synchronous MPC
protocol is possible as long as adversary can corrupt any ts < n/3 parties. On the other hand,
perfectly-secure asynchronous MPC protocol can tolerate up to ta < n/4 corrupt parties. A
natural question is does there exist a single MPC protocol for the setting where the parties are
not aware of the exact network type and which can tolerate up to ts < n/3 corruptions in a
synchronous network and up to ta < n/4 corruptions in an asynchronous network. We design
such a best-of-both-worlds perfectly-secure MPC protocol, provided 3ts + ta < n holds.

For designing our protocol, we design two important building blocks, which are of inde-
pendent interest. The first building block is a best-of-both-worlds Byzantine agreement (BA)
protocol tolerating t < n/3 corruptions and which remains secure, both in a synchronous as well
as asynchronous network. The second building block is a polynomial-based best-of-both-worlds
verifiable secret-sharing (VSS) protocol, which can tolerate up to ts and ta corruptions in a
synchronous and in an asynchronous network respectively.

Keywords: Perfect security, MPC, Verifiable Secret Sharing, Byzantine Agreement, Syn-
chronous Network, Asynchronous Network.

1 Introduction

Consider a set of n mutually distrusting parties P = {P1, . . . , Pn}, where each Pi has some private
input. The distrust among the parties is modeled as a centralized adversary, who can control
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any t out of the n parties in a Byzantine (malicious) fashion and force them to behave arbitrarily
during the execution of any protocol. An MPC protocol [49, 39, 14, 24, 47] allows the parties to
securely compute any known function of their private inputs, such that the honest parties (who
are not under adversary’s control) obtain the correct output, irrespective of the behaviour of the
adversary. Moreover, adversary does not learn any additional information about the inputs of
the honest parties, beyond what can be revealed by the function output and the inputs of the
corrupt parties. If the adversary is computationally bounded then the notion of security achieved
is called conditional security (also known as cryptographic security) [49, 39, 36]. On the other
hand, unconditionally secure protocols (also known as information-theoretically secure protocols)
provide security against computationally unbounded adversaries [14, 24]. Unconditionally secure
protocols provide ever-lasting security, as their security is not based on any computational-hardness
assumptions. Moreover, compared to conditionally secure protocols, the protocols are simpler and
faster by several order of magnitude, as they are based on very simple operations, such as polynomial
interpolation and polynomial evaluation over finite fields. Unconditionally secure protocols can be
further categorized as perfectly-secure MPC protocols [14, 36, 29, 11, 40, 2], where all security
properties are achieved in an error-free fashion. On the other hand, statistically-secure MPC
protocols [47, 28, 9, 15, 40] allow for a negligible error in the achieved security properties.

Traditionally, MPC protocols are designed assuming either a synchronous or asynchronous com-
munication model. In synchronous MPC (SMPC) protocols, parties are assumed to be synchronized
with respect to a global clock and there is a publicly-known upper bound on message delays. Any
SMPC protocol operates as a sequence of communication rounds, where in each round, every party
performs some computation, sends messages to other parties and receives messages sent by the
other parties, in that order. Consequently, if during a round a receiving party does not receive
an expected message from a designated sender party by the end of that round, then the receiving
party has the assurance that the sender party is definitely corrupt. Though synchronous commu-
nication model is highly appealing in terms of its simplicity, in practice, it might be very difficult
to guarantee such strict time-outs over the channels in real-world networks like the Internet. Such
networks are better modeled through the asynchronous communication model [21].

An asynchronous MPC (AMPC) protocol operates over an asynchronous network, where the
messages can be arbitrarily, yet finitely delayed. The only guarantee in the model is that every sent
message is eventually delivered. Moreover, the messages need not be delivered in the same order
in which they were sent. Furthermore, to model the worst case scenario, the sequence of message
delivery is assumed to be under the control of the adversary. Unlike SMPC protocols, the protocol
execution in an AMPC protocol occurs as a sequence of events, which depend upon the order in
which the parties receive messages. Comparatively, AMPC protocols are more challenging to design
than SMPC protocols. This is because inherently, in any AMPC protocol, a receiving party cannot
distinguish between a slow sender party (whose messages are arbitrarily delayed in the network) and
a corrupt sender party (who does not send any messages). Consequently, in any AMPC protocol
with up to ta corruptions, at any stage of the protocol, no party can afford to receive messages
from all the parties. This is because the corrupt parties may never send their messages and hence
the wait could turn out be an endless wait. Hence, as soon as a party receives messages from
any subset of n − ta parties, it has to proceed to the next stage of the protocol. However, in this
process, messages from up to ta potentially slow, but honest parties, may get ignored. In fact, in
any AMPC protocol, it is impossible to ensure that the inputs of all honest parties are considered for
the computation and inputs of up to ta (potentially honest) parties may have to be ignored, since
waiting for all n inputs may turn out to be an endless wait. The advantage of AMPC protocols over
SMPC protocols is that the time taken to produce the output depends upon the actual speed of the
underlying network. In more detail, for an SMPC protocol, the participants have to pessimistically
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set the global delay ∆ on the message delivery to a large value to ensure that the messages sent by
every party at the beginning of a round reach to their destination within time ∆. But if the actual
delay δ in the network is such that δ << ∆, then the protocol fails to take advantage of the faster
network and its running time will be still proportional to ∆.

The focus of this work is perfectly-secure MPC. It is well known that perfectly-secure SMPC
is possible if and only if adversary can corrupt up to ts < n/3 parties [14]. On the other hand,
perfectly-secure AMPC is possible if and only if adversary can corrupt up to ta < n/3 parties [13].

Our Motivation and Our Results: As discussed above, known SMPC and AMPC protocols
are designed under the assumption that the parties are aware of the exact network type. We
envision a scenario where the parties are not aware of the exact network type and aim to design a
single MPC protocol, which remains secure, both in a synchronous, as well as in an asynchronous
network. We call such a protocol as a best-of-both-worlds protocol, since it offers the best security
properties, both in the synchronous and the asynchronous communication model. While there exist
best-of-both-worlds conditionally-secure MPC protocols [19, 30], to the best of our knowledge, no
prior work has ever addressed the problem of getting a best-of-both-worlds perfectly-secure MPC
protocol. Motivated by this, we ask the following question:

Is there a best-of-both-worlds perfectly-secure MPC protocol, that remains secure under ts
corruptions in a synchronous network, and under ta corruptions in an asynchronous network,

where ta < ts?

We show the existence of a perfectly-secure MPC protocol with the above guarantees, provided
3ts + ta < n holds.1 Note that we are interested in the case where ta < ts, as otherwise the
question is trivial to solve. More specifically, if ts = ta, then the necessary condition of AMPC
implies that ts < n/4 holds. Hence, one can use any existing perfectly-secure AMPC protocol,
which will be secure under ts corruptions even in a synchronous network. Moreover, by ensuring
appropriate time-outs, it can be guaranteed that in the protocol, the inputs of all honest parties are
considered for the computation, if the network is synchronous. Our goal is to achieve a resilience
strictly greater than n/4 and close to n/3, if the underlying network is synchronous. For example,
if n = 8, then existing perfectly-secure SMPC protocols can tolerate up to 2 corrupt parties, while
existing perfectly-secure AMPC protocols can tolerate up to 1 fault. On the other hand, using our
best-of-both-worlds protocol, one can tolerate up to 2 faults in a synchronous network and up to 1
fault in an asynchronous network, even if the parties are not aware of the exact network type.

1.1 Technical Overview

We assume that the function to be securely computed is represented by some arithmetic circuit cir
over a finite field F, consisting of linear and non-linear (multiplication) gates. Following [14], the
goal is then to securely “evaluate” cir in a secret-shared fashion, such that all the values during
the circuit-evaluation are t-shared, as per the Shamir’s secret-sharing scheme [48], where t is the
maximum number of corrupt parties.2 Intuitively, this guarantees that an adversary controlling up
to t parties does not learn any additional information during the circuit-evaluation, as the shares
of the corrupt parties does not reveal anything additional about the actual shared values. The
degree-of-sharing t is set to t < n/3 and t < n/4 in SMPC and AMPC protocols respectively.

1This automatically implies that ts < n/3 and ta < n/4 holds, which are necessary for designing perfectly-secure
MPC protocol in a synchronous and an asynchronous network respectively.

2A value s ∈ F is said to be t-shared, if there is some t-degree polynomial fs(·) over F with fs(0) = s and every
(honest) Pi has a distinct point on fs(·), which is called Pi’s share of s.
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Since, in our best-of-both-worlds protocol, the parties will not be aware of the exact network type,
we need to ensure that all the values during circuit-evaluation are always secret-shared with the
degree-of-sharing being t = ts, even if the network is asynchronous.

For shared circuit-evaluation, we follow the Beaver’s paradigm [8], where multiplication gates
are evaluated using random ts-shared multiplication-triples of the form (a, b, c), where c = a · b (due
to the linearity of Shamir’s secret-sharing, linear gates can be evaluated non-interactively). The
shared multiplication-triples are generated in a circuit-independent preprocessing phase, using the
framework of [26], which shows how to use any polynomial-based verifiable secret-sharing (VSS) [25]
and a Byzantine agreement (BA) protocol [45] to generate shared random multiplication-triples.
The framework works both in a synchronous as well as in an asynchronous network, where the
parties are aware of the exact network type. However, there are several challenges to adapt the
framework if the parties are unaware of the exact network type, which we discuss next.

First Challenge — A Best-of-Both-Worlds Byzantine Agreement (BA) Protocol: In-
formally, a BA protocol [45] allows the parties with private inputs to reach agreement on a common
output (consistency), where the output is the input of the honest parties, if all honest parties partic-
ipate in the protocol with the same input (validity). Perfectly-secure BA protocols can be designed
tolerating t < n/3 corruptions, both in a synchronous network [45], as well as in an asynchronous
network [22, 3, 7]. However, the termination (also called liveness) guarantees are different for
synchronous BA (SBA) and asynchronous BA (ABA). (Deterministic) SBA protocols ensure that
all honest parties obtain their output after some fixed time (guaranteed liveness). On the other
hand, to circumvent the FLP impossibility result [33], ABA protocols are randomized and provide
what is called as almost-surely liveness [3, 7]. Namely, the parties obtain an output, asymptotically
with probability 1, if they continue running the protocol. SBA protocols become insecure when
executed in an asynchronous network, if even a single expected message from an honest party is
delayed. On the other hand, ABA protocols when executed in a synchronous network, can provide
only almost-surely liveness, instead of guaranteed liveness.

The first challenge to adapt the framework of [26] in the best-of-both-worlds setting is to get
a perfectly-secure BA protocol, which provides security both in a synchronous as well as in an
asynchronous network. Namely, apart from providing the consistency and validity properties in
both types of network, the protocol should provide guaranteed liveness in a synchronous network
and almost-surely liveness in an asynchronous network. We are not aware of any BA protocol
with the above properties. Hence, we present a perfectly-secure BA protocol tolerating t < n/3
corruptions, with the above properties. Since our BA protocol is slightly technical, we defer the
details to Section 3.

Second Challenge — A best-of-both-worlds VSS Protocol: Informally, in a polynomial
based VSS protocol, there exists a designated dealer D with a t-degree polynomial, where t is
the maximum number of corrupt parties, possibly including D. The protocol allows D to distribute
points on this polynomial to the parties in a “verifiable” fashion, such that the view of the adversary
remains independent of D’s polynomial for an honest D.3 In a synchronous VSS (SVSS) protocol,
every party has the correct point after some known time-out, say T (correctness property). The
verifiability guarantees that even a corrupt D is bound to distribute points on some t-degree polyno-
mial within time T (strong-commitment property). Perfectly-secure SVSS is possible if and only if
t < n/3 [31]. For an asynchronous VSS (AVSS) protocol, the correctness property guarantees that

3Hence the protocol allows D to generate a t-sharing of the constant term of the polynomial, which is also called
as D’s secret.
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for an honest D, the honest parties eventually receive points on D’s polynomial. However, a corrupt
D may not invoke the protocol in the first place and the parties cannot distinguish this scenario
from the case when D’s messages are arbitrarily delayed. This is unlike the strong-commitment
of SVSS where, if the parties do not obtain an output within time T , then the parties publicly
conclude that D is corrupt. Hence, the strong-commitment of AVSS guarantees that if D is corrupt
and if some honest party obtains a point on D’s polynomial, then all honest parties eventually
obtain their respective points on this polynomial. Perfectly-secure AVSS is possible if and only if
t < n/4 [13, 4].

Existing SVSS protocols [35, 34, 41, 23] become completely insecure in an asynchronous network,
even if a single expected message from an honest party is delayed. On the other hand, existing
AVSS protocols [13, 10, 44, 23] only work when D’s polynomial has degree t < n/4 and become
insecure if there are more than n/4 corruptions (which can happen in our context, if the network
is synchronous).

The second challenge to adapt the framework of [26] in our setting is to get a perfectly-secure
VSS protocol, which provides security against ts and ta corruptions in a synchronous and in an
asynchronous network respectively, where D’s polynomial is always a ts-degree polynomial, irre-
spective of the network type. We are not aware of any VSS protocol with these guarantees. We
present a best-of-both-worlds perfectly-secure VSS protocol satisfying the above properties, pro-
vided 3ts + ta < n holds. Our VSS protocol satisfies the correctness requirement of SVSS and
AVSS in a synchronous and an asynchronous network respectively. However, it only satisfies the
strong-commitment requirement of AVSS, even if the network is synchronous. This is because a
potentially corrupt D may not invoke the protocol and the parties will not be aware of the exact
network type. We stress that this does not hinder us from deploying our VSS protocol in the
framework of [26]. Since our VSS protocol is slightly technical, we defer the details to Section 4.

1.2 Related Work

best-of-both-worlds protocols have been studied very recently. The work of [17] shows that the
condition 2ts + ta < n is necessary and sufficient for best-of-both-worlds conditionally-secure BA,
tolerating computationally bounded adversaries. Using the same condition, the works of [19, 30]
present conditionally-secure MPC protocols. Moreover, the same condition has been used in [18]
to design a best-of-both-worlds protocol for atomic broadcast (a.k.a. state machine replication).
Furthermore, the same condition has been used recently in [37] to design a best-of-both-worlds
approximate agreement protocol against computationally-bounded adversaries.

A common principle used in [17, 19, 30] to design best-of-both-worlds protocol for a specific task
T , which could be either BA or MPC, is the following: the parties first run a synchronous protocol
for task T with threshold ts assuming a synchronous network, which also provides certain security
guarantees in an asynchronous environment, tolerating ta corruptions. After the known “time-out”
of the synchronous protocol, the parties run an asynchronous protocol for T with threshold ta,
which also provides certain security guarantees in the presence of ts corruptions. The input for the
asynchronous protocol is decided based on the output the parties receive after the time-out of the
synchronous protocol. The overall output is then decided based on the output parties receive from
the asynchronous protocol. If the task T is MPC, then this means that the parties need to evaluate
the circuit twice. We also follow a similar design principle as above, for our BA protocol. However,
for MPC, we do not require the parties to run two protocols and evaluate the circuit twice. Rather
the parties need to evaluate the circuit only once.
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2 Preliminaries and Definitions

We follow the pairwise secure-channel model, where the parties in P = {P1, . . . , Pn} are connected
by pairwise private and authentic channels. The distrust in the system is modeled by a computa-
tionally unbounded Byzantine (malicious) adversary Adv, who can corrupt a subset of the parties
and force them to behave in any arbitrary fashion, during the execution of a protocol. We assume a
static adversary, who decides the set of corrupt parties at the beginning of the protocol execution.
The underlying network can be synchronous or asynchronous, with parties being unaware about
the exact type. In a synchronous network, every sent message is delivered in the same order, within
some known fixed time ∆. The adversary Adv can control up to ts parties in a synchronous network.

In an asynchronous network, messages are sent with an arbitrary, yet finite delay, and need
not be delivered in the same order. The only guarantee is that every sent message is eventually
delivered. The exact sequence of message delivery is decided by a scheduler and to model the worst
case scenario, the scheduler is assumed to be under the control of Adv. The adversary can control
up to ta parties in an asynchronous network.

We assume that ta < ts and 3ts+ta < n holds. This automatically implies that ts < n/3 and ta <
n/4 holds, which are necessary for any SMPC and AMPC protocol respectively. All computations
in our protocols are done over a finite field F, where |F| > 2n and where α1, . . . , αn, β1, . . . , βn are
publicly-known, distinct, non-zero elements from F. For simplicity and without loss of generality,
we assume that each Pi has a private input x(i) ∈ F, and the parties want to securely compute
a function f : Fn → F. Without loss of generality, f is represented by an arithmetic circuit cir

over F, consisting of linear and non-linear (multiplication) gates [38], where cir has cM number of
multiplication gates and has a multiplicative depth of DM .

Termination Guarantees of Our Sub-Protocols: For simplicity, we will not be specifying
any termination criteria for our sub-protocols. And the parties will keep on participating in these
sub-protocol instances, even after receiving their outputs. The termination criteria of our MPC
protocol will ensure that once a party terminates the MPC protocol, it terminates all underlying
sub-protocol instances. We will use existing randomized ABA protocols which ensure that the
honest parties (eventually) obtain their respective output almost-surely. This means that the
probability that an honest party obtains its output after participating for infinitely many rounds
approaches 1 asymptotically [3, 43, 7]. That is:

lim
T→∞

Pr[An honest Pi obtains its output by local time T ] = 1,

where the probability is over the random coins of the honest parties and the adversary in the proto-
col. The property of almost-surely obtaining the output carries over to the “higher” level protocols,
where ABA is used as a building block. We will say that the “honest parties obtain some output
almost-surely from (an asynchronous) protocol Π” to mean that every honest Pi asymptotically
obtains its output in Π with probability 1, in above the sense.

We next discuss the properties of polynomials over F, which are used in our protocols.

Polynomials Over a Field: A d-degree univariate polynomial over F is of the form

f(x) = a0 + . . .+ adx
d,

where each ai ∈ F. An (ℓ, ℓ)-degree symmetric bivariate polynomial over F is of the form

F (x, y) =

i=ℓ,j=ℓ
∑

i,j=0

rijx
iyj,
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where each rij ∈ F and where rij = rji holds for all i, j. This automatically implies that F (αj , αi) =
F (αi, αj) holds, for all αi, αj . Moreover, F (x, αi) = F (αi, y) also holds, for every αi. Given an
i ∈ {1, . . . , n} and an ℓ-degree polynomial Fi(x), we say that Fi(x) lies on an (ℓ, ℓ)-degree symmetric
bivariate polynomial F (x, y), if F (x, αi) = Fi(x) holds.

We now state some standard known results, related to polynomials over F. It is a well known fact
that there always exists a unique d-degree univariate polynomial, passing through d + 1 distinct
points. A generalization of this result for bivariate polynomials is that if there are “sufficiently
many” univariate polynomials which are “pair-wise consistent”, then together they lie on a unique
bivariate polynomial. Formally:

Lemma 2.1 ([27, 6]). Let fi1(x), . . . , fiq(x) be ℓ-degree univariate polynomials over F, where
q ≥ ℓ+1 and i1, . . . , iq ∈ {1, . . . , n}, such that fi(αj) = fj(αi) holds for all i, j ∈ {i1, . . . , iq}. Then
fi1(x), . . . , fiq(x) lie on a unique (ℓ, ℓ)-degree symmetric bivariate polynomial, say F ⋆(x, y).

In existing (as well as our) VSS protocol, D on having a t-degree polynomial q(·) as input,
embeds q(·) into a random (t, t)-degree symmetric bivariate polynomial F (x, y) at x = 0. And each
party Pi then receives the t-degree univariate polynomial fi(x) = F (x, αi). Here t is the maximum
number of parties which can be under the control of Adv. This ensures that Adv by learning at
most t polynomials lying on F (x, y), does not learn anything about F (0, 0). Intuitively, this is
because Adv will fall short of at least one point on F (x, y) to uniquely interpolate it. In fact, it can
be shown that for every pair of t-degree polynomials q1(·), q2(·) such that q1(αi) = q2(αi) = fi(0)
holds for every Pi ∈ C (where C is the set of parties under Adv), the distribution of the polynomials
{fi(x)}Pi∈C when F (x, y) is chosen based on q1(·), is identical to the distribution when F (x, y) is
chosen based on q2(·). Formally:

Lemma 2.2 ([27, 6]). Let C ⊂ P and q1(·) 6= q2(·) be d-degree polynomials where d ≥ |C| such

that q1(αi) = q2(αi) for all Pi ∈ C. Then the probability distributions
{

{F (x, αi)}Pi∈C

}

and
{

{F ′(x, αi)}Pi∈C

}

are identical, where F (x, y) and F ′(x, y) are random (d, d)-degree symmetric

bivariate polynomials, such that F (0, y) = q1(·) and F ′(0, y) = q2(·) holds.

We next give the definition of d-sharing, which is central to our protocols.

Definition 2.3 (d-sharing). A value s ∈ F is said to be d-shared, if there exists a d-degree
sharing-polynomial, say fs(·), with fs(0) = s, such that every (honest) Pi has the share si = fs(αi).
The vector of shares of s corresponding to the (honest) parties Pi is called a d-sharing of s, denoted
by [s]d. We will omit the degree d from the notation [·]d if it is clear from the context.

It is easy to see that d-sharing satisfies the linearity property; i.e. given [a]d and [b]d, then
[c1 · a+ c2 · b]d = c1 · [a]d + c2 · [b]d holds, where c1, c2 ∈ F are publicly-known. In general, consider
any arbitrary linear function g : Fℓ → F

m and let u(1), . . . , u(ℓ) be d-shared. When we say that
parties locally compute ([v(1)]d, . . . , [v

(m)]d) = g([u(1)]d, . . . , [u
(ℓ)]d), we mean that the parties locally

apply the function g on their respective shares of u(1), . . . , u(ℓ), to get their respective shares of
v(1), . . . , v(m).

2.1 Existing Primitives

We next discuss the existing primitives used in our protocols.
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Online Error-Correction (OEC) [13]: Let P ′ be a subset of parties, containing at most t
corrupt parties. And let there exist some d-degree polynomial q(·) with every (honest) Pi ∈ P ′

having a point q(αi). The goal is to make some designated party, say PR, reconstruct q(·). For this,
each Pi ∈ P ′ sends q(αi) to PR, who keeps waiting till it receives d+ t+1 points, all of which lie on
a unique d-degree polynomial. This step requires PR to repeatedly apply the Reed-Solomon (RS)
error-correction procedure [42] and try to recover q(·), upon receiving a new point from the parties
in P ′. Once PR receives d+1+1 points lying on a d-degree polynomial, say q′(·), then q′(·) = q(·).
This is because among these d + t + 1 points, at least d + 1 are from honest parties in P ′, which
uniquely determine q(·). If d < (|P ′|−2t), then in an asynchronous network, PR eventually receives
d + t + 1 points (from the honest parties in P ′) lying on q(·) and recovers q(·). Moreover, in a
synchronous network, it will take at most ∆ time for PR to recover q(·), since the points of the
honest parties will be delivered within ∆ time. We denote the above procedure by OEC(d, t,P ′),
which is presented in Appendix A, along with its properties.

Finding (n, t)−star [13]: Let G be an undirected graph over P. Then a pair (E ,F) where
E ⊆ F ⊆ P is called an (n, t)−star, if all the following hold.
– |E| ≥ n− 2t;
– |F| ≥ n− t;
– There exists an edge between every Pi ∈ E and every Pj ∈ F .

The work of [13] presents an efficient algorithm (whose running time is polynomial in n), which
we denote as AlgStar. The algorithm always outputs an (n, t)−star (E ,F), provided G contains a
clique of size at least n− t.

Asynchronous Reliable Broadcast (Acast): We use the Bracha’s Acast protocol [20], where
there exists a designated sender S ∈ P with input m ∈ {0, 1}ℓ. The protocol allows S to send
m identically to all the parties, in the presence of any t < n/3 corruptions, possibly including
S. While the protocol has been primarily designed for an asynchronous network, it also provides
certain guarantees in a synchronous network, as stated in Lemma 2.4. Notice that the protocol
does not provide any liveness if S is corrupt, irrespective of the network type. This is because a
corrupt S may not invoke the protocol in the first place. Moreover in a synchronous network, if S is
corrupt and if the honest parties compute an output, then they may not get the output at the same
time. And there may be a difference of at most 2∆ time within which the honest parties compute
their output. The Acast protocol and proof of Lemma 2.4 are available in Appendix A.

Lemma 2.4. Bracha’s Acast protocol ΠACast achieves the following in the presence of up to t < n/3
corruptions, where S has an input m ∈ {0, 1}ℓ for the protocol.

– Asynchronous Network:
– (a) t-Liveness: If S is honest, then all honest parties eventually obtain an output.
– (b) t-Validity: If S is honest, then every honest party with an output, outputs m.
– (c) t-Consistency: If S is corrupt and some honest party outputs m⋆, then every honest

party eventually outputs m⋆.
– Synchronous Network:

– (a) t-Liveness: If S is honest, then all honest parties obtain an output within time 3∆.
– (b) t-Validity: If S is honest, then every honest party with an output, outputs m.
– (c) t-Consistency: If S is corrupt and some honest party outputs m⋆ at time T , then every

honest Pi outputs m⋆ by the end of time T + 2∆.
– Irrespective of the network type, O(n2ℓ) bits are communicated by the honest parties.

We next discuss few terminologies with respect to ΠACast, which we use throughout the paper.
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Terminologies for Using ΠACast: We will say that “Pi Acasts m” to mean that Pi acts as a
sender S and invokes an instance of ΠACast with input m and the parties participate in this instance.
Similarly, we will say that “Pj receives m from the Acast of Pi” to mean that Pj outputs m in the
corresponding instance of ΠACast.

3 best-of-both-worlds Perfectly-Secure Byzantine Agreement

In this section, we present our best-of-both-worlds perfectly-secure Byzantine agreement (BA)
protocol. We begin with the definition of BA, which is a modified version of [17], as we do not
require any termination guarantees. In the definition, we consider the case where the inputs of the
parties is a single bit. However, the definition can be easily extended for the case when the inputs
are bit-strings.

Definition 3.1 (Byzantine Agreement (BA) [17]). Let Π be a protocol for the parties in P
with up to t corrupt parties, where every Pi has an input bi ∈ {0, 1} and a possible output from
{0, 1,⊥}.

– t-Guaranteed Liveness: Π has guaranteed liveness, if all honest parties obtain an output.
– t-Almost-Surely Liveness: Π has almost-surely liveness, if almost-surely, all honest parties

obtain some output.
– t-Validity: Π has t-validity, if the following hold: if all honest parties have input b, then every

honest party with an output, outputs b.
– t-Weak Validity: Π has t-weak validity, if the following hold: if all honest parties have input

b, then every honest party with an output, outputs b or ⊥.
– t-Consistency: Π has t-consistency, if all honest parties with an output, output the same

value.
– t-Weak Consistency: Π has t-Weak Consistency, if all honest parties with an output, output

either a common v ∈ {0, 1} or ⊥.
Protocol Π is called a t-perfectly-secure synchronous-BA (SBA) protocol, if in a synchronous net-
work, it achieves all the following:

– t-guaranteed liveness;
– t-Validity;
– t-Consistency.

Protocol Π is called a t-perfectly-secure asynchronous-BA (ABA) protocol, if in an asynchronous
network, it achieves the following:

– t-almost-surely liveness;
– t-Validity;
– t-Consistency.

To design our best-of-both-worlds BA protocol, we will be using an existing perfectly-secure SBA
and a perfectly-secure ABA protocol, whose properties we review next.

Existing t-Perfectly-Secure SBA: We assume the existence of a t-perfectly-secure SBA pro-
tocol tolerating t < n/3 corruptions, which also provides t-guaranteed liveness in an asynchronous
network.4. For the sake of communication efficiency, we choose the recursive phase-king based
t-perfectly-secure SBA protocol ΠBGP of [16]. The protocol incurs a communication of O(n2ℓ) bits,
if the inputs of the parties are of size ℓ bits. If the network is synchronous, then in protocol ΠBGP,
at time TBGP = (12n− 6) ·∆, all honest parties have an output (see Lemma 10.7 of [1]). To ensure

4We stress that we do not require any other property from the SBA protocol in an asynchronous network.
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guaranteed liveness in an asynchronous network, the parties can simply run the protocol and then
check if any output is obtained at local time (12n − 6) ·∆. In case no output is obtained, then ⊥
is taken as the output. The properties of ΠBGP are summarized in Lemma 3.2.

Lemma 3.2 ([16, 1]). Let t < n/3. Then there exists a protocol ΠBGP with the following properties,
where all parties participate with an input of size ℓ bits.

– The protocol incurs a communication of O(n2ℓ) bits from the honest parties.
– The protocol is a t-perfectly-secure SBA protocol, where all honest parties have an output

within time TBGP = (12n − 6) ·∆.
– In an asynchronous network, all honest parties have an output from {0, 1}ℓ∪{⊥}, within local

time (12n − 6) ·∆.

Existing t-Perfectly-Secure ABA: Existing perfectly-secure ABA protocols achieve the fol-
lowing properties.

Lemma 3.3 ([3, 7]). Let t < n/3. Then there exists a randomized protocol ΠABA, achieving the
following properties, where the inputs of each party is a bit.

– Asynchronous Network: The protocol is a t-perfectly-secure ABA protocol and provides the
following liveness guarantees.
– If the inputs of all honest parties are same, then ΠABA achieves t-guaranteed liveness;
– Else ΠABA achieves t-almost-surely liveness.

– Synchronous Network: The protocol achieves t-validity, t-consistency and the following live-
ness guarantees.
– If the inputs of all honest parties are same, then ΠABA achieves t-guaranteed liveness and

all honest parties obtain their output within time TABA = k ·∆ for some constant k.
– Else ΠABA achieves t-almost-surely liveness and requires O(poly(n) · ∆) expected time to

generate the output.
– Irrespective of the network type, the protocol incurs the following amount of communication

from the honest parties.
– If the inputs of all honest parties are the same, then the protocol incurs a communication

of O(poly(n) log |F|) bits;
– Else, it incurs an expected communication of O(poly(n) log |F|) bits.5

Protocol ΠABA is designed using a weaker “variant” of AVSS called shunning AVSS (SAVSS)
[3, 7], which cannot be used for circuit-evaluation. We provide a brief overview of the ABA protocols
of [3, 7] and a brief outline of the proof of Lemma 3.3 in Appendix B.

From the above discussion, we note that protocol ΠABA cannot be considered as a best-of-both-
worlds BA protocol. This is because the protocol achieves t-guaranteed liveness in a synchronous
network, only when all honest parties have the same input. In case, the parties have a mixed bag of
inputs, then the parties may end up running the protocol forever, without having an output, even
if the network is synchronous, though the probability of this event is asymptotically 0. We design
a perfectly-secure BA protocol, which solves this problem and which is secure in any network. To
design the protocol, we need a special type of broadcast protocol, which we design first.

3.1 Synchronous Broadcast with Asynchronous Guarantees

We begin with the definition of broadcast, adapted from [17], where we do not put any termination
requirement.

5Looking ahead, the number of invocations of ΠABA in our protocol will be a constant and independent of the size
of the circuit cir. Hence, we do not focus on the “exact” communication complexity of ΠABA.
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Definition 3.4 (Broadcast [17]). Let Π be a protocol for the parties in P consisting of up to t
corrupt parties, where a sender S ∈ P has input m ∈ {0, 1}ℓ, and parties obtain a possible output
from {0, 1}ℓ ∪ {⊥}.

– t-Liveness: Π has t-liveness, if all honest parties obtain some output.
– t-Validity: Π has t-validity, if the following holds: if S is honest, then every honest party with

an output, outputs m.
– t-Weak Validity: Π has t-validity, if the following holds: if S is honest, then every honest party

outputs either m or ⊥.
– t-Consistency: Π has t-consistency, if the following holds: if S is corrupt, then every honest

party with an output, has a common output.
– t-Weak Consistency: Π has t-weak consistency, if the following holds: if S is corrupt, then

every honest party with an output, outputs a common m⋆ ∈ {0, 1}ℓ or ⊥.
Protocol Π is called a t-perfectly-secure broadcast protocol, if it has the following properties:

– t-Liveness;
– t-Validity;
– t-Consistency.

We next design a special broadcast protocol ΠBC, which is a t-perfectly-secure broadcast protocol
in a synchronous network. Additionally, in an asynchronous network, the protocol achieves t-
liveness, t-weak validity and t-weak consistency. Looking ahead, we will combine the protocols
ΠBC,ΠBGP and ΠABA to get our best-of-both-worlds BA protocol.

Before proceeding to design ΠBC, we note that the existing Bracha’s Acast protocol ΠACast

does not guarantee the same properties as ΠBC. Specifically, for a corrupt S, there is no liveness
guarantee (irrespective of the network type). Moreover, in a synchronous network, if S is corrupt
and honest parties obtain an output, then they may not obtain an output within the same time (see
Lemma 2.4).6 Interestingly, our instantiation of ΠBC is based on ΠACast, by carefully “stitching” it
with the protocol ΠBGP.

The idea behind ΠBC is the following: sender S first Acasts its message. If the network is
synchronous and S is honest, then within time 3∆, every honest party should have received S’s
message. To verify this, the parties start participating in an instance of ΠBGP at (local) time 3∆,
with their respective inputs being the output obtained from S’s Acast at time 3∆. If there is no
output at time 3∆ from S’s Acast, then the input for ΠBGP is ⊥. Finally, at time 3∆ + TBGP,
parties output m⋆, if it has been received from the Acast of S and if it is the output of ΠBGP as
well; otherwise the parties output ⊥.

It is easy to see that the protocol has now guarantees liveness in any network (irrespective of S),
since all parties will have some output at (local) time 3∆+TBGP. Moreover, consistency is achieved
for a corrupt S in a synchronous network, with all honest parties obtaining a common output at
the same time. This is because if any honest party obtains an output m⋆ 6= ⊥ at time 3∆ + TBGP,
then at least one honest party must have received m⋆ from S’s Acast by time 3∆. And so by time
3∆ + TBGP, all honest parties will receive m⋆ from S’s Acast.

Eventual Consistency and Validity in Asynchronous Network: In ΠBC, the parties set
a “time-out” of 3∆ + TBGP, due to which it provides weak validity and weak consistency in an
asynchronous network. This is because some honest parties may receive S’s message from the
Acast of S within the timeout, while others may fail to do so. The time-out is essential, as we need
liveness from ΠBC in both synchronous and asynchronous network, when ΠBC is used later in our
best-of-both-worlds BA protocol.

6Looking ahead, this property from ΠBC will be crucial when we use it in our best-of-both-worlds BA protocol.
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Looking ahead, we will use ΠBC in our VSS protocol for broadcasting protocol. Due to the weak
validity and weak consistency properties, we may end up in a scenario where one subset of honest
parties may output a common value different from ⊥ at the end of the time-out, while others may
output ⊥. For the security of the VSS protocol, we would require even the latter subset of (honest)
parties to eventually output the common non-⊥ value, if the parties continue participating in ΠBC.
To achieve this goal, every party who outputs ⊥ at time 3∆+TBGP, “switches” its output to m⋆, if
it eventually receives m⋆ from S’s Acast. We stress that this switching is only for the parties who
obtained ⊥ at time 3∆+ TBGP. To differentiate between the two ways of obtaining output, we use
the terms regular-mode and fallback-mode. The regular-mode refers to the process of deciding the
output at time 3∆ + TBGP, while the fallback-mode refers to the process of deciding the output
beyond time 3∆ + TBGP.

7

If the network is asynchronous and S is honest, then from the liveness and validity of ΠACast,
every honest party eventually obtains m from S’s Acast. Hence, through the fallback-mode, every
honest party who outputs ⊥ at the time-out of 3∆ + TBGP, eventually outputs m. Moreover, even
if S is corrupt, the fallback-mode will not lead to different honest parties obtaining different non-⊥
outputs due to the consistency property of ΠACast.

(Regular Mode)

– On having the input m ∈ {0, 1}ℓ, sender S Acasts m.
– At time 3∆, each Pi ∈ P participates in an instance of ΠBGP, where the input for ΠBGP is set as

follows:
– Pi sets m

⋆ as the input, if m⋆ ∈ {0, 1}ℓ is received from the Acast of S;
– Else Pi sets ⊥ as the input (encoded as a default ℓ-bit string).

– (Local Computation): At time 3∆+ TBGP, each Pi ∈ P computes its output through
regular-mode as follows:
– Pi outputs m

⋆ 6= ⊥, if m⋆ is received from the Acast of S and m⋆ is computed as the output
during the instance of ΠBGP;

– Else, Pi outputs ⊥.
Each Pi ∈ P keeps participating in the protocol, even after computing the output.

(Fallback Mode)
– Every Pi ∈ P who has computed the output ⊥ at time 3∆ + TBGP, changes it to m⋆, if m⋆ is

received by Pi from the Acast of S.

Protocol ΠBC

Figure 1: Synchronous broadcast with asynchronous guarantees.

We next prove the properties of the protocol ΠBC.

Theorem 3.5. Protocol ΠBC achieves the following properties in the presence of any t < n/3
corruptions, where S has an input m ∈ {0, 1}ℓ and where TBC = (12n − 3) ·∆.

– Synchronous network:
– (a) t-Liveness: At time TBC, every honest party has an output, through regular-mode.
– (b) t-Validity: If S is honest, then at time TBC, each honest party outputs m through

regular-mode.
– (c) t-Consistency: If S is corrupt, then the output of every honest party is the same at

time TBC through regular-mode.
– (d) t-Fallback Consistency: If S is corrupt and some honest party outputs m⋆ 6= ⊥ at time

7The fallback-mode is never triggered when ΠBC is used in our best-of-both-worlds BA protocol. It will be triggered
(along with the regular-mode) in our VSS protocol.
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T through fallback-mode, then every honest party outputs m⋆ by time T + 2∆ through
fallback-mode.

– Asynchronous Network:
– (a) t-Liveness: At local time TBC, every honest party has an output, through regular-mode.
– (b) t-Weak Validity: If S is honest, then at local time TBC, each honest party outputs m

or ⊥ through regular-mode.
– (c) t-Fallback Validity: If S is honest, then each honest party who outputs ⊥ at local time

TBC through regular-mode, eventually outputs m through fallback-mode.
– (d) t-Weak Consistency: If S is corrupt, then at local time TBC, each honest party outputs

either a common m⋆ 6= ⊥ or ⊥, through regular-mode.
– (e) t-Fallback Consistency: If S is corrupt and some honest party outputs m⋆ 6= ⊥ at

local time T , either through regular or fallback-mode, then every honest party eventually
outputs m⋆, either through regular or fallback-mode.

– Irrespective of the network type, the protocol incurs a communication of O(n2ℓ) bits from the
honest parties.

Proof. The liveness (both for the synchronous as well asynchronous network) simply follows from
the fact that every honest party outputs something (including ⊥) at (local) time TBC = 3∆+TBGP,
where TBGP = (12n − 6) · ∆. We next prove the rest of the properties of the protocol in the
synchronous network, for which we rely on the properties of Acast and ΠBGP in the synchronous
network.

If S is honest, then due to the liveness and validity properties of ΠACast in the synchronous
network, at time 3∆, every honest party Pi receives m from the Acast of S. Hence, every honest
party participates with input m in the instance of ΠBGP. From the guaranteed liveness and validity
properties of ΠBGP in synchronous network, at time 3∆+ TBGP, every honest party will have m as
the output from ΠBGP. Hence, each honest party has the output m at time TBC, thus proving that
validity is achieved.

For consistency, we consider a corrupt S. We first note that each honest party will have the
same output from the instance of ΠBGP at time TBC, which follows from the consistency property
of ΠBGP in synchronous network. If all honest honest parties have the output ⊥ for ΠBC at time
TBC, then consistency holds trivially. So consider the case when some honest party, say Pi, has the
output m⋆ 6= ⊥ for ΠBC at time TBC. This implies that the output of ΠBGP is m⋆ for every honest
party. Moreover, it also implies that at time 3∆, at least one honest party, say Ph, has received m⋆

from the Acast of S. Otherwise, all honest parties would participate with input ⊥ in the instance of
ΠBGP and from the validity of ΠBGP in the synchronous network, every honest party would compute
⊥ as the output during ΠBGP, which is a contradiction. Since Ph has received m⋆ from S’s Acast
at time 3∆, it follows from the consistency property of ΠACast in the synchronous network that all
honest parties will receive m⋆ from S’s Acast by time 5∆. Moreover, 5∆ < (12n − 3) · ∆ holds.
Consequently, by time (12n− 3) ·∆, all honest parties will receive m⋆ from S’s Acast and will have
m⋆ as the output of ΠBGP and hence, output m⋆ for ΠBC.

For fallback consistency, we have to consider a corrupt S. Let Ph be an honest party who outputs
m⋆ 6= ⊥ at time T through fallback-mode. Since the steps of fallback-mode are executed after time
TBC, it follows that T > TBC. We first note that this implies that every honest party has output
⊥ at time TBC, through regular-mode. This is because, from the proof of the consistency property
of ΠBC, if any honest party has an output m′ 6= ⊥ at time TBC, then all honest parties (including
Ph) also must have computed the output m′ at time TBC, through regular-mode. And hence, Ph

will never change its output to m⋆.8 Since Ph has computed the output m⋆, it means that at time

8Recall that in the protocol the parties who obtain an output different from ⊥ at time TBC, never change their
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T , it has received m⋆ from the Acast of S. It then follows from the consistency of ΠACast in the
synchronous network that every honest party will also receive m⋆ from the Acast of S, latest by
time T + 2∆ and output m⋆ through fallback-mode.

We next prove the properties of the protocol ΠBC in an asynchronous network, for which we
depend upon the properties of ΠACast in the asynchronous network. The weak-validity property
follows from the validity property of ΠACast in the asynchronous network, which ensures that no
honest party Pi ever receives an m′ from the Acast of S where m′ 6= m. So if at all Pi outputs a
value different from ⊥ at time TBC, it has to be m. The weak-consistency property follows using
similar arguments as used to prove consistency in the synchronous network, but relying instead on
the validity and consistency properties of ΠACast in the asynchronous network. The latter property
ensures that even if the adversary has full control over message scheduling in the asynchronous
network, it cannot ensure that for a corrupt S, two different honest parties end up receiving m1

and m2 from the Acast of S, where m1 6= m2.
For fallback validity, consider an honest S and let Pi be an honest party, who outputs ⊥ at

(local) time TBC through regular-mode. Since the parties keep on participating in the protocol
beyond time TBC, it follows from the liveness and validity properties of ΠACast in the asynchronous
network that party Pi will eventually receive m from the Acast of S through the fallback-mode of
ΠBC. Consequently, party Pi eventually changes its output from ⊥ to m.

For fallback consistency, we consider a corrupt S and let Pj be an honest party, who outputs
some m⋆ at time T where T ≥ TBC. This implies that Pj has obtained m⋆ from the Acast of S.
Now, consider an arbitrary honest Pi. From the liveness and weak consistency properties of ΠBC

in asynchronous network, it follows that Pi outputs either m
⋆ or ⊥ at local time TBC, through the

regular-mode. If Pi has output ⊥, then from the consistency property of ΠACast in the asynchronous
network, it follows that Pi will also eventually obtain m⋆ from the Acast of S through the fallback-
mode of ΠBC. Consequently, party Pi eventually changes its output from ⊥ to m⋆.

The communication complexity follows from the communication complexity of ΠBGP and ΠACast.

We next discuss few terminologies for ΠBC, which we use in the rest of the paper.

Terminologies for ΠBC: When we say that “Pi broadcasts m”, we mean that Pi invokes ΠBC

as S with input m and the parties participate in this instance. Similarly, when we say that “Pj

receives m from the broadcast of Pi through regular-mode”, we mean that Pj has the output m at
time TBC, during the instance of ΠBC. Finally, when we say that “Pj receives m from the broadcast
of Pi through fallback-mode”, we mean that Pj has the output m after time TBC during the instance
of ΠBC.

3.2 ΠBC +ΠABA ⇒ best-of-both-worlds BA

We now show how to combine the protocols ΠBC and ΠABA to get our best-of-both-worlds BA
protocol ΠBA. For this, we use an idea used in [17], to get a best-of-both-worlds BA protocol with
conditional security. In the protocol, every party first broadcasts its input bit through an instance
of ΠBC. If the network is synchronous, then all honest parties should have received the inputs
of all the (honest) sender parties from their broadcasts through regular-mode, within time TBC.
Consequently, at time TBC, the parties decide an output for all the n instances of ΠBC. Based
on these outputs, the parties decide their respective inputs for an instance of the ΠABA protocol.
Specifically, if “sufficiently many” outputs from the ΠBC instances are found to be the same, then the

output.
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parties consider it as their input for the ΠABA instance. Else, they stick to their original inputs. The
overall output of the protocol is then set to be the output from ΠABA.

– On having input bi ∈ {0, 1}, broadcast bi.

– For j = 1, . . . , n, let b
(j)
i ∈ {0, 1,⊥} be received from the broadcast of Pj through regular-mode.

Include Pj to a set R, if b
(j)
i 6= ⊥. Compute the input v⋆i for an instance of ΠABA as follows.

– If |R| ≥ n− t, then set v⋆i to the majority bit among the b
(j)
i values of the parties in R.a

– Else set v⋆i = bi.
– At time TBC, participate in an instance of ΠABA with input v⋆i . Output the result of ΠABA.

aIf there is no majority, then set v⋆i = 1.

Protocol ΠBA

Figure 2: The best-of-both-worlds BA protocol. The above code is executed by every Pi ∈ P .

We next prove the properties of the protocol ΠBA. We note that protocol ΠBA is invoked only
O(n3) times in our MPC protocol, which is independent of cir. Consequently, we do not focus on
the exact communication complexity of ΠBA.

Theorem 3.6. Let t < n/3 and let ΠABA be a randomized protocol, satisfying the conditions as per
Lemma 3.3. Then ΠBA achieves the following, where every party participates with an input bit.

– Synchronous Network: The protocol is a t-perfectly-secure SBA protocol, where all honest
parties obtain an output within time TBA = TBC+TABA. The protocol incurs a communication
of O(poly(n) log |F|) bits from the honest parties.

– Asynchronous Network: The protocol is a t-perfectly-secure ABA protocol with an expected
communication of O(poly(n) log |F|) bits.

Proof. We start with the properties in a synchronous network. The t-liveness property of ΠBC in the
synchronous network guarantees that all honest parties will have some output, from each instance
of ΠBC through regular-mode, at time TBC. Moreover, the t-validity and t-consistency properties of
ΠBC in the synchronous network guarantee that irrespective of the sender parties, all honest parties
will have a common output from each individual instance of ΠBC, at time TBC. Now since the parties
decide their respective inputs for the instance of ΠABA deterministically based on the individual
outputs from the n instances of ΠBC at time TBC, it follows that all honest parties participate with
a common input in the protocol ΠABA. Hence, all honest parties obtain an output by the end of
time TBC+TABA, thus ensuring t-guaranteed liveness of ΠBA. Moreover, the t-consistency property
of ΠABA in the synchronous network guarantees that all honest parties have a common output from
the instance of ΠABA, which is taken as the output of ΠBA, thus proving the t-consistency of ΠBA.

For proving the validity in the synchronous network, let all honest parties have the same input
bit b. From the t-consistency of ΠBC in the synchronous network, all honest parties will receive b as
the output at time TBC in all the ΠBC instances, corresponding to the honest sender parties. Since
there are at least n− t honest parties, it follows that all honest parties will find a common subset R
in the protocol, as the set of honest parties constitutes a candidate R. Moreover, all honest parties
will be present in R, as n− t > t holds. Since the set of honest parties constitute a majority in R,
it follows that all honest parties will participate with input b in the instance of ΠABA and hence
output b at the end of ΠABA, which follows from the t-validity of ΠABA in the synchronous network.
This proves the t-validity of ΠBA.

We next prove the properties of ΠBA in an asynchronous network. The t-consistency of the
protocol ΠBA follows from the t-consistency of the protocol ΠABA in the asynchronous network,
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since the overall output of the protocol ΠBA is same as the output of the protocol ΠABA. The t-
liveness of the protocol ΠBC in the asynchronous network guarantees that all honest parties will have
some output from all the n instances of ΠBC at local time TBC through regular-mode. Consequently,
all honest parties will participate with some input in the instance of ΠABA. The t-almost-surely
liveness of ΠABA in the asynchronous network then implies the t-almost-surely liveness of ΠBA.

For proving the validity in an asynchronous network, let all honest parties have the same input
bit b. We claim that all honest parties participate with input b during the instance of ΠABA. The
t-validity of ΠABA in the asynchronous network then automatically implies the t-validity of ΠBA.

To prove the above claim, consider an arbitrary honest party Ph. There are two possible cases.
If Ph fails to find a subset R satisfying the protocol conditions, then the claim holds trivially, as
Ph participates in the instance of ΠABA with its input for ΠBA, which is the bit b. So consider the
case when Ph finds a subset R, such that |R| ≥ n − t and where corresponding to each Pj ∈ R,

party Ph has computed an output b
(j)
h ∈ {0, 1} at local time TBC during the instance Π

(j)
BC, through

regular-mode. Now consider the subset of honest parties in the set R. Since t < n/3, it follows that
n−2t > t and hence the majority of the parties in R will be honest. Moreover, Ph will compute the
output b at local time TBC in the instance of ΠBC, corresponding to every honest Pj in R, which
follows from the t-weak validity of ΠBC in the asynchronous network. From these arguments, it
follows that Ph will set b as its input for the instance of ΠABA, thus proving the claim.

The communication complexity, both in a synchronous as well as in an asynchronous network,
follows easily from the protocol steps and from the communication complexity of ΠSBA and ΠABA.

4 best-of-both-worlds Perfectly-Secure VSS

In this section, we present our best-of-both-worlds VSS protocol ΠVSS. In the protocol, there
exists a designated dealer D ∈ P. The input for D consists of L number of ts-degree polynomials
q(1)(·), . . . , q(L), where L ≥ 1. And each (honest) Pi is supposed to “verifiably” receive the shares
{q(αi)}ℓ=1,...,L. Hence, the goal is to generate a ts-sharing of {q(0)}ℓ=1,...,L.

9 If D is honest, then
in an asynchronous network, each (honest) Pi eventually gets its shares, while in a synchronous
network, Pi gets its shares after some fixed time, such that the view of the adversary remains
independent of D’s polynomials. The verifiability here ensures that if D is corrupt, then either no
honest party obtains any output (if D does not invoke the protocol), or there exist L number of
ts-degree polynomials, such that D is “committed” to these polynomials and each honest Pi gets its
shares lying on these polynomials. Note that in the latter case, we cannot bound the time within
which honest parties will have their shares, even if the network is synchronous. This is because
a corrupt D may delay sending the messages arbitrarily and the parties will not know the exact
network type. To design ΠVSS, we first design a “weaker” primitive called weak polynomial-sharing
(WPS), whose security guarantees are identical to that of VSS for an honest D. However, for a
corrupt D, the security guarantees are “weakened”, as only a subset of the honest parties may get
their shares of the committed polynomials.

4.1 The best-of-both-worlds Weak Polynomial-Sharing (WPS) Protocol

For simplicity, we explain our WPS protocol ΠWPS, assuming D has a single ts-degree polynomial
q(·) as input. Later we discuss the modifications needed to handle L polynomials efficiently. Pro-
tocol ΠWPS is obtained by carefully “stitching” a synchronous WPS protocol with an asynchronous

9Note that the degree of D’s polynomials is always ts, irrespective of the underlying network type.
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WPS protocol. We first explain these two individual protocols, followed by the procedure to stitch
them together, where the parties will not be knowing the exact network type.

WPS in an Asynchronous Network: In an asynchronous network, one can consider the fol-
lowing protocol ΠAWPS: D embeds q(·) in a random (ts, ts)-degree symmetric bivariate polynomial
Q(x, y) at x = 0 and distributes univariate polynomials lying on Q(x, y) to respective parties.
To verify whether D has distributed “consistent” polynomials, the parties check for the pair-wise
consistency of their supposedly common points and make public the results through OK messages,
if the tests are “positive”. Based on the OK messages, the parties prepare a consistency graph
and look for an (n, ta)−star, say (E ′,F ′). If D is honest, then (E ′,F ′) will be obtained eventually,
since the honest parties form a clique of size at least n − ta. The existence of (E ′,F ′) guarantees
that the polynomials of the honest parties in F ′ lie on a single (ts, ts)-degree symmetric bivariate
polynomial Q⋆(x, y), where Q⋆(x, y) = Q(x, y) for an honest D. This is because E ′ has at least
ts + 1 honest parties with pair-wise consistent polynomials, defining Q⋆(x, y). And the polynomial
of every honest party in F ′ is pair-wise consistent with the polynomials of every honest party in E ′.
The parties outside F ′ obtain their polynomials lying on Q⋆(x, y) by applying OEC on the common
points on these polynomials received from the parties in F ′. Every Pi then outputs Q⋆(0, αi) as
its share, which is same as q⋆(αi), where q⋆(·) = Q⋆(0, y). Note that ΠAWPS actually constitutes a
VSS in the asynchronous network, as for an honest D every honest party eventually gets its share.
On the other hand, for a corrupt D, every honest party eventually gets its share, if some honest
party gets its share.

WPS for Synchronous Network: ΠAWPS fails in a synchronous network if there are ts cor-
ruptions. This is because only n− ts honest parties are guaranteed and hence the parties may fail
to find an (n, ta)−star. The existence of an (n, ts)−star, say (E ,F), in the consistency graph is
not “sufficient” to conclude that D has distributed consistent polynomials, lying on a (ts, ts)-degree
symmetric bivariate polynomial. This is because if D is corrupt, then E is guaranteed to have only
n− 2ts− ts > ta honest parties, with pair-wise consistent polynomials. Whereas to define a (ts, ts)-
degree symmetric bivariate polynomial, we need more than ts pair-wise consistent polynomials. On
the other hand, if D is corrupt, then the honest parties in F need not constitute a clique. As a
result, the polynomials of the honest parties in F need not be pair-wise consistent and hence need
not lie on a (ts, ts)-degree symmetric bivariate polynomial.

To get rid of the above problem, the parties instead look for a “special” (n, ts)−star (E ,F),
where the polynomials of all honest parties in F are guaranteed to lie on a single (ts, ts)-degree
symmetric bivariate polynomial. Such a special (E ,F) is bound to exist for an honest D. Based
on the above idea, protocol ΠSWPS for a synchronous network proceeds as follows. For ease of
understanding, we explain the protocol as a sequence of communication phases, with the parties
being synchronized in each phase.

In the first phase, D distributes the univariate polynomials, during the second phase the parties
perform pair-wise consistency tests and during the third phase the parties make public the results
of positive tests. Additionally, the parties also make public the results of “negative” tests through
NOK messages and their respective versions of the disputed points (the NOK messages were not
required for ΠAWPS). The parties then construct the consistency graph. Next D removes all the
parties from consideration in its consistency graph, who have made public “incorrect” NOKmessages,
whose version of the disputed points are incorrect. Among the remaining parties, D checks for the
presence of a set of at least n−ts parties W, such that the polynomial of every party in W is publicly
confirmed to be pair-wise consistent with the polynomials of at least n− ts parties within W. If a
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W is found, then D checks for the presence of an (n, ts)−star, say (E ,F) among W and broadcasts
(W, E ,F) during the fourth phase, if D finds (E ,F). The parties upon receiving (W, E ,F) verify if
W is of size at least n− ts and every party in W has an edge with at least n− ts parties within W in
their local copy of the consistency graph. The parties also check whether indeed (E ,F) constitutes
an (n, ts)−star among the parties within W. Furthermore, the parties now additionally verify
whether any pair of parties Pj , Pk from W have made public “conflicting” NOK messages during
the third phase. That is, if there exists any Pj , Pk ∈ W who made public NOK messages with qjk
and qkj respectively during the third phase such that qjk 6= qkj, then W is not accepted. The idea
here is that if D is honest, then at least one of Pj , Pk is bound to be corrupt, whose corresponding
NOK message is incorrect. Since D also would have seen these public NOK messages during the third
phase, it should have have discarded the corresponding corrupt party, before finding W. Hence if
a (W, E ,F) is accepted at the end of fourth phase, then the polynomials of all honest parties in
W are guaranteed to be pair-wise consistent and lie on a single (ts, ts)-degree symmetric bivariate
polynomial, say Q⋆(x, y), where Q⋆(x, y) = Q(x, y) for an honest D. This will further guarantee
that the polynomials of all honest parties in F also lie on Q⋆(x, y), as F ⊆ W.

If a (W, E ,F) is accepted, then each Pi ∈ W outputs the constant term of its univariate polyno-
mial as its share. On the other hand, the parties outside W attempt to obtain their corresponding
polynomials lying on Q⋆(x, y) by applying OEC on the common points on these polynomials re-
ceived from the parties in F . And if a ts-degree polynomial is obtained, then the constant term of
the polynomial is set as the share. For an honest D, each honest Pi will be present in W and hence
will have the share q(αi). On the other hand, if a W is accepted for a corrupt D, then all the honest
parties in W (which are at least ts + 1 in number) will have their shares lying on q⋆(·) = Q⋆(0, y).
Moreover, even if an honest party Pi outside W is able to compute its share, then it is the same as
q⋆(αi) due to the OEC mechanism. However, for a corrupt D, all the honest parties outside W may
not be able to obtain their desired share, as F is guaranteed to have only n− 2ts > ts + ta honest
parties and OEC may fail. It is precisely for this reason that ΠSWPS fails to qualify as a VSS.

ΠSWPS +ΠAWPS ⇒ best-of-both-worlds WPS Protocol ΠWPS: We next discuss how to com-
bine protocols ΠSWPS and ΠAWPS to get our best-of-both-worlds WPS protocol called ΠWPS. In
protocol ΠWPS (Fig 3), the parties first run ΠSWPS assuming a synchronous network, where ΠBC

is used to make any value public by setting t = ts in the protocol ΠBC. If D is honest then in a
synchronous network, the first, second, third and fourth phase of ΠSWPS would have been over by
time ∆, 2∆, 2∆+ TBC and 2∆+2TBC respectively and by time 2∆+2TBC, the parties should have
accepted a (W, E ,F). However, in an asynchronous network, parties may have different “opinion”
regarding the acceptance of a (W, E ,F). This is because it may be possible that only a subset
of the honest parties accept a (W, E ,F) within local time 2∆ + 2TBC. Hence at time 2∆ + 2TBC,
the parties run an instance of our best-of-both-worlds BA protocol ΠBA, to check whether any
(W, E ,F) is accepted.

If the parties conclude that a (W, E ,F) is accepted, then the parties compute their WPS-shares
as per ΠSWPS. However, we need to ensure that for a corrupt D in a synchronous network, if
the polynomials of the honest parties in W are not pair-wise consistent, then the corresponding
conflicting NOK messages are received within time 2∆+TBC (the time required for the third phase of
ΠSWPS to be over), so that (W, E ,F) is not accepted. This is ensured by enforcing even a corrupt D
to send the respective polynomials of all the honest parties in W by time ∆, so that the pair-wise
consistency test between every pair of honest parties in W is over by time 2∆. For this, the parties
are asked to wait for some “appropriate” time, before starting the pair-wise consistency tests and
also before making public the results of pair-wise consistency tests. The idea is to ensure that
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if the polynomials of the honest parties in W are not delivered within time ∆ (in a synchronous
network), then the results of the pair-wise consistency tests also get delayed beyond time 2∆+TBC

(the time-out of the third phase of ΠSWPS). This in turn will ensure that no W is accepted within
time 2∆ + 2TBC.

If the parties conclude that no (W, E ,F) is accepted within time 2∆+2TBC, then it implies that
either D is corrupt or the network is asynchronous and hence the parties resort to ΠAWPS. However,
D need not have to start afresh and distribute polynomials on a “fresh” bivariate polynomial.
Instead, D continues with the consistency graph formed using the OK messages received as part of
ΠSWPS and searches for an (n, ta)−star. If D is honest and the network is asynchronous, then the
parties eventually obtain their shares.

Notice that in an asynchronous network, it might be possible that the parties (through ΠBA)
conclude that (W, E ,F) is accepted, if some honest party(ies) accepts a (W, E ,F) within the time-
out 2∆+2TBC. Even in this case, the polynomials of all honest parties in W lie on a single (ts, ts)-
degree symmetric bivariate polynomial Q⋆(x, y) for a corrupt D. This is because there will be at
least n− 2ts − ta > ts honest parties in E with pair-wise consistent polynomials, defining Q⋆(x, y),
and the polynomial of every honest party in F will be pair-wise consistent with the polynomials of
all honest parties in E and hence lie on Q⋆(x, y) as well. Now consider any honest Pi ∈ (W \ F).
As part of ΠSWPS, it is ensured that the polynomial of Pi is consistent with the polynomials of at
least n− ts parties among W. Among these n− ts parties, at least n− 2ts − ta > ts will be honest
parties from F . Thus, the polynomial of Pi will also lie on Q⋆(x, y).

• Phase I — Sending Polynomials:
– D on having the input q(·), chooses a random (ts, ts)-degree symmetric bivariate polynomial

Q(x, y) such that Q(0, y) = q(·) and sends qi(x) = Q(x, αi) to each party Pi ∈ P .
• Phase II — Pair-Wise Consistency: Each Pi ∈ P on receiving a ts-degree polynomial qi(x)

from D does the following.
– Wait till the local time becomes a multiple of ∆ and then send qij = qi(αj) to Pj , for j = 1, . . . , n.

• Phase III — Publicly Declaring the Results of Pair-Wise Consistency Test: Each Pi ∈ P
does the following.
– Upon receiving qji from Pj , wait till the local time becomes a multiple of ∆. If a ts-degree

polynomial qi(x) has been received from D, then do the following.
– Broadcast OK(i, j), if qji = qi(αj) holds.
– Broadcast NOK(i, j, qi(αj)), if qji 6= qi(αj) holds.

• Local computation — Constructing Consistency Graph: Each Pi ∈ P does the following.
– Construct a consistency graph Gi over P , where the edge (Pj , Pk) is included in Gi, if OK(j, k)

and OK(k, j) is received from the broadcast of Pj and Pk respectively, either through the
regular-mode or fall-back mode.

• Phase IV — Checking for an (n, ts)−star: D does the following in its consistency graph GD at
time 2∆ + TBC.
– Remove edges incident with Pi, if NOK(i, j, qij) is received from the broadcast of Pi through

regular-mode and qij 6= Q(αj , αi).
– Set W = {Pi : deg(Pi) ≥ n− ts}, where deg(Pi) denotes the degree of Pi in GD.
– Remove Pi from W , if Pi is not incident with at least n− ts parties in W . Repeat this step till

no more parties can be removed from W .
– Run algorithm AlgStar on GD[W ], where GD[W ] denotes the subgraph of GD induced by the

vertices in W . If an (n, ts)−star, say (E ,F), is obtained, then broadcast (W , E ,F).
• Local Computation — Verifying and Accepting (W , E ,F): Each Pi ∈ P does the following

at time 2∆+ 2TBC.
– If a (W , E ,F) is received from D’s broadcast through regular-mode, then accept it if following

were true at time 2∆+ TBC:

Protocol ΠWPS(D, q(·))
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– There exist no Pj , Pk ∈ W , such that NOK(j, k, qjk) and NOK(k, j, qkj) messages were received
from the broadcast of Pj and Pk respectively through regular-mode, where qjk 6= qkj .

– In the consistency graph Gi, deg(Pj) ≥ n− ts for all Pj ∈ W .
– In the consistency graph Gi, every Pj ∈ W has edges with at least n− ts parties from W .
– (E ,F) was an (n, ts)−star in the induced graph Gi[W ].
– For every Pj , Pk ∈ W where the edge (Pj , Pk) is present in Gi, the OK(j, k) and OK(k, j)

messages were received from the broadcast of Pj and Pk respectively, through regular-
mode.

• Phase V — Deciding Whether to Go for an (n, ta)−star: At time 2∆ + 2TBC, each Pi ∈ P
participates in an instance of ΠBA with input bi = 0 if a (W , E ,F) was accepted, else with input
bi = 1, and waits for time TBA.

• Local Computation — Computing WPS-share Through W : If the output of ΠBA is 0, then
each Pi ∈ P computes its WPS-Share si (initially set to ⊥) as follows.
– If a (W , E ,F) is not yet received then wait till a (W , E ,F) is received from D’s broadcast through

fall-back mode.
– If Pi ∈ W , then output si = qi(0).
– Else, initialise a support set SSi to ∅. If qji is received from Pj ∈ F , include qji to SSi. Keep

executing OEC(ts, ts,SSi), till a ts-degree polynomial, say qi(·), is obtained. Then, output
si = qi(0).

• Phase VI — Broadcasting an (n, ta)−star: If the output of ΠBA is 1, then D does the following.
– After every update in the consistency graph GD, run AlgStar on GD. If an (n, ta)−star, say

(E ′,F ′), is obtained, then broadcast (E ′,F ′).
• Local Computation — Computing WPS-share Through (n, ta)−star: If the output of ΠBA

is 1, then each Pi does the following to compute its WPS-Share.
– Waits till an (n, ta)−star (E ′,F ′) is obtained from the broadcast of D, either through regular or

fall-back mode. Upon receiving, wait till (E ′,F ′) becomes an (n, ta)−star in Gi.
– If Pi ∈ F ′, then output si = qi(0).
– Else, initialise a support set SSi to ∅. If qji is received from Pj ∈ F ′, include qji to SSi. Keep

executing OEC(ts, ts,SSi), till a ts-degree polynomial, say qi(·), is obtained. Then, output
si = qi(0).

Figure 3: The best-of-both-worlds weak polynomial-sharing protocol for a single polynomial.

We next proceed to prove the properties of the protocol ΠWPS. We begin with showing that if
D is honest, then the adversary does not learn anything additional about q(·), irrespective of the
network type.

Lemma 4.1 (ts-Privacy). In protocol ΠWPS, if D is honest, then irrespective of the network type,
the view of the adversary remains independent of q(·).

Proof. Let D be honest. We consider the worst case scenario, when the adversary controls up to ts
parties. We claim that throughout the protocol, the adversary learns at most ts univariate polyno-
mials lying on Q(x, y). Since Q(x, y) is a random (ts, ts)-degree- symmetric-bivariate polynomial,
it then follows from Lemma 2.2 that the view of the adversary will be independent of q(·). We next
proceed to prove the claim.

Corresponding to every corrupt Pi, the adversary learns Q(x, αi). Corresponding to every honest
Pi, the adversary learns ts distinct points on Pi’s univariate polynomial Q(x, αi), through the pair-
wise consistency checks. However, these points were already included in the view of the adversary
(through the univariate polynomials under adversary’s control). Hence no additional information
about the polynomials of the honest parties is revealed during the pair-wise consistency checks.
Furthermore, no honest Pi ever broadcasts NOK(i, j, qi(αj)), corresponding to any honest Pj . This
is because the pair-wise consistency check will always pass for every pair of honest parties.

We next prove the correctness property in a synchronous network.
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Lemma 4.2 (ts-Correctness). In protocol ΠWPS, if D is honest and the network is synchronous,
then each honest Pi outputs q(αi) at time TWPS = 2∆+ 2TBC + TBA.

Proof. Let D be honest and the network be synchronous with up to ts corruptions. During phase
I, every honest party Pj receives qj(x) = Q(x, αj) from D within time ∆. Hence during phase
II, every honest Pj sends qjk to every Pk, which takes at most ∆ time to be delivered. Hence,
by time 2∆, every honest Pj receives qkj from every honest Pk, such that qkj = qj(αk) holds.
Consequently, during phase III, every honest Pj broadcasts OK(j, k) corresponding to every honest
Pk, and vice versa. From the ts-validity property of ΠBC in the synchronous network, it follows
that every honest Pi receives OK(j, k) and OK(k, j) from the broadcast of every honest Pj and
every honest Pk respectively, through regular-mode, at time 2∆ + TBC. Hence, the edge (Pj , Pk)
will be added to the consistency graph Gi, corresponding to every honest Pj , Pk. Furthermore,
from the ts-consistency property of ΠBC, the graph Gi will be the same for every honest party Pi

(including D) at time 2∆+TBC. Moreover, if D receives an incorrect NOK(i, j, qij) message from the
broadcast of any corrupt Pi through regular-mode at time 2∆ + TBC, where qij 6= Q(αj, αi), then
D removes all the edges incident with Pi in D’s consistency graph GD. Dealer D then computes
the set W, and all honest parties will be present in W. Moreover, the honest parties will form
a clique of size at least n − ts in the induced subgraph GD[W] at time 2∆ + TBC and D will
find an (n, ts)−star, say (E ,F), in GD[W] and broadcast (W, E ,F) during phase IV. By the ts-
validity of ΠBC in the synchronous network, all honest parties will receive (W, E ,F) through regular-
mode at time 2∆ + 2TBC. Moreover, all honest parties will accept (E ,F) and participate with
input 0 in the instance of ΠBA. Hence, by the ts-validity and ts-guaranteed liveness of ΠBA in the
synchronous network, every honest party obtains the output 0 in the instance of ΠBA, by time
2∆ + 2TBC + TBA. Now, consider an arbitrary honest party Pi. Since Pi ∈ W, party Pi outputs
si = qi(0) = Q(0, αi) = q(αi).

We next prove the correctness property in an asynchronous network.

Lemma 4.3 (ta-Correctness). In protocol ΠWPS, if D is honest and network is asynchronous, then
almost-surely, each honest Pi eventually outputs q(αi).

Proof. Let D be honest and network be asynchronous with up to ta corruptions. We first note that
every honest party participates with some input in the instance of ΠBA at local time 2∆ + 2TBC.
Hence from the ta-almost-surely liveness and ta-consistency of ΠBA in an asynchronous network, it
follows that almost-surely, the instance of ΠBA eventually generates some common output, for all
honest parties. Now there are two possible cases:

– The output of ΠBA is 0: From the ta-validity of ΠBA in the asynchronous network, it follows
that at least one honest party, say Ph, participated with input 0 during the instance of ΠBA.
This implies that Ph has accepted a (W, E ,F) at local 2∆+2TBC, which is received from the
broadcast of D, through regular-mode. Hence, by the ta-weak validity and ta-fallback validity
properties of ΠBC in the asynchronous network, all honest parties will eventually receive
(W, E ,F) from the broadcast of D and accept the triplet. This is because the consistency
graphs of all honest parties will eventually have all the edges which were present in the
consistency graph Gh of Ph, at time 2∆+2TBC. We claim that every honest Pi will eventually
get Q(x, αi). This will imply that eventually, every honest Pi outputs si = Q(0, αi) = q(αi).
To prove the claim, consider an arbitrary honest party Pi. There are two possible cases.
– Pi ∈ W: In this case, Pi already has received Q(x, αi) from D.
– Pi 6∈ W: In this case, there will be at least n− ts > 2ts+ ta parties in F , of which at most

ta could be corrupt. Since Q(x, αi) is a ts-degree polynomial and ts < |F| − 2ta, from
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Lemma A.1, it follows that by applying the OEC procedure on the common points on
the polynomials Q(x, αi), received from the parties in F , party Pi will eventually obtain
Q(x, αi).

– The output of ΠBA is 1: Since D is honest, every pair of honest parties Pj , Pk eventually
broadcast OK(j, k) and OK(k, j) messages respectively, as the pair-wise consistency check be-
tween them will eventually be successful. From the ta-weak validity and ta-fallback validity
of ΠBC, these messages are eventually delivered to every honest party. Also from the ta-weak
consistency and ta-fallback consistency of ΠBC in the asynchronous network, any OK message
which is received by D from the broadcast of any corrupt party, will be eventually received
by every other honest party as well. As there will be at least n− ta honest parties, a clique of
size at least n− ta will eventually form in the consistency graph of every honest party. Hence
D will eventually find an (n, ta)−star, say (E ′,F ′), in its consistency graph and broadcast it.
From the ta-weak validity and ta-fallback validity of ΠBC, this star will be eventually delivered
to every honest party. Moreover, (E ′,F ′) will be eventually an (n, ta)−star in every honest
party’s consistency graph. We claim that every honest Pi will eventually get Q(x, αi). This
will imply that eventually, every honest Pi outputs si = Q(0, αi) = q(αi). To prove the claim,
consider an arbitrary honest party Pi. There are two possible cases.
– Pi ∈ F ′: In this case, Pi already has Q(x, αi), received from D.
– Pi /∈ F ′: In this case, there will be at least n − ta > 3ts parties in F ′, of which at

most ta could be corrupt, where ta < ts. Since Q(x, αi) is a ts-degree polynomial and
ts < |F ′| − 2ta, from Lemma A.1 it follows that by applying the OEC procedure on the
common points on the polynomial Q(x, αi), received from the parties in F ′, party Pi

will eventually obtain Q(x, αi).

We next proceed to prove the weak commitment properties for a corrupt D. However, before
that we prove a helping lemma.

Lemma 4.4. Let the network be synchronous and let D be corrupt in the protocol ΠWPS. If any
one honest party receives a (W, E ,F) from the broadcast of D through regular-mode and accepts it
at time 2∆ + 2TBC, then all the following hold.

– All honest parties in W receive their respective ts-degree univariate polynomials from D, within
time ∆.

– The univariate polynomials qi(x) of all honest parties Pi in the set W lie on a unique (ts, ts)-
degree symmetric bivariate polynomial, say Q⋆(x, y).

– Within time 2∆ + 2TBC, every honest party accepts (W, E ,F).

Proof. Let D be corrupt and network be synchronous with up to ts corruptions. As per the lemma
condition, let Ph be an honest party, who receives a (W, E ,F) from the broadcast of D through
regular-mode and accepts it at time 2∆ + 2TBC. Then from the protocol steps, the following must
be true for Ph at time 2∆ + TBC:

– There does not exist any Pj , Pk ∈ W, such that NOK(j, k, qjk) and NOK(k, j, qkj) messages are
received by Ph, from the broadcast of Pj and Pk respectively through regular-mode, where
qjk 6= qkj.

– In Ph’s consistency graph Gh, deg(Pj) ≥ n− ts for all Pj ∈ W and Pj has edges with at least
n− ts parties from W.

– (E ,F) constitutes an (n, ts)−star in the induced subgraph Gh[W], such that for every Pj , Pk ∈
W where the edge (Pj , Pk) is present in Gh, the messages OK(j, k) and OK(k, j) are received
by Ph, from the broadcast of Pj and Pk respectively, through regular-mode.
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We prove the first part of the lemma through a contradiction. So let Pj ∈ W be an honest party,
who receives its ts-degree univariate polynomial, say qj(x), from D at time ∆ + δ, where δ > 0.
Moreover, let Pk ∈ W be an honest party, different from Pj (note that there are at least n − 2ts
honest parties in W). As stated above, at time 2∆ + TBC, party Ph receives the message OK(k, j)
from the broadcast of Pk through regular-mode. From the protocol steps, Pj waits till its local
time becomes a multiple of ∆, before it sends the points on its polynomial to other parties for
pair-wise consistency tests. Hence, Pj must have started sending the points after time c ·∆, where
c ≥ 2. Since the network is synchronous, the point qjk = qj(αk) must have been received by Pk

by time (c + 1) · ∆. Moreover, from the protocol steps, even if Pk receives these points at time
T , where c · ∆ < T < (c + 1) · ∆, it waits till time (c + 1) · ∆, before broadcasting the OK(k, j)
message. Since Pk is honest, from the ts-validity property of ΠBC in the synchronous network, it
will take exactly TBC time for the message OK(k, j) to be received through regular-mode, once it is
broadcast. This implies that Ph will receive the message OK(k, j) at time (c + 1) ·∆+ TBC, where
(c+1) > 2. However, this is a contradiction, since the OK(k, j) message has been received by Ph at
time 2∆ + TBC.

To prove the second part of the lemma, we will show that the univariate polynomials qj(x) of all
the honest parties in W are pair-wise consistent. Since there are at least n−2ts > ts honest parties
in W, from Lemma 2.1, it follows that the univariate polynomials qj(x) of all the honest parties
in W lie on a unique (ts, ts)-degree symmetric bivariate polynomial, say Q⋆(x, y). So consider an
arbitrary pair of honest parties Pj, Pk ∈ W. From the first part of the lemma, both Pj and Pk

must have received their respective univariate polynomials qj(x) and qk(x) by time ∆. This further
implies that Pj and Pk must have received the points qkj = qk(αj) and qjk = qj(αk) respectively
by time 2∆. If qkj 6= qjk, then Pj and Pk would broadcast NOK(j, k, qjk) and NOK(k, j, qkj) messages
respectively, at time 2∆. Consequently, from the ts-validity property of ΠBC in the synchronous
network, Ph will receive these messages through regular-mode at time 2∆+TBC. Consequently, Ph

will not accept (W, E ,F), which is a contradiction.
To prove the third part of the lemma, we note that since Ph has received (W, E ,F) from the

broadcast of D through regular-mode at time 2∆ + 2TBC, it implies that D must have started
broadcasting (W, E ,F) latest at time 2∆ + TBC. This is because it takes TBC time for the regular-
mode of ΠBC to produce an output. From the ts-consistency property of ΠBC in the synchronous
network, it follows that every honest party will also receive (W, E ,F) from the broadcast of D
through regular-mode, at time 2∆+2TBC. Since at time 2∆+TBC, party Ph has received the OK(j, k)
and OK(k, j) messages through regular-mode from the broadcast of every Pj , Pk ∈ W where (Pj , Pk)
is an edge in Ph’s consistency graph, it follows that these messages started getting broadcast, latest
at time 2∆. From the ts-validity and ts-consistency properties of ΠBC in the synchronous network,
it follows that every honest party receives these broadcast messages through regular-mode at time
2∆ + TBC. Hence (E ,F) will constitute an (n, ts)−star in the induced subgraph Gi[W] of every
honest party Pi’s consistency-graph at time 2∆+TBC and consequently, every honest party accepts
(W, E ,F).

Now based on the above helping lemma, we proceed to prove the weak commitment properties
of the protocol ΠWPS.

Lemma 4.5 (ts-Weak Commitment). In protocol ΠWPS, if D is corrupt and network is synchronous,
then either no honest party computes any output or there exists some ts-degree polynomial, say q⋆(·),
such that all the following hold.

– There are at least ts + 1 honest parties Pi who output the WPS-shares q⋆(αi).
– If any honest Pj outputs a WPS-share sj ∈ F, then sj = q⋆(αj) holds.
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Proof. Let D be corrupt and network be synchronous with up to ts corruptions. If no honest party
outputs any wps-share, then the lemma holds trivially. So consider the case when some honest
party outputs a wps-share, which is an element of F. Now, there are two possible cases.

– At time 2∆ + 2TBC, at least one honest party, say Ph, accepts a (W, E ,F), received from the
broadcast of D through regular-mode: In this case, from Lemma 4.4, at time 2∆+2TBC, every
honest party will accept (W, E ,F). Hence every honest party participates in the instance of
ΠBA with input 0. From the ts-validity and ts-guaranteed liveness properties of ΠBA in the
synchronous network, all honest parties will get the output 0 during the instance of ΠBA by
time TWPS = 2∆+2TBC+TBA. From Lemma 4.4, the univariate polynomials of all the honest
parties in W will lie on some (ts, ts)-degree symmetric bivariate polynomial, say Q⋆(x, y).

Let q⋆(·)
def
= Q⋆(0, y). Now consider an arbitrary honest party Pi, who outputs a wps-share

si ∈ F. We want to show that the condition si = q⋆(αi) holds. And there are at least ts + 1
such honest parties Pi who output their wps-share. There are two possible cases.
– Pi ∈ W: From the protocol steps, Pi sets si = Q⋆(0, αi), which is the same as q⋆(αi).

Since W contains at least ts + ta + 1 honest parties, this also shows that at least ts + 1
honest parties Pi output their respective wps-share si ∈ F, which is the same as q⋆(αi).

– Pi 6∈ W: In this case, Pi sets si = qi(0), where qi(·) is a ts-degree univariate polynomial,
obtained by applying the OEC procedure with d = t = ts, on the values qji, received
from the parties Pj ∈ F , during the pair-wise consistency checks. Note that as part of
OEC (see the proof of Lemma A.1), party Pi verifies that at least 2ts+1 qji values from
the parties in F lie on qi(·). Now out of these 2ts + 1 qji values, at least ts + 1 values
are from the honest parties in F . Furthermore, these qji values from the honest parties
in F are the same as Q⋆(αi, αj), which is equal to Q⋆(αj , αi) and uniquely determine
Q⋆(x, αi); the last property holds since Q⋆(x, y) is a symmetric bivariate polynomial.
This automatically implies that qi(x) is the same as Q(x, αi) and hence si = q⋆(αi),
since two different ts-degree polynomials can have at most ts common values.

– At time 2TBC + 2∆, no honest party has accepted any (W, E ,F): This implies that all honest
parties participate in the instance of ΠBA with input 1. So by the ts-validity and ts-guaranteed
liveness of ΠBA in the synchronous network, all honest parties obtain the output 1 in the
instance of ΠBA. Let Ph be the first honest party who outputs a wps-share, consisting of an
element from F. This means that Ph has received a pair (E ′,F ′), from the broadcast of D,
such that (E ′,F ′) constitutes an (n, ta)−star in Ph’s consistency graph. By the ts-consistency
and ts-fallback consistency properties of ΠBC in the synchronous network, all honest parties
receive (E ′,F ′) from the broadcast of D. Moreover, since (E ′,F ′) constitutes an (n, ta)−star
in Ph’s consistency graph, it will also constitute an (n, ta)−star in every other honest party’s
consistency graph as well. This is because the OK(⋆, ⋆) messages which are received by Ph

from the broadcast of the various parties in E ′ and F ′, are also received by every other honest
party, either through regular-mode or fallback-mode. The last property follows from the
ts-validity, ts-consistency and ts-fallback consistency properties of ΠBC in the synchronous
network. Since |E ′| ≥ n − 2ta > 2ts + (ts − ta) > 2ts, it follows that E ′ has at least ts + 1
honest parties Pi, whose univariate polynomials qi(x) are pair-wise consistent. Hence, from
Lemma 2.1, these univariate polynomials lie on a unique (ts, ts)-degree symmetric bivariate
polynomial, say Q⋆(x, y). Similarly, since the univariate polynomial qi(x) of every honest
party in F ′ is pair-wise consistent with the univariate polynomials qj(x) of the honest parties
in E ′, it implies that the univariate polynomials qi(x) of all the honest parties in F ′ also lie on

Q⋆(x, y). Let q⋆(·)
def
= Q⋆(0, y). We show that every honest Pi outputs a wps-share, which is

the same as q⋆(αi). For this it is enough to show that each honest Pi gets qi(x) = Q⋆(x, αi),
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as Pi outputs qi(0) as its wps-share, which will be then same as q⋆(αi). Consider an arbitrary
honest party Pi. There are two possible cases.
– Pi ∈ F ′: In this case, Pi already has Q⋆(x, αi), received from D.
– Pi /∈ F ′: In this case, there will be n − ta > 3ts parties in F ′, of which at most ts could

be corrupt. Moreover, Q⋆(x, αi) is a ts-degree polynomial and ts < |F ′| − 2ts holds.
Hence from the properties of OEC (Lemma A.1), by applying the OEC procedure on
the common points on the polynomial Q⋆(x, αi) received from the parties in F ′, party
Pi will compute Q⋆(x, αi).

We finally prove the commitment property in an asynchronous network.

Lemma 4.6 (ta-Strong Commitment). In protocol ΠWPS, if D is corrupt and network is asyn-
chronous, then either no honest party computes any output or there exist some ts-degree polynomial,
say q⋆(·), such that almost-surely, every honest Pi eventually outputs a wps-share q⋆(αi).

10

Proof. Let D be corrupt and network be asynchronous with up to ta corruptions. If no honest party
computes any output, then the lemma holds trivially. So consider the case when some honest party
outputs a wps-share, consisting of an element of F. We note that every honest party participates
with some input in the instance of ΠBA at local time 2∆ + 2TBC. Hence, from the ta-almost-
surely liveness and ta-consistency properties of ΠBA in the asynchronous network, almost-surely, all
honest parties eventually compute a common output during the instance of ΠBA. Now there are
two possible cases:

– The output of ΠBA is 0: From the ta-validity of ΠBA in the asynchronous network, it
implies that at least one honest party, say Ph, participated with input 0 during the instance
of ΠBA. This further implies that at local time 2∆+2TBC, party Ph has accepted a (W, E ,F),
which has been received by Ph from the broadcast of D, through regular-mode. Hence, by
the ta-weak consistency and ta-fallback consistency of ΠBC in the asynchronous network, all
honest parties will eventually receive (W, E ,F) from the broadcast of D. There will be at
least n − 2ts − ta > ts honest parties in E , whose univariate polynomials qi(x) are pair-
wise consistent and hence from Lemma 2.1 lie on a unique (ts, ts)-degree symmetric bivariate
polynomial, say Q⋆(x, y). Similarly, the univariate polynomial qj(x) of every honest Pj ∈ F
will be pair-wise consistent with the univariate polynomials qi(x) of all the honest parties in

E and hence lie on Q⋆(x, y) as well. Let q⋆(·)
def
= Q⋆(0, y). We claim that every honest Pi

will eventually get Q⋆(x, αi). This will imply that eventually every honest Pi outputs the
wps-share si = Q⋆(0, αi) = q⋆(αi). To prove the claim, consider an arbitrary honest party Pi.
There are three possible cases.
– Pi ∈ W and Pi ∈ F : In this case, Pi already has qi(x), received from D. And since Pi ∈ F ,

the condition qi(x) = Q⋆(x, αi) holds.
– Pi ∈ W and Pi 6∈ F : In this case, Pi already has qi(x), received from D. Since |W| ≥ n−ts

and |F| ≥ n− ts, |W ∩F| ≥ n− 2ts > ts + ta. From the protocol steps, the polynomial
qi(x) is pair-wise consistent with the polynomial qj(x) of at least n− ts parties Pj ∈ W
(since Pi has edges with at least n − ts parties Pj within W). Now among these n − ts
parties, at least n− 2ts parties will be from F , of which at least n− 2ts− ta > ts parties
will be honest. Hence, qi(x) is pair-wise consistent with the qj(x) polynomials of at least

10Note that unlike the synchronous network, the commitment property in the asynchronous network is strong. That
is, if at all any honest party outputs a wps-share, then all the honest parties are guaranteed to eventually output
their wps-shares.
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ts+1 honest parties Pj ∈ F . Now since the qj(x) polynomial of all the honest parties in
F lie on Q⋆(x, y), it implies that qi(x) = Q⋆(x, αi) holds.

– Pi 6∈ W: In this case, there will be n − ts parties in F , of which at most ta could be
corrupt. Since Q⋆(x, αi) is a ts-degree polynomial, and ts < |F| − 2ta, from Lemma A.1
it follows that by applying the OEC procedure on the common points on the Q⋆(x, αi)
polynomial received from the parties in F , party Pi will eventually obtain Q⋆(x, αi).

– The output of ΠBA is 1: Let Ph be the first honest party, who outputs a wps-share.
This means that Ph has received a pair, say (E ′,F ′), from the broadcast of D, such that
(E ′,F ′) constitutes an (n, ta)−star in Ph’s consistency graph. By the ta-weak consistency
and ta-fallback consistency properties of ΠBC in the asynchronous network, all honest parties
eventually receive (E ′,F ′) from the broadcast of D. Moreover, since the consistency graphs are
constructed based on the broadcast OK messages and since (E ′,F ′) constitutes an (n, ta)−star
in Ph’s consistency graph, from the ta-weak validity, ta-fallback validity, ta-weak consistency
and ta-fallback consistency properties of ΠBC in the asynchronous network, the pair (E ′,F ′)
will eventually constitute an (n, ta)−star in every honest party’s consistency graph. Since
|E ′| ≥ n − 2ta > 2ts + (ts − ta) > 2ts, it follows that E ′ has at least ts + 1 honest parties,
whose univariate polynomials qi(x) are pair-wise consistent and hence from Lemma 2.1, lie
on a unique degree-(ts, ts) symmetric bivariate polynomial, say Q⋆(x, y). Similarly, since
the univariate polynomial qj(x) of every honest party Pj in F ′ is pair-wise consistent with
the univariate polynomials qi(x) of the honest parties in E ′, it implies that the univariate

polynomial qj(x) of all the honest parties in F ′ also lie on Q⋆(x, y). Let q⋆(·)
def
= Q⋆(0, y). We

show that every honest Pi eventually outputs q⋆(αi) as its wps-share. For this it is enough
to show that each honest Pi eventually gets qi(x) = Q⋆(x, αi), as Pi outputs qi(0) as its
wps-share, which will be the same as q⋆(αi). Consider an arbitrary honest Pi. There are two
possible cases.
– Pi ∈ F ′: In this case, Pi already has Q⋆(x, αi), received from D.
– Pi /∈ F ′: In this case, F ′ has at least n − ta > 3ts parties, of which at most ta could be

corrupt. Since Q⋆(x, αi) is a ts-degree polynomial and ts < |F ′|− 2ta, from Lemma A.1,
it follows that by applying the OEC procedure on the common points on the polynomial
Q⋆(x, αi) received from the parties in F ′, party Pi will eventually obtain Q⋆(x, αi).

Lemma 4.7. Protocol ΠWPS incurs a communication of O(n4 log |F|) bits from the honest parties
and invokes 1 instance of ΠBA.

Proof. In the protocol, D sends a ts-degree univariate polynomial to every party. As part of the pair-
wise consistency checks, each pair of parties exchange 2 field elements. In addition, an honest party
may broadcast an NOK message, corresponding to every other party. As part of the NOK message,
the honest party also broadcasts the corresponding common point on its univariate polynomial.
Each such common point can be represented by log |F| bits. The communication complexity now
follows from the communication complexity of the protocol ΠBC (see Theorem 3.5).

We next discuss the modifications needed in the protocol ΠWPS, if the input for D consists of L
number of ts-degree polynomials.

ΠWPS for L Polynomials: If D has L polynomials as input in protocol ΠWPS, then it embeds
them into L random (ts, ts)-degree symmetric bivariate polynomials and distributes the univari-
ate polynomials lying on these bivariate polynomials, to the respective parties. The parties then
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perform the pair-wise consistency tests, by exchanging their supposedly common points on the
bivariate polynomials. However, Pi broadcasts a single OK(i, j) message for Pj , if the pair-wise con-
sistency test is positive for all the L supposedly common values between Pi and Pj . On the other
hand, if the test fails for any of the L supposedly common values, then Pi broadcasts a single NOK

message, corresponding to the least indexed common value for which the test fails. Hence, instead
of constructing L consistency graphs, a single consistency graph is constructed by each party. As
a result, D finds a single (W, E ,F) triplet and broadcast it. Similarly, a single instance of ΠBA

is used to decide whether any (W, E ,F) is accepted. Finally, if no (W, E ,F) triplet is found and
broadcast, then D looks for a single (n, ta)−star (E ′,F ′) and broadcasts it.

To void repetition, we skip the formal details of the modified protocol and the proof of its
properties, as stated in Theorem 4.8.

Theorem 4.8. Let n > 3ts+ ta and let D has L number of ts-degree polynomials q(1)(·), . . . , q(L)(·)
as input for ΠWPS, where L ≥ 1. Moreover, let TWPS = 2∆ + 2TBC + TBA. Then protocol ΠWPS

achieves the following properties.
– If D is honest then the following hold.

– ts-correctness: In a synchronous network, each (honest) Pi outputs {q(αi)}ℓ=1,...,L at time
TWPS.

– ta-correctness: In an asynchronous network, almost-surely, each (honest) Pi eventually
outputs {q(αi)}ℓ=1,...,L.

– ts-privacy: Irrespective of the network type, the view of the adversary remains independent
of the polynomials q(1)(·), . . . , q(L)(·).

– If D is corrupt, then either no honest party computes any output or there exist L number of
ts-degree polynomials, say {q⋆(·)}ℓ=1,...,L, such that the following hold.
– ts-Weak Commitment: In a synchronous network, at least ts + 1 honest parties Pi output

wps-shares {q⋆(αi)}ℓ=1,...,L. Moreover, if any honest Pj outputs wps-shares s
(1)
j , . . . ,

s
(L)
j ∈ F, then sj = q⋆(αj) holds for ℓ = 1, . . . , L.

– ta-Strong Commitment: In an asynchronous network, almost-surely, each (honest) Pi

eventually outputs {q⋆(αi)}ℓ=1,...,L as wps-shares.
– Irrespective of the network type, the protocol incurs a communication of O(n2L log |F| +

n4 log |F|) bits from the honest parties and invokes 1 instance of ΠBA.

4.2 The VSS Protocol

Protocol ΠWPS fails to serve as a VSS because if D is corrupt and the network is synchronous,
then the (honest) parties outside W may not obtain their required shares, lying on D’s committed
polynomials. Protocol ΠVSS (see Fig 4) fixes this shortcoming. For ease of understanding, we
present the protocol assuming D has a single ts-degree polynomial as input and later discuss the
modifications needed when D has L such polynomials. The protocol has two “layers” of communi-
cation involved. The first layer is similar to ΠWPS and identifies whether the parties accepted some
(W, E ,F) within a specified time-out, such that the polynomials of all honest parties in W lie on a
single (ts, ts)-degree symmetric bivariate polynomial, say Q⋆(x, y). If some (W, E ,F) is accepted,
then the second layer of communication (which is coupled with the first layer) enables even the
(honest) parties outside W to get their corresponding polynomials lying on Q⋆(x, y).

In more detail, to perform the pair-wise consistency check of the polynomials received from D,
each Pj upon receiving qj(x) from D, shares the polynomial qj(x) by invoking an instance of ΠWPS

as a dealer. Any party Pi who computes a WPS-Share in this instance of ΠWPS either broadcasts
an OK or NOK message for Pj , depending on whether the WPS-share lies on the polynomial which
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Pi has received from D. The rest of the steps for computing (W, E ,F) and accepting it remains
the same. If some (W, E ,F) is accepted, then any Pi outside W computes its polynomial lying on
Q⋆(x, y) as follows: Pi checks for a subset SSi ⊆ F of ts + 1 parties Pj , such that Pi is able to
compute its WPS-share in the ΠWPS instance invoked by Pj as a dealer. Such an SSi is bound to
exist as there are at least ts + 1 honest parties in F who are always included in SSi. While the
WPS-shares corresponding to the honest parties in SSi will be the common points on Q⋆(x, αi),
the same holds even for corrupt parties in SSi. This is because in order to be included in F , such
parties are “forced” to share polynomials lying on Q⋆(x, y), in their respective instances of ΠWPS.
Now using the WPS-shares corresponding to the parties in SSi, party Pi will be able to compute
Q⋆(x, αi) and hence, its share.

• Phase I — Sending Polynomials: D on having the input q(·), chooses a random (ts, ts)-degree
symmetric bivariate polynomial Q(x, y) such that Q(0, y) = q(·) and sends qi(x) = Q(x, αi) to each
party Pi ∈ P .

• Phase II — Exchanging Common Values: Each Pi ∈ P , upon receiving a ts-degree polynomial
qi(x) from D, waits till the current local time becomes a multiple of ∆ and then does the following.

– Act as a dealer and invoke an instance Π
(i)
WPS of ΠWPS with input qi(x).

– For j = 1, . . . , n, participate in the instance Π
(j)
WPS, if invoked by Pj as a dealer, and wait for

time TWPS.
• Phase III — Publicly Declaring the Results of Pair-Wise Consistency Test: Each Pi ∈ P

waits till the local time becomes a multiple of ∆ and then does the following.

– If a WPS-share qji is computed during the instance Π
(j)
WPS and qi(x) has been received from D,

then:
– Broadcast OK(i, j), if qji = qi(αj) holds.
– Broadcast NOK(i, j, qi(αj)), if qji 6= qi(αj) holds.

• Local Computation — Constructing Consistency Graph: Each Pi ∈ P does the following.
– Construct a consistency graph Gi over P , where the edge (Pj , Pk) is included in Gi, if OK(j, k)

and OK(k, j) is received from the broadcast of Pj and Pk respectively, either through the
regular-mode or fall-back mode.

• Phase IV — Constructing (n, ts)−star: D does the following in its consistency graph GD at time
2∆+ TBC.
– Remove edges incident with Pi, if NOK(i, j, qij) is received from the broadcast of Pi through

regular-mode and qij 6= Q(αj , αi).
– Set W = {Pi : deg(Pi) ≥ n− ts}, where deg(Pi) denotes the degree of Pi in GD.
– Remove Pi from W , if Pi is not incident with at least n− ts parties in W . Repeat this step till

no more parties can be removed from W .
– Run algorithm AlgStar on GD[W ], where GD[W ] denotes the subgraph of GD induced by the

vertices in W . If an (n, ts)−star, say (E ,F), is obtained, then broadcast (W , E ,F).
• Local Computation — Verifying and Accepting (W , E ,F): Each Pi ∈ P does the following

at time ∆+ TWPS + 2TBC.
– If a (W , E ,F) is received from D’s broadcast through regular-mode, then accept it if following

were true at time ∆ + TWPS + TBC:
– There exist no Pj , Pk ∈ W , such that NOK(j, k, qjk) and NOK(k, j, qkj) messages were received

from the broadcast of Pj and Pk respectively through regular-mode, where qjk 6= qkj .
– In the consistency graph Gi, deg(Pj) ≥ n− ts for all Pj ∈ W .
– In the consistency graph Gi, every Pj ∈ W has edges with at least n− ts parties from W .
– (E ,F) was an (n, ts)−star in the induced graph Gi[W ].
– For every Pj , Pk ∈ W where the edge (Pj , Pk) is present in Gi, the OK(j, k) and OK(k, j)

messages were received from the broadcast of Pj and Pk respectively, through regular-
mode.

Protocol ΠVSS(D, q(·))
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• Phase V — Deciding Whether to Go for (n, ta)−star: At time ∆ + TWPS + 2TBC, each party
Pi participates in an instance of ΠBA with input bi = 0 if a (W , E ,F) is accepted, else with input
bi = 1 and waits for time TBA.

• Local Computation — Computing VSS-Share Through (W , E ,F): If 0 is the output during
the instance of ΠBA, then each Pi does the following.
– If a (W , E ,F) is not yet received, then wait till it is received from D’s broadcast through fall-back

mode.
– If Pi ∈ W , then output qi(0).

– Else, initialize SSi to ∅. Include Pj ∈ F to SSi if a wps-share qji is computed during Π
(j)
WPS.

Wait till |SSi| ≥ ts + 1. Then interpolate {(αj , qji)}Pj∈SSi
to get a ts-degree polynomial, say

qi(x), and output qi(0).
• Phase VI — Broadcasting (n, ta)−star: If the output during the instance of ΠBA is 1, then D

runs AlgStar after every update in its consistency graph GD and broadcasts (E ′,F ′), if it finds an
(n, ta)−star (E ′,F ′).

• Local Computation — Computing VSS-Share Through (n, ta)−star: If the output during
the instance of ΠBA is 1, then each Pi does the following.
– Participate in any instance of ΠBC invoked by D for broadcasting an (n, ta)−star only after time

∆ + TWPS + 2TBC + TBA. Wait till some (E ′,F ′) is obtained from D’s broadcast (through any
mode), which constitutes an (n, ta)−star in Gi.

– If Pi ∈ F ′, then output qi(0). Else, include Pj ∈ F ′ to SSi (initialized to ∅) if a wps-share qji

is computed in Π
(j)
WPS. Wait till |SSi| ≥ ts + 1. Then interpolate {(αj , qji)}Pj∈SSi

to get a
ts-degree polynomial qi(x) and output qi(0).

Figure 4: best-of-both-worlds VSS protocol for a single polynomial.

We next proceed to prove the properties of the protocol ΠVSS. We first start by showing that
if D is honest, then the view of the adversary remains independent of dealer’s polynomial.

Lemma 4.9 (ts-Privacy). In protocol ΠVSS, if D is honest, then irrespective of the network type,
the view of the adversary remains independent of q(·).

Proof. Let D be honest. We consider the worst case scenario when adversary controls up to ts
parties. We claim that throughout the protocol, the adversary learns at most ts univariate polyno-
mials lying on Q(x, y). Since Q(x, y) is a random (ts, ts)-degree symmetric-bivariate polynomial, it
then follows from Lemma 2.2, that the view of the adversary will be independent of q(·). We next
proceed to prove the claim.

Corresponding to every corrupt Pi, the adversary learns Q(x, αi). Corresponding to every
honest Pi, the adversary learns ts number of qi(αj) values through pair-wise consistency tests,

as these values are computed as wps-shares, during the instance Π
(i)
WPS. However, these values are

already included in the view of the adversary (through the univariate polynomials under adversary’s
control). Additionally, from the ts-privacy property of ΠWPS, the view of the adversary remains

independent of qi(x) during Π
(i)
WPS, if Pi is honest. Hence no additional information about the

polynomials of the honest parties is revealed during the pair-wise consistency checks. Furthermore,
no honest Pi ever broadcasts NOK(i, j, qij) corresponding to any honest Pj , since the pair-wise
consistency check will always pass for every pair of honest parties.

We next prove the correctness property in a synchronous network.

Lemma 4.10 (ts-Correctness). In protocol ΠVSS, if D is honest and network is synchronous, then
each honest Pi outputs q(αi) within time TVSS = ∆+ TWPS + 2TBC + TBA.

Proof. Let D be honest and network be synchronous with up to ts corruptions. During phase I,
all honest parties receive qi(x) = Q(x, αi) from D within time ∆. Consequently during phase II,
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each honest Pi invokes the instance Π
(i)
WPS with input qi(x). From the ts-correctness of ΠWPS in the

synchronous network, corresponding to each honest Pj , every honest Pi computes the wps-share
qji = qj(αi), at time ∆ + TWPS. Consequently, during phase III, every honest party broadcasts an
OK message for every other honest party, since qji = qi(αj) holds, for every pair of honest parties
Pi, Pj . From the ts-validity property of ΠBC in the synchronous network, these OK messages are
received by every honest party through regular-mode at time ∆ + TWPS + TBC. Hence, there will
be an edge between every pair of honest parties in the consistency graph of every honest party.
Moreover, if D receives an incorrect NOK(i, j, qij) message from the broadcast of any corrupt Pj

through regular-mode at time ∆+TWPS+TBC where qij 6= Q(αj , αi), then D removes all the edges
incident with Pi in D’s consistency graph GD. D then computes the set W and all honest parties
will be present in W. Moreover, the honest parties will form a clique of size at least n− ts in the
subgraph GD[W] at time ∆+ TWPS + TBC. Hence, D will find an (n, ts)−star (E ,F) in GD[W] and
broadcast (W, E ,F) during phase IV. By the ts-validity of ΠBC in the synchronous network, all
honest parties will receive (W, E ,F) through regular-mode at time ∆ + TWPS + 2TBC. Moreover,
all honest parties will accept accept (W, E ,F) and participate with input 0 in the instance of ΠBA.
By the ts-validity and ts-guaranteed liveness of ΠBA in the synchronous network, the output of the
ΠBA instance will be 0 for every honest party at time ∆ + TWPS + 2TBC + TBA. Now consider an
arbitrary honest party Pi. Since Pi ∈ W, Pi outputs si = qi(0) = Q(0, αi) = q(αi).

We next prove the correctness property in the asynchronous network.

Lemma 4.11 (ta-Correctness). In protocol ΠVSS, if D is honest and network is asynchronous, then
almost-surely, each honest Pi eventually outputs q(αi).

Proof. Let D be honest and network be asynchronous with up to ta corruptions. We first note that
every honest Pi eventually broadcasts OK(i, j) message, corresponding to every honest Pj . This
is because both Pi and Pj eventually receive qi(x) = Q(x, αi) and qj(x) = Q(x, αj) respectively

from D. Moreover, Pj participates with input qj(·) during Π
(j)
WPS. And from the ta-correctness of

ΠWPS in the asynchronous network, party Pi eventually computes the wps-share qji = qj(αi) during

Π
(j)
WPS. Moreover, qji = qij holds. Note that every honest party participates with some input in

the instance of ΠBA at local time ∆ + TWPS + 2TBC. Hence, from the ta-almost-surely liveness
and ta-consistency properties of ΠBA in the asynchronous network, almost-surely, all honest parties
eventually compute a common output during the instance of ΠBA. Now there are two possible
cases:

– The output of ΠBA is 0: From the ta-validity of ΠBA in the asynchronous network, this
means that at least one honest party, say Ph, participated with input 0 during the instance of
ΠBA. This implies that Ph has received (W, E ,F) from the broadcast of D through regular-
mode and accepted it. Hence, by the ta-weak validity and ta-fallback validity of ΠBC in the
asynchronous network, all honest parties will eventually receive (W, E ,F) from the broadcast
of D. We claim that every honest Pi will eventually get Q(x, αi). This will imply that
eventually every honest Pi outputs si = Q(0, αi) = q(αi). To prove the claim, consider an
arbitrary honest party Pi. There are two possible cases.
– Pi ∈ W: In this case, Pi already has Q(x, αi), received from D.
– Pi /∈ W: In this case, we first note that there will be at least ts + 1 parties, who are

eventually included in SSi. This follows from the fact that there are at least ts + 1
honest parties Pj in F . And corresponding to every honest Pj ∈ F , party Pi will

eventually compute the wps-share qji in the instance Π
(j)
WPS, which follows from the ta-

correctness of ΠWPS in the asynchronous network. We next claim that corresponding to
every Pj ∈ SSi, the value qji computed by Pi is the same as Q(αj , αi).
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The claim is obviously true for every honest Pj ∈ SSi, so consider a corrupt Pj ∈ SSi.

We first note that the input polynomial qj(x) of Pj during Π
(j)
WPS is the same as Q(x, αj).

This is because Pj ∈ W, since F ⊆ W. And hence Pj has edges with at least n − ts
parties in W and hence with at least n− ts − ta > ts honest parties from W in GD[W].
Let H be the set of honest parties in W with which Pj has edges in GD[W]. This implies
that every Pk ∈ H has broadcast OK(k, j) message after verifying that qjk = qk(αj) holds,
where the polynomial qk(x) held by Pk is the same as Q(x, αk) and where the WPS-

share qjk computed by Pk during Π
(j)
WPS is the same as qj(αk); the last property follows

from the ta-strong commitment of ΠWPS in the synchronous network. Since |H| > ts, it
implies that at least ts+1 honest parties Pk have verified that qj(αk) = Q(αj , αk) holds.
This further implies that qj(x) = Q(x, αj), since two different ts-degree polynomials
can have at most ts common values. Since Pi has computed the wps-share qji during

Π
(j)
WPS, from the ta-strong commitment of ΠWPS in synchronous network, it follows that

qji = qj(αi) = Q(αi, αj) = Q(αj, αi). The last equality follows since each Q(x, y) is a
symmetric bivariate polynomial.

– The output of ΠBA is 1: As mentioned earlier, since D is honest, every pair of honest parties
eventually broadcast OK messages corresponding to each other, as the pair-wise consistency
check between them will be eventually positive. From the ta-weak validity and ta-fallback
validity of ΠBC in the asynchronous network, these messages are eventually delivered to every
honest party. Also from the ta-weak consistency and ta-fallback consistency of ΠBC in the
asynchronous network, any OK message which is received by D, will be eventually received
by every other honest party as well. As there will be at least n − ta honest parties, a
clique of size at least n − ta will eventually form in the consistency graph of every honest
party. Hence D will eventually find an (n, ta)−star, say (E ′,F ′), in its consistency graph and
broadcast it. From the ta-weak validity and ta-fallback validity of ΠBC in the asynchronous
network, (E ′,F ′) will be eventually received by every honest party. Moreover, (E ′,F ′) will
be eventually an (n, ta)−star in every honest party’s consistency graph. We now claim that
every honest Pi will eventually get Q(x, αi). This will imply that eventually every honest Pi

outputs si = Q(0, αi) = q(αi). To prove the claim, consider an arbitrary honest party Pi.
There are two possible cases.
– Pi ∈ F ′: In this case, Pi already has Q(x, αi), received from D.
– Pi /∈ F ′: In this case, we note that there will be will be at least ts + 1 parties, who are

eventually included in SSi, such that corresponding to every Pj ∈ SSi, the value qji

computed by Pi during Π
(j)
WPS is the same as Q(αj , αi). The proof for this will be similar

as for the case when Pi /∈ W and the output of ΠBA is 0 and so we skip the proof.

Before we proceed to prove the strong commitment property in the synchronous network, we
prove a helping lemma.

Lemma 4.12. Let D be corrupt and network be synchronous. If any honest party receives a
(W, E ,F) from the broadcast of D through regular-mode and accepts (W, E ,F) at time ∆+TWPS +
2TBC, then all the following hold:

– All honest parties in W have received their respective ts-degree univariate polynomials from D

within time ∆.
– The univariate polynomials qi(x) of all honest parties Pi in W lie on a unique (ts, ts)-degree

symmetric bivariate polynomial, say Q⋆(x, y).
– At time ∆+ TWPS + 2TBC, every honest party accepts (W, E ,F).
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Proof. Let D be corrupt and network be synchronous with up to ts corruptions. As per the lemma
condition, let Ph be an honest party, who receives some (W, E ,F) from the broadcast of D through
regular-mode and accepts it at time ∆ + TWPS + 2TBC. From the protocol steps, it then follows
that the following must be true for Ph at time ∆ + TWPS + TBC:

– There does not exist any Pj , Pk ∈ W, such that NOK(j, k, qjk) and NOK(k, j, qkj) messages
were received from the broadcast of Pj and Pk respectively through regular-mode, such that
qjk 6= qkj.

– In Ph’s consistency graph Gh, deg(Pj) ≥ n− ts for all Pj ∈ W and Pj has edges with at least
n− ts parties from W.

– (E ,F) was an (n, ts)−star in the induced subgraph Gh[W], such that for every Pj , Pk ∈ W
where the edge (Pj , Pk) is present in Gh, the OK(j, k) and OK(k, j) messages were received
from the broadcast of Pj and Pk respectively through regular-mode.

We prove the first part of the lemma through a contradiction. So let Pj ∈ W be an honest party,
who receives its ts-degree univariate polynomial from D, say qj(x), at time ∆ + δ, where δ > 0.
Moreover, let Pk ∈ W be an honest party such that Pj has an edge with Pk (note that Pj has edges
with at least n − 2ts > ts + ta honest parties in W). As stated above, at time ∆ + TWPS + TBC,
party Ph has received the message OK(k, j) from the broadcast of Pk through regular-mode. From
the protocol steps, Pj waits till its local time becomes a multiple of ∆, before it participates with

input qj(·) in the instance Π
(j)
WPS. Hence, Pj must have invoked Π

(j)
WPS at time c ·∆, where c ≥ 2.

Since the network is synchronous, from the ts-correctness of ΠWPS in the synchronous network,

party Pk will compute its wps-share qjk during Π
(j)
WPS at time c ·∆+ TWPS. Hence the result of the

pair-wise consistency test with Pj will be available to Pk at time c ·∆+TWPS. As a result, Pk starts
broadcasting OK(k, j) message only at time c · ∆ + TWPS. Since Pk is honest, from the ts-validity
property of ΠBC in the synchronous network, it will take exactly TBC time for the message OK(k, j)
to be received through regular-mode, once it is broadcast. This implies that Ph will receive the
message OK(k, j) at time c ·∆ + TWPS + TBC, where c ≥ 2. However, this is a contradiction, since
the OK(k, j) message has been received by Ph at time ∆ + TWPS + TBC.

To prove the second part of the lemma, we will show that the univariate polynomials qi(x) of all
the honest parties Pi ∈ W are pair-wise consistent. Since there will be at least n− 2ts > ts honest
parties in W, from Lemma 2.2 this will imply that all these polynomials lie on a unique (ts, ts)-
degree symmetric bivariate polynomial, say Q⋆(x, y). So consider an arbitrary pair of honest parties
Pj , Pk ∈ W. From the first part of the claim, both Pj and Pk must have received their respective
univariate polynomials qj(x) and qk(x) by time ∆. Moreover, from the ts-correctness property
of ΠWPS in the synchronous network, Pj and Pk will compute the wps-shares qkj = qk(αj) and

qjk = qj(αk) at time ∆ + TWPS during Π
(k)
WPS and Π

(j)
WPS respectively. Since Pj and Pk are honest,

if qkj 6= qjk, they would broadcast NOK(j, k, qjk) and NOK(k, j, qkj) messages respectively at time
∆ + TWPS. From the ts-validity property of ΠBC in the synchronous network, Ph will receive these
messages through regular-mode at time ∆+TWPS+TBC. Consequently, Ph will not accept (W, E ,F),
which is a contradiction.

To prove the third part of the lemma, we note that since Ph receives (W, E ,F) from the broadcast
of D through regular-mode at time ∆+TWPS+2TBC, it implies that Dmust have started broadcasting
(W, E ,F) latest at time ∆+TWPS+TBC. This is because it takes TBC time for the regular-mode of
ΠBC to generate an output. From the ts-consistency property of ΠBC in the synchronous network, it
follows that every honest party will also receive (W, E ,F) from the broadcast of D through regular-
mode at time ∆ + TWPS + 2TBC. Similarly, since at time ∆ + TWPS + TBC, party Ph has received
the OK(j, k) and OK(k, j) messages through regular-mode from the broadcast of every Pj , Pk ∈ W
where (Pj , Pk) is an edge in Ph’s consistency graph, it follows that these messages started getting

32



broadcast latest at time ∆ + TWPS. From the ts-validity and ts-consistency properties of ΠBC

in the synchronous network, it follows that every honest party receives these broadcast messages
through regular-mode at time ∆+ TWPS + TBC. Hence (E ,F) will constitute an (n, ts)−star in the
induced subgraph Gi[W] of every honest party Pi’s consistency-graph at time ∆+TWPS+TBC and
consequently, every honest party accepts (W, E ,F).

We next prove the strong commitment property in the synchronous network.

Lemma 4.13 (ts-Strong Commitment). In protocol ΠVSS, if D is corrupt and network is syn-
chronous, then either no honest party computes any output or there exist a ts-degree polynomial,
say q⋆(·), such that each honest Pi eventually outputs q⋆(αi), where the following hold.

– If any honest Pi computes its output at time TVSS = ∆ + TWPS + 2TBC + TBA, then every
honest party obtains its output at time TVSS.

– If any honest Pi computes its output at time T where T > TVSS, then every honest party
computes its output by time T + 2∆.

Proof. Let D be corrupt and network be synchronous with up to ts corruptions. If no honest party
computes any output, then the lemma holds trivially. So consider the case when some honest party
computes an output. Now, there are two possible cases.

– At least one honest party, say Ph, has received some (W, E ,F) from the broadcast
of D through regular-mode and accepted (W, E ,F) at time ∆+ TWPS +2TBC: In this
case, from Lemma 4.12, the polynomials qi(x) of all honest parties in W are guaranteed to lie
on a unique (ts, ts)-degree symmetric bivariate polynomial, say Q⋆(x, y). As per the protocol
steps, Ph has also verified that F ⊆ W, by checking that (E ,F) constitutes an (n, ts)−star
in the induced subgraph Gh[W]. Hence the polynomials qi(x) of all honest parties in F
also lie on Q⋆(x, y). Moreover, from Lemma 4.12, all honest parties accept (W, E ,F) at
time ∆ + TWPS + 2TBC. Hence, every honest party participates in the instance of ΠBA with
input 0. Consequently, by the ts-validity and ts-guaranteed liveness properties of ΠBA in the
synchronous network, all honest parties compute the output 0 during the instance of ΠBA at
time TVSS = ∆+ TWPS + 2TBC + TBA. Let q⋆(·) = Q⋆(0, y) and consider an arbitrary honest
party Pi. We wish to show that Pi has qi(x) = Q⋆(x, αi) at time TVSS, which will imply that
Pi outputs si = qi(0) at time TVSS, which will be the same as q⋆(αi). For this, we consider
the following two possible cases.
– Pi ∈ W: In this case, Pi has already received qi(x) from D within time ∆. This follows

from Lemma 4.12.
– Pi /∈ W: In this case, we claim that at time TVSS, there will be will be at least ts+1 parties

from F , who are included in SSi, such that corresponding to every Pj ∈ SSi, party Pi

will have the value qji, which will be the same as Q⋆(αj , αi). Namely, there are at least
ts + 1 honest parties in F , who will be included in SSi and the claim will be trivially
true for those parties, due to the ts-correctness property of ΠWPS in the synchronous
network. On the other hand, if any corrupt Pj ∈ F is included in SSi, then the input

polynomial of Pj during Π
(j)
WPS will be pair-wise consistent with the polynomials of at

least ts + 1 honest parties in W and hence will be the same as Q⋆(x, αj). Moreover,
from the ts-weak commitment of ΠWPS in the synchronous network, the WPS-share qji

computed by Pi during Π
(j)
WPS will be the same as Q⋆(αi, αj), which will be the same as

Q⋆(αj , αi), since Q
⋆(x, y) is a symmetric bivariate polynomial. Hence, Pi will interpolate

qi(x).
– No honest party has received any (W, E ,F) from the broadcast of D through

regular-mode and accepted (W, E ,F) at time ∆ + TWPS + 2TBC: This implies that
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all honest parties participate in the instance of ΠBA with input 1. Hence, by the ts-validity
and ts-guaranteed liveness of ΠBA in the synchronous network, all honest parties obtain the
output 1 during the instance of ΠBA at time ∆ + TWPS + 2TBC + TBA. Let Ph be the first
honest party, who computes an output. This means that Ph has received a pair (E ′,F ′) from
the broadcast of D, such that (E ′,F ′) constitutes an (n, ta)−star in Ph’s consistency graph.
Let T be the time when (E ′,F ′) constitutes an (n, ta)−star in Ph’s consistency graph. This
implies that at time T , party Ph has (E ′,F ′) from D’s broadcast and also all the OK(⋆, ⋆)
messages, from the broadcast of respective parties in E ′ and F ′. From the protocol steps,
T > TVSS, since the honest parties participate in the instance of ΠBC through which D has
broadcast (E ′,F ′) only after time TVSS. By the ts-consistency and ts-fallback consistency
properties of ΠBC in the synchronous network, all honest parties will receive (E ′,F ′) from the
broadcast of D by time T + 2∆. Moreover, (E ′,F ′) will constitute an (n, ta)−star in every
honest party’s consistency graph by time T + 2∆. This is because all the OK messages which
are received by Ph from the broadcast of various parties in E ′ and F ′ are guaranteed to be
received by every honest party by time T + 2∆. Since |E ′| ≥ n − 2ta > 2ts + (ts − ta) > 2ts,
it follows that E ′ has at least ts + 1 honest parties. Moreover, the univariate polynomials
(qj(x), qk(x)) of every pair of honest parties Pj , Pk ∈ E ′ will be pair-wise consistent and hence
lie on a unique (ts, ts)-degree symmetric bivariate polynomial, say Q⋆(x, y). Similarly, the
univariate polynomial qi(x) of every honest party Pi in F ′ is pair-wise consistent with the
univariate polynomials qj(x) of all the honest parties in E ′ and hence lie on Q⋆(x, y) as well.

Let q⋆(·)
def
= Q⋆(0, y). We show that every honest Pi outputs q

⋆(αi), by time T +2∆. For this
it is enough to show that each honest Pi has qi(x) = Q⋆(x, αi) by time T +2∆, as Pi outputs
qi(0), which will be the same as q⋆(αi). Consider an arbitrary honest party Pi. There are two
possible cases.
– Pi ∈ F ′: In this case, Pi has already received Q⋆(x, αi) from D, well before time T + 2∆.
– Pi /∈ F ′: In this case, we claim that by time T + 2∆, there will be will be at least ts + 1

parties from F ′, who are included in SSi, such that corresponding to every Pj ∈ SSi,
party Pi will have the value qji, which will be the same as Q⋆(αj , αi). The proof for this
is very similar to the previous case when Pi /∈ W and the output of ΠBA is 0. Namely
every honest Pj ∈ F ′ will be included in SSi. This is because Pj starts broadcasting

OK messages for other parties in E ′ only after invoking instance Π
(j)
WPS with input qj(x).

Hence, by time T + 2∆, the WPS-share qji from the instance Π
(j)
WPS will be available

with Pi. On the other hand, if a corrupt Pj ∈ F ′ is included in SSi, then also the
claim holds (the proof for this is similar to the proof of the ta-correctness property in
the asynchronous network in Lemma 4.11).

We finally prove the strong commitment property in an asynchronous network.

Lemma 4.14 (ta-Strong Commitment). In protocol ΠVSS, if D is corrupt and network is asyn-
chronous, then either no honest party computes any output or there exist some ts-degree polynomial,
say q⋆(·), such that almost-surely, every honest Pi eventually outputs q⋆(αi).

Proof. Let D be corrupt and the network be asynchronous with up to ta corruptions. If no honest
party computes any output, then the lemma holds trivially. So, consider the case when some
honest party computes an output. We note that every honest party participates with some input
in the instance of ΠBA at local time ∆ + TWPS + 2TBC. Hence, from the ta-almost-surely liveness
and ta-consistency properties of ΠBA in the asynchronous network, almost-surely, all honest parties
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eventually compute a common output during the instance of ΠBA. Now there are two possible
cases:

– The output of ΠBA is 0: From the ta-validity of ΠBA in the asynchronous network, it follows
that at least one honest party, say Ph, participated with input 0 during the instance of ΠBA.
This means that Ph has received some (W, E ,F) from the broadcast of D through regular-
mode and accepted it at local time ∆+ TWPS +2TBC. Hence, by the ta-weak consistency and
ta-fallback consistency of ΠBC in the asynchronous network, all honest parties will eventually
receive (W, E ,F) from the broadcast of D. There will be at least n − 2ts − ta > ts honest
parties Pi in E , whose univariate polynomials qi(x) are pair-wise consistent and hence lie on a
unique (ts, ts)-degree symmetric bivariate polynomial, say Q⋆(x, y). Similarly, the univariate
polynomial qi(x) of every honest Pi ∈ F will be pair-wise consistent with the univariate
polynomials qj(x) of all the honest parties Pj in E and hence will lie on Q⋆(x, y) as well. Let

q⋆(·)
def
= Q⋆(0, y). We claim that every honest Pi will eventually have Q⋆(x, αi). This will

imply that eventually every honest Pi outputs si = Q⋆(0, αi) = q⋆(αi). To prove the claim,
consider an arbitrary honest party Pi. There are three possible cases.
– Pi ∈ W and Pi ∈ F : In this case, Pi has received the polynomials qi(x) from D and since

Pi ∈ F , the condition qi(x) = Q⋆(x, αi) holds.
– Pi ∈ W and Pi 6∈ F : In this case, Pi has received the polynomial qi(x) from D. Since

|W| ≥ n− ts and |F| ≥ n− ts, |W ∩F| ≥ n− 2ts > ts+ ta. From the protocol steps, the
polynomial qi(x) is pair-wise consistent with the polynomials qj(x) at least n− ts parties
Pj ∈ W, since Pi has edges with at least n− ts parties Pj within W. Now among these
n− ts parties, at least n− 2ts parties will be from F , of which at least n− 2ts − ta > ts
parties will be honest. Hence, qi(x) is pair-wise consistent with the qj(x) polynomials of
at least ts + 1 honest parties Pj ∈ F . Now since the qj(x) polynomials of all the honest
parties in F lie on Q⋆(x, y), it implies that qi(x) = Q⋆(x, αi) holds.

– Pi /∈ W: In this case, similar to the proof of Lemma 4.11, one can show that Pi even-
tually includes at least ts + 1 parties from F in SSi. And the value computed by Pi

corresponding to any Pj ∈ SSi will be the same as Q⋆(αj , αi). Hence, Pi will eventually
interpolate Q⋆(x, αi).

– The output of ΠBA is 1: Let Ph be the first honest party, who computes an output in
ΠVSS. This means that Ph has received some (E ′,F ′) from the broadcast of D, such that
(E ′,F ′) constitutes an (n, ta)−star in Ph’s consistency graph. By the ta-weak consistency
and ta-fallback consistency properties of ΠBC in the asynchronous network, all honest parties
eventually receive (E ′,F ′) from the broadcast of D. Moreover, since the consistency graphs are
constructed based on the broadcast OK messages and since (E ′,F ′) constitutes an (n, ta)−star
in Ph’s consistency graph, from the ta-weak validity, ta-fallback validity, ta-weak consistency
and ta-fallback consistency properties of ΠBC in the asynchronous network, the pair (E ′,F ′)
will eventually constitute an (n, ta)−star in every honest party’s consistency graph, as the
corresponding OK messages are eventually received by every honest party. Since |E ′| ≥ n −
2ta > 2ts + (ts − ta) > 2ts, it follows that E ′ has at least ts + 1 honest parties Pi, whose
univariate polynomials qi(x) are pair-wise consistent and hence lie on a unique (ts, ts)-degree
symmetric bivariate polynomial, say Q⋆(x, y). Similarly, since the univariate polynomials
qj(x) of every honest party Pj in F ′ is pair-wise consistent with the univariate polynomials
qi(x) of all the honest parties Pi in E ′, it implies that the polynomials qj(x) of all the honest

parties Pj in F ′ also lie on Q⋆(x, y) as well. Let q⋆(·)
def
= Q⋆(0, y). We show that every honest

Pi eventually outputs q⋆(αi). For this it is enough to show that each honest Pi eventually
gets qi(x) = Q⋆(x, αi), as Pi outputs qi(0), which will be the same as q⋆(αi). Consider an
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arbitrary honest party Pi. There are two possible cases.
– Pi ∈ F ′: In this case, Pi already has received Q⋆(x, αi) from D.
– Pi /∈ F ′: Again in this case, one can show that Pi eventually includes at least ts+1 parties

from F ′ in SSi. And the value computed by Pi corresponding to any Pj ∈ SSi will be
the same as Q⋆(αj , αi). Hence, Pi will eventually interpolate Q⋆(x, αi).

Lemma 4.15. Protocol ΠVSS incurs a communication of O(n5 log |F|) bits and invokes n + 1 in-
stance of ΠBA.

Proof. The proof follows from Lemma 4.7 and the fact that each party acts as a dealer and invokes
an instance of ΠWPS with a ts-degree polynomial. Hence, the total communication cost due to the
instances of ΠWPS in ΠVSS will be O(n · n4 log |F|) = O(n5 log |F|) bits, along with n instances of
ΠBA. Additionally, there is an instance of ΠBA invoked in ΠVSS to agree on whether some (W, E ,F)
is accepted.

We next discuss the modifications needed in the protocol ΠVSS, if the input for D consists of L
number of ts-degree polynomials.

Protocol ΠVSS for L Polynomials: If D has L polynomials as input for ΠVSS, then we make
similar modifications as done for ΠWPS handling L polynomials, with each party broadcasting a
single OK/NOK message for every other party. To void repetition, we skip the formal details of the
modified protocol and the proof of its properties, as stated in Theorem 4.16.

Theorem 4.16. Let n > 3ts+ta and let D has L number of ts-degree polynomials q(1)(·), . . . , q(L)(·)
as input for ΠVSS where L ≥ 1. Moreover, let TVSS = ∆+TWPS +2TBC +TBA. Then protocol ΠVSS

achieves the following properties.
– If D is honest, then the following hold.

– ts-correctness: In a synchronous network, each (honest) Pi outputs {q(αi)}ℓ=1,...,L at time
TVSS.

– ta-correctness: In an asynchronous network, almost-surely, each (honest) Pi eventually
outputs {q(αi)}ℓ=1,...,L.

– ts-privacy: Irrespective of the network type, the view of the adversary remains independent
of the polynomials q(1)(·), . . . , q(L)(·).

– If D is corrupt, then either no honest party computes any output or there exist ts-degree
polynomials {q⋆(ℓ)(·)}ℓ=1,...,L, such that the following hold.

– ts-strong commitment: every honest Pi eventually outputs {q⋆(ℓ)(αi)}ℓ=1,...,L, such that
one of the following hold.
– If any honest Pi computes its output at time TVSS, then all honest parties compute

their output at time TVSS.
– If any honest Pi computes its output at time T where T > TVSS, then every honest

party computes its output by time T + 2∆.
– Irrespective of the network type, the protocol incurs a communication of O(n3L log |F| +

n5 log |F|) bits from the honest parties and invokes n+ 1 instances of ΠBA.

5 Agreement on a Common Subset (ACS)

In this section, we present a best-of-both-worlds protocol for agreement on a common subset, which
will be later used in our preprocessing phase protocol, as well as in our circuit-evaluation protocol.
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In the protocol, each party Pi ∈ P has L number of ts-degree polynomials as input for an instance
of ΠVSS, which Pi is supposed to invoke as a dealer.11 As corrupt parties may not invoke their
instances of ΠVSS as dealer, the parties may obtain points lying on the polynomials of only n− ts
parties (even in a synchronous network). However, in an asynchronous network, different parties
may obtain points on the polynomials of different subsets of n−ts parties. The ACS protocol allows
the parties to agree on a common subset CS of at least n− ts parties, such that all (honest) parties
are guaranteed to receive points lying on the polynomials of the parties in CS. Additionally, the
protocol guarantees that in a synchronous network, all honest parties are present in CS. Looking
ahead, this property will be very crucial when the ACS protocol is used during circuit-evaluation,
as it will ensure that in a synchronous network, the inputs of all honest parties are considered for
the circuit-evaluation.

The ACS protocol is presented in Fig 5, where for simplicity we assume that L = 1. Later,
we discuss the modifications required for L > 1. In the protocol, each party acts as a dealer and
invokes an instance of ΠVSS to verifiably distribute points on its polynomial. If the network is
synchronous, then after time TVSS, all honest parties would have received points corresponding
to the polynomials of the honest dealers. Hence after (local) time TVSS, the parties locally check
for the instances of ΠVSS in which they have received an output. Based on this, the parties start
participating in n instances of ΠBA, where the jth instance is used to decide whether Pj should be
included in CS. The input criteria for these ΠBA instances is the following: if a party has received
an output in the ΠVSS instance with Pj as the dealer, then the party starts participating with input
1 in the corresponding ΠBA instance. Now once 1 is obtained as the output from n − ts instances
of ΠBA, then the parties start participating with input 0 in any of the remaining ΠBA instances for
which the parties may have not provided any input yet. Finally, once an output is obtained from all
the n instances of ΠBA, party Pj is included in CS if and only if the output of the corresponding ΠBA

instance is 1. Since the parties wait for time TVSS before starting the ΠBA instances, it is ensured
that all honest dealers are included in CS in a synchronous network.

– Phase I — Distributing Points on the Polynomials

– On having the input fi(·), act as a dealer D and invoke an instance Π
(i)
VSS of ΠVSS with input

fi(·).

– For j = 1, . . . , n, participate in the instance Π
(j)
VSS invoked by Pj and wait for time TVSS.

– Initialize a set Ci = ∅ after time TVSS and include Pj in Ci, if an output is computed during

Π
(j)
VSS.

– Phase II — Identifying the Common Subset of Parties:

– For j = 1, . . . , n, participate in an instance of Π
(j)
BA of ΠBA with input 1, if Pj ∈ Ci.

– Once n− ts instances of ΠBA have produced an output 1, then participate with input 0 in all

the ΠBA instances Π
(j)
BA, such that Pj 6∈ Ci.

– Once all the n instances of ΠBA have produced a binary output, then output CS, which is the

set of parties Pj , such that 1 is obtained as the output in the instance Π
(j)
BA.

Protocol ΠACS

Figure 5: Agreement on common subset of n− ts parties where each party has a single ts-degree polynomial
as input. The above code is executed by every Pi ∈ P .

We next prove the properties of the protocol ΠACS.

Lemma 5.1. Protocol ΠACS achieves the following properties, where every party Pi has a ts-degree
polynomial fi(·) as input.

11The exact input of Pi will be determined, based on where exactly the ACS protocol is used.
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– Synchronous Network: The following is achieved in the presence of up to ts corruptions.
– ts-Correctness: at time TACS = TVSS + 2TBA, the parties output a common subset CS of

size at least n− ts, such that all the following hold:
– All honest parties will be present in CS.
– Corresponding to every honest Pj ∈ CS, every honest Pi has fj(αi).
– Corresponding to every corrupt Pj ∈ CS, there exists some ts-degree polynomial, say

f⋆
j (·), such that every honest Pi has f⋆

j (αi).
– Asynchronous Network: The following is achieved in the presence of up to ta corruptions.

– ta-Correctness: almost-surely, the honest parties eventually output a common subset CS
of size at least n− ts, such that all the following hold:
– Corresponding to every honest Pj ∈ CS, every honest Pi eventually has fj(αi).
– Corresponding to every corrupt Pj ∈ CS, there exists some ts-degree polynomial, say

f⋆
j (·), such that every honest Pi eventually has f⋆

j (αi).
– ts-Privacy: Irrespective of the network type, the view of the adversary remains independent of

the fi(·) polynomials of the honest parties.
– Irrespective of the network type, the protocol incurs a communication of O(n6 log |F|) bits from

the honest parties and invokes O(n2) instances of ΠBA.

Proof. The ts-privacy property simply follows from the ts-privacy property of ΠVSS, while commu-
nication complexity follows from the communication complexity of ΠVSS and the fact that O(n)
instances of ΠVSS are invoked. We next prove the correctness property.

We first consider a synchronous network, with up to ts corruptions. Let H be the set of parties,
where |H| ≥ n− ts. Corresponding to each Pj ∈ H, every honest Pi computes the output fj(αi) at

time TVSS during Π
(j)
VSS, which follows from the ts-correctness of ΠVSS in the synchronous network.

Consequently, at time TVSS, the set Ci will be of size at least n − ts for every honest Pi. Now

corresponding to each Pj ∈ H, each honest Pi participates with input 1 in the instance Π
(j)
BA at time

TVSS. Hence, from the ts-validity and ts-guaranteed liveness of ΠBA in the synchronous network,
it follows that at time TVSS + TBA, every honest Pi computes the output 1 during the instance

Π
(j)
BA, corresponding to every Pj ∈ H. Consequently, at time TVSS + TBA, every honest party will

start participating in the remaining ΠBA instances for which no input has been provided yet (if
there are any). And from the ts-guaranteed liveness and ts-consistency of ΠBA in the synchronous
network, these ΠBA instances will produce common outputs for every honest party at time TACS =
TVSS + 2TBA. Since the set CS is determined deterministically based on the outputs computed
from the n instances of ΠBA, it follows that all the honest parties eventually output the same CS
of size at least n − ts, such that each Pj ∈ H will be present in CS. We next wish to show that
corresponding to every Pj ∈ CS, every honest party has received its point on Pj ’s polynomial.

Consider an arbitrary party Pj ∈ CS. If Pj is honest, then as argued above, every honest Pi

gets fj(αi) at time TVSS itself. Next, consider a corrupt Pj ∈ CS. Since Pj ∈ CS, it follows that

the instance Π
(j)
BA produces the output 1. From the ts-validity property of ΠBA in the synchronous

network, it follows that at least one honest Pi must have participated with input 1 in the instance

Π
(j)
BA. This implies that Pi must have computed some output during the instance Π

(j)
VSS by time

TVSS + TBA and Pj ∈ Ci. This is because if at time TVSS + TBA, party Pj does not belong to the Ci
set of any honest Pi, then it implies that all honest parties participate with input 0 in the instance

Π
(j)
BA from time TVSS + TBA. Then, from the ts-validity of ΠBA in the synchronous network, every

honest party would compute the output 0 in the instance Π
(j)
BA and hence Pj will not be present in

CS, which is a contradiction. Now if Pi has computed some output during Π
(j)
VSS at time TVSS+TBA,

then from the ts-strong-commitment of ΠVSS, it follows that Pj has some ts-degree polynomial, say
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f⋆
j (·), such that every honest party Pi computes f⋆

j (αi) by time TVSS +TBA+2∆. Since 2∆ < TBA,
it follows that at time TACS, every honest Pi has f⋆

j (αi), thus proving the ts-correctness property
in a synchronous network.

We next consider an asynchronous network, with up to ta corruptions. Let H be the set of
parties, where |H| ≥ n− ta ≥ n− ts. We first note that irrespective of way messages are scheduled,
there will be at least n − ts instances of ΠBA in which all honest parties eventually participate
with input 1. This is because corresponding to every Pj ∈ H, every honest Pi eventually computes

the output fj(αi) during the instance Π
(j)
VSS, which follows from the ta-correctness of ΠVSS in the

asynchronous network. So even if the corrupt parties Pj do not invoke their respective Π
(j)
VSS

instances, there will be at least n − ts instances of ΠBA in which all honest parties eventually
participate with input 1. Consequently, from the ta-almost-surely liveness and ta-validity properties
of ΠBA in the asynchronous network, almost-surely, all honest parties eventually compute the output
1 during these ΠBA instances. Hence, all honest parties eventually participate with some input in
the remaining ΠBA instances. Consequently, from the ta-almost-surely liveness and ta-consistency
properties of ΠBA in the asynchronous network, almost-surely, all honest parties will compute some
common output in these ΠBA instances as well. Since the set CS is determined deterministically
based on the outputs computed from the n instances of ΠBA, it follows that all the honest parties
eventually output the same CS.

Now consider an arbitrary party Pj ∈ CS. It implies that the honest parties compute the output

1 during the instance Π
(j)
BA. From the ta-validity of ΠBA in the asynchronous network, it follows that

at least one honest Pi participated with input 1 during Π
(j)
BA, after computing some output in the

instance Π
(j)
VSS. Now if Pj is honest, then the ta-correctness of ΠVSS in the asynchronous network

guarantees that every honest party Pi eventually computes the output fj(αi) during Π
(j)
VSS. On the

other hand, if Pj is corrupt, then the ta-strong commitment of ΠVSS in the asynchronous network
guarantees that there exists some ts-degree polynomial, say f⋆

j (·), such that every honest party Pi

eventually computes the output f⋆
j (αi) during the instance Π

(j)
VSS.

We end this section by discussing the modifications needed in the protocol ΠACS, if each party
has L number of polynomials as input.

Protocol ΠACS for Multiple Polynomials: Protocol ΠACS can be easily extended if each party
has L number of ts-degree polynomials as input. In this case, each party Pj will invoke its instance
of ΠVSS with L polynomials. The rest of the protocol steps remain the same. The protocol will
incur a communication of O(n4L log |F|+n6 log |F|) bits from the honest parties and invokes O(n2)
instances of ΠBA.

6 The Preprocessing Phase Protocol

In this section, we present our best-of-both-worlds protocol for the preprocessing phase. The goal
of the protocol is to generate cM number of ts-shared multiplication-triples, which are random from
the point of view of the adversary. The protocol is obtained by extending the framework of [26]
to the best-of-both-worlds setting. We first start by discussing the various (best-of-both-worlds)
building blocks used in the protocol.
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6.1 best-of-both-worlds Beaver’s Multiplication Protocol

Given ts-shared x, y and a ts-shared triple (a, b, c), protocol ΠBeaver [8] outputs a ts-shared z, where
z = x ·y, if and only if c = a ·b. If (a, b, c) is random for the adversary, then x and y remain random
for the adversary. In the protocol, the parties first publicly reconstruct x−a and y−b. A ts-sharing
of z can be then computed locally, since [z] = (x − a) · (y − b) + (x − a) · [b] + (y − b) · [a] + [c].
The protocol takes ∆ time in a synchronous network and in an asynchronous network, the parties
eventually compute [z].

– Masking Input Values — parties locally compute [e] = [x]− [a] and [d] = [y]− [b].
– Publicly Reconstructing Masked Inputs — each Pi ∈ P does the following:

– Send the share of e and d to every party in P and wait for ∆ time.
– Apply the OEC(ts, ts,P) procedure on the received shares of d to compute d. Similarly, apply

the OEC(ts, ts,P) procedure on the received shares of e to compute e.
– Output Computation — parties locally compute [z] = d · e+ e · [b] + d · [a] + [c] and output [z].

Protocol ΠBeaver(([x], [y]), ([a], [b], [c]))

Figure 6: Beaver’s protocol for multiplying two ts shared values.

Lemma 6.1. Let x and y be two ts-shared values and let (a, b, c) be a ts-shared triple. Then protocol
ΠBeaver achieves the following properties in the presence of up to ts corruptions.

– If the network is synchronous, then within time ∆, the parties output a ts-sharing of z.
– If the network is asynchronous, then the parties eventually output a ts-sharing of z.
– Irrespective of the network type, z = x ·y holds, if and only if (a, b, c) is a multiplication-triple.
– Irrespective of the network type, if (a, b, c) is random from the point of view of the adversary,

then the view of the adversary remains independent of x and y.
– The protocol incurs a communication of O(n2 log |F|) bits from the honest parties.

Proof. Since x, y and the triple (a, b, c) are all ts-shared, the values d = (x− a) and e = (y− b) will
be ts-shared, which follows from the linearity of ts-sharing. Let there be up to ts corruptions. If
the network is synchronous, then from the properties of OEC in the synchronous network, within
time ∆, every honest Pi will have d and e and hence the parties output a ts-sharing of z within
time ∆. On the other hand, if the network is asynchronous, then from the properties of OEC in
the asynchronous network, every honest Pi eventually reconstructs d and e and hence the honest
parties eventually output a ts-sharing of z.

In the protocol, z = (x− a) · (y − b) + (x− a) · b+ (y − b) · a+ c = x · y − a · b+ c holds. Hence
it follows that z = x · y holds if and only if c = a · b holds.

In the protocol, adversary learns the values d and e, as they are publicly reconstructed. However,
if a and b are random from the point of view of the adversary, then d and e leak no information
about x and y. Namely, for every candidate x and y, there exist unique a and b, consistent with d
and e.

The communication complexity follows from the fact each party needs to send 2 field elements
to every other party.

6.2 best-of-both-worlds Triple-Transformation Protocol

Protocol ΠTripTrans takes input a set of 2d + 1 ts-shared triples {(x(i), y(i), z(i))}i=1,...,2d+1, where
the triples may not be “related”. The output of the protocol are “co-related” ts-shared triples
{(x(i),y(i), z(i))}i=1,...,2d+1, such that all the following hold (irrespective of the network type):
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– There exist d-degree polynomials X(·),Y(·) and 2d-degree polynomial Z(·), such that X(αi) =
x(i), Y(αi) = y(i) and Z(αi) = z(i) holds for i = 1, . . . , 2d + 1.

– The triple (x(i),y(i), z(i)) is a multiplication-triple if and only if (x(i), y(i), z(i)) is a multiplication-
triple. This further implies that Z(·) = X(·) · Y(·) holds if and only if all the 2d + 1 input
triples are multiplication-triples.

– Adversary learns the triple (x(i),y(i), z(i)) if and only if it knows the input triple (x(i), y(i), z(i)).
The idea behind ΠTripTrans is as follows: the polynomials X(·) and Y(·) are “defined” by the first and
second components of the first d+1 input triples. Hence the first d+1 points on these polynomials
are already ts-shared. The parties then compute d “new” points on the polynomials X(·) and Y(·)
in a shared fashion. This step requires the parties to perform only local computations. This is
because from the property of Lagrange’s interpolation, computing any new point on X(·) and Y(·)
involves computing a publicly-known linear function (which we call Lagrange’s linear function) of
“old” points on these polynomials. Since the old points are ts-shared, by applying corresponding
Lagrange’s functions, the parties can compute a ts-sharing of the new points. Finally, the parties
compute a ts-sharing of the product of the d new points using Beaver’s technique, making use of
the remaining d input triples. The Z(·) polynomial is then defined by the d computed products
and the third component of the first d+ 1 input triples. The protocol is formally presented in Fig
7.

– Defining X(·) and Y(·) Polynomials — The parties locally do the following:
– For i = 1, . . . , d+ 1, set

– [x(i)] = [x(i)];
– [y(i)] = [y(i)];
– [z(i)] = [z(i)].

– Let X(·) be the unique d-degree polynomial, passing through the points {(αi,x
(i))}i=1,...,d+1.

And let Y(·) be the unique d-degree polynomial, passing through {(αi,y
(i))}i=1,...,d+1.

– For i = d+ 2, . . . , 2d+ 1, locally compute [x(i)] = [X(αi)] from {[x(i)]}i=1,...,d+1, by
applying the corresponding Lagrange’s linear function.

– For i = d+ 2, . . . , 2d+ 1, locally compute [y(i)] = [Y(αi)] from {[y(i)]}i=1,...,d+1, by
applying the corresponding Lagrange’s linear function.

– Computing Points on the Z(·) Polynomial — The parties do the following:
– For i = d+ 2, . . . , 2d+ 1, participate in the instance ΠBeaver(([x

(i)], [y(i)]), ([x(i)], [y(i)], [z(i)])) of
ΠBeaver . Let [z

(i)] be the output obtained from this instance.
– Output {[x(i)], [y(i)], [z(i)]}i=1,...,2d+1.

Protocol ΠTripTrans(d, {[x(i)], [y(i)], [z(i)]}i=1,...,2d+1)

Figure 7: Protocol for transforming a set of ts-shared triples into a set of correlated ts-shared triples.

We next prove the properties of the protocol ΠTripTrans.

Lemma 6.2. Let {[x(i)], [y(i)], [z(i)]}i=1,...,2d+1 be a set of ts-shared triples. Then protocol ΠTripTrans

achieves the following properties in the presence of up to ts corruptions.
– If the network is synchronous, then the parties output ts-shared triples {[x(i)], [y(i)], [z(i)]}i=1,...,2d+1,

within time ∆.
– If the network is asynchronous, then the parties eventually output ts-shared triples {[x(i)], [y(i)],

[z(i)]}i=1,...,2d+1.
– Irrespective of the network type, there exist d-degree polynomials X(·),Y(·) and 2d-degree poly-

nomial Z(·), such that X(αi) = x(i), Y(αi) = y(i) and Z(αi) = z(i) holds for i = 1, . . . , 2d+ 1.
– Irrespective of the network type, (x(i),y(i), z(i)) is a multiplication-triple if and only if (x(i), y(i),

z(i)) is a multiplication-triple.
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– For i = 1, . . . , 2d+1, no additional information about (x(i),y(i), z(i)) is revealed to the adver-
sary, if the triple (x(i), y(i), z(i)) is random from the point of view of the adversary.

– The protocol incurs a communication of O(dn2 log |F|) bits from the honest parties.

Proof. Consider an adversary who controls up to ts parties. In the protocol, irrespective of the
network type, the parties locally compute the ts-sharings {[x(i)], [y(i)]}i=1,...,2d+1 and ts-sharings
{[z(i)]}i=1,...,d+1. If the network is synchronous, then from the properties of ΠBeaver in the syn-
chronous network, it follows that after time ∆, all honest parties will have their respective output in
all the d instances of ΠBeaver. Hence after time ∆, the parties have ts-sharings {[z

(i)]}i=d+2,...,2d+1.
On the other hand, if the network is asynchronous, then from the properties of ΠBeaver in the
asynchronous network, all honest parties eventually compute their output in all the d instances
of ΠBeaver. Hence the parties eventually compute the ts-sharings {[z(i)]}i=d+2,...,2d+1 and hence
eventually compute their output in the protocol.

Next consider an arbitrary i ∈ {1, . . . , d + 1}. Since (x(i),y(i), z(i)) = (x(i), y(i), z(i)), it follows
that (x(i),y(i), z(i)) will be a multiplication-triple if and only if (x(i), y(i), z(i)) is a multiplication-
triple. Now consider an arbitrary i ∈ {d + 2, . . . , 2d + 1}. Since [z(i)] is the output of the instance
ΠBeaver(([x

(i)], [y(i)]), ([x(i)], [y(i)], [z(i)])), it follows from the properties of ΠBeaver that z
(i) = x(i)·y(i)

holds, if and only if (x(i), y(i), z(i)) is a multiplication-triple.
From the protocol steps, it is easy to see that the polynomials X(·) and Y(·) defined in the proto-

cols are d-degree polynomials, as they are defined through d+1 distinct points {(αi,x
(i))}i=1,...,d+1

and {(αi,y
(i))}i=1,...,d+1 respectively. On the other hand, Z(·) is a 2d-degree polynomial, as it is

defined through the 2d+ 1 distinct points {(αi, z
(i))}i=1,...,2d+1.

For any i ∈ {1, . . . , d+ 1}, if (x(i), y(i), z(i)) is random from the point of view of the adversary,
then (x(i),y(i), z(i)) is also random from the point of view of the adversary, since (x(i),y(i), z(i)) =
(x(i), y(i), z(i)). On the other hand for any i ∈ {d+ 2, . . . , 2d+ 1}, if (x(i), y(i), z(i)) is random from
the point of view of the adversary, then from the properties of ΠBeaver, it follows that no additional
information is learnt about (x(i),y(i), z(i)).

The communication complexity follows from the fact that there are d instances of ΠBeaver invoked
in the protocol.

6.3 best-of-both-worlds Triple-Sharing Protocol

We next present a triple-sharing protocol ΠTripSh, which allows a dealer D to verifiably ts-share L
multiplication-triples. If D is honest, then the triples remain random from the point of view of the
adversary and all honest parties output the shares of D’s multiplication-triples. On the other hand,
if D is corrupt, then the protocol need not produce any output, even in a synchronous network, as
a corrupt D may not invoke the protocol at the first place and the parties will not be aware of the
network type. However, the “verifiability” of ΠTripSh guarantees that if the honest parties compute
any output corresponding to a corrupt D, then D has indeed ts-shared multiplication-triples.

For simplicity, we present the protocol assuming D has a single multiplication-triple to share
and the protocol can be easily generalized for any L > 1. The idea behind the protocol is as follows:
D picks a random multiplication-triple and ts-shares it by invoking an instance of ΠVSS. To prove
that it has indeed shared a multiplication-triple, D actually ts-shares 2ts+1 random multiplication-
triples. The parties then run an instance of ΠTripTrans and “transform” these shared triples into “co-
related” shared triples, constituting distinct points on the triplet of polynomials (X(·),Y(·),Z(·)),
which are guaranteed to exist during ΠTripTrans. Then, to check if all the triples shared by D are
multiplication-triples, it is sufficient to verify if Z(·) = X(·) · Y(·) holds. To verify the latter, we
incorporate a mechanism which enables the parties to publicly learn if Z(αj) = X(αj) · Y(αj) holds
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under Pj ’s “supervision” in such a way that if Pj is honest, then the supervised verification of
the triplet (X(αj),Y(αj),Z(αj)) is “successful” if and only if the triplet is a multiplication-triple.
Moreover, the privacy of the triplet will be maintained during the supervised verification for an
honest D and Pj . The goal is to check whether there are at least 2ts + 1 successful supervised-
verifications, performed under the supervision of honest supervisors Pj , which will then confirm that
indeed Z(·) = X(·) · Y(·) holds. This is because Z(·) is a 2ts-degree polynomial. Upon confirming
that Z(·) = X(·) · Y(·) holds, the parties compute a “new” point on the polynomials (in a shared
fashion), which is taken as the output triple shared on behalf of D. We stress that the output triple
is well defined and will be “known” to D, as it is deterministically determined from the triples
shared by D. If D is honest, then the privacy of the output triple is guaranteed from the fact
that during the supervised verification, an adversary may learn at most ts distinct points on the
polynomials X(·),Y(·) and Z(·), corresponding to the corrupt supervisors.

The supervised verification of the (shared) points on the polynomials is performed as follows:
the parties invoke an instance of ΠACS, where the input for each party is a triplet of random ts-degree
polynomials, whose constant terms constitute a random multiplication-triple, called verification-
triple. The instance of ΠACS is invoked in parallel with D’s invocation of ΠVSS. Through the instance
of ΠACS, the parties agree upon a set W of at least n − ts supervisors, whose shared verification-
triples are used to verify the points on the polynomials X(·),Y(·) and Z(·). Namely, if Pj ∈ W has
shared the verification-triple (u(j), v(j), w(j)), then in the supervised verification under Pj , parties
publicly reconstruct and check if Z(αj) − X(αj) · Y(αj) = 0 holds. For this, the parties recompute
X(αj) ·Y(αj) in a shared fashion using Beaver’s method, by deploying the shared verification-triple
(u(j), v(j), w(j)). If Z(αj)−X(αj) ·Y(αj) does not turn out to be 0 (implying that either D is corrupt
or Pj ’s verification-triple is not a multiplication-triple), then the parties publicly reconstruct and
check if (X(αj),Y(αj),Z(αj)) is a multiplication-triple and discard D if the triple does not turn out
to be a multiplication-triple.

An honest D will never be discarded. Moreover, in a synchronous network, all honest parties
Pj are guaranteed to be present in W (follows from the ts-correctness of ΠACS in the synchronous
network) and hence, there will be at least n − ts > 2ts + 1 honest supervisors in W. On the
other hand, even in an asynchronous network, there will be at least n − ts − ta > 2ts honest
supervisors in W. Hence if a corrupt D is not discarded, then it is guaranteed that D has shared
multiplication-triples.

– Phase I — Sharing Triples and Verification-Triples:
– D selects 2ts + 1 random multiplication-triples {(x(j), y(j), z(j))}j=1,...,2ts+1. It then selects

random ts-degree polynomials {fx(j)(·), fy(j)(·), fz(j) (·)}j=1,...,2ts+1, such that fx(j)(0) = x(j),

fy(j)(0) = y(j) and fz(j)(0) = z(j). D then invokes an instance of ΠVSS with input
{fx(j)(·), fy(j)(·), fz(j) (·)}j=1,...,2ts+1 and the parties in P participate in this instance.

– In parallel, each party Pi ∈ P randomly selects a verification multiplication-triple (u(i), v(i),
w(i)) and random ts-degree polynomials fu(i)(·), fv(i)(·) and fw(i)(·) where fu(i)(0) = u(i),
fv(i)(0) = v(i) and fw(i)(0) = w(i). With these polynomials as inputs, Pi participates in an
instance of ΠACS and waits for time TACS. Let W be the set of parties, computed as the
output during the instance of ΠACS, where |W| ≥ n− ts.

– Phase II — Transforming D’s Triples:
– Upon computing an output in the instance of ΠVSS invoked by D, the parties participate in an

instance ΠTripTrans(ts, {[x(j)], [y(j)], [z(j)]}j=1,...,2ts+1) of ΠTripTrans.
– Let {[x(j)], [y(j)], [z(j)]}j=1,...,2ts+1) be the set of ts-shared triples computed during ΠTripTrans.

And let X(·) and Y(·) be the ts-degree polynomials and Z(·) be the 2ts-degree polynomial,
which are guaranteed to exist during the instance of ΠTripTrans, such that X(αj) = x(j),

Protocol ΠTripSh
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Y(αj) = y(j) and Z(αj) = z(j), for j = 1, . . . , 2ts + 1.
– For j = 2ts + 2, . . . , n, the parties do the following.

– Locally compute [x(j)] = [X(αj)] from {[x(j)]}j=1,...,ts+1, by using appropriate Lagrange’s
linear functions.

– Locally compute [y(j)] = [Y(αj)] from {[y(j)]}j=1,...,ts+1, by using appropriate Lagrange’s
linear functions.

– Locally compute [z(j)] = [Z(αj)] from {[z(j)]}j=1,...,2ts+1 respectively, by using appropriate
Lagrange’s linear functions.

– Phase III — Verifying Transformed Triples: The parties do the following.
– Phase III(a) — Recomputing the Products:

– Corresponding to each Pj ∈ W , participate in the instance ΠBeaver(([x
(j)], [y(j)]), ([u(j)],

[v(j)], [w(j)])) of ΠBeaver to compute [z(j)].
– Phase III(b) — Computing and Publicly Reconstructing the Differences:

– Corresponding to every Pj ∈ W , the parties locally compute [γ(j)] = [z(j)]− [z(j)].
– Corresponding to every Pj ∈ W , the parties publicly reconstruct γ(j), by exchanging their

respective shares of γ(j), followed by applying the OEC(ts, ts,P) procedure on the
received shares.

– Corresponding to Pj ∈ W , party Pi ∈ P upon reconstructing γ(j), sets a Boolean variable

flag
(j)
i to 0 if γ(j) = 0, else it sets flag

(j)
i to 1.

– Phase III(c) — Checking the Suspected Triples: Each Pi ∈ P does the following.

– For every Pj ∈ W such that flag
(j)
i = 1, send the shares corresponding to [x(j)], [y(j)] and

[z(j)] to every party.

– For every Pj ∈ W such that flag
(j)
i = 1, apply the OEC(ts, ts,P) procedure on the received

shares corresponding to [x(j)], [y(j)] and [z(j)], to reconstruct the triple (x(j),y(j), z(j)).

– For every Pj ∈ W such that flag
(j)
i = 1, reset flag

(j)
i to 0 if (x(j),y(j), z(j)) is a

multiplication-triple.

– If flag
(j)
i = 0, corresponding to every Pj ∈ W , then set flagi = 0, else set flagi = 1.

– Output Computation: Each party Pi ∈ P does the following.
– If flagi = 0 then output shares corresponding to ts-shared triple ([a], [b], [c]) on behalf of D,

where a = X(β), b = Y(β) and c = Z(β) and where [a], [b] and [c] are locally computed from
{[x(j)]}j=1,...,ts+1, {[y(j)]}j=1,...,ts+1 and {[z(j)]}j=1,...,2ts+1 respectively by using appropriate
Lagrange’s linear functions. Here β is a non-zero element from F, distinct from α1, . . . , α2ts+1.

– If flagi = 1 then output default-shares (namely all shares being 0) corresponding to ts-shared
triple ([0], [0], [0]) on behalf of D.

Figure 8: A protocol for verifiably sharing a single multiplication triple.

We next prove the properties of the protocol of ΠTripSh.

Lemma 6.3. Protocol ΠTripSh achieves the following properties.
– If D is honest, then the following hold:

– ts-Correctness: If the network is synchronous, then after time TTripSh = TACS + 4∆, the
honest parties output a ts-shared multiplication-triple on the behalf of D.

– ta-Correctness: If the network is asynchronous, then almost-surely, the (honest) parties
eventually output a ts-shared multiplication-triple on the behalf of D.

– ts-Privacy: Irrespective of the network type, the view of the adversary remains independent
of the output multiplication-triple, shared on the behalf of D.

– If D is corrupt, then either no honest party computes any output or depending upon the network
type, the following hold
– ts-Strong Commitment: If the network is synchronous, then the (honest) parties eventually

output a ts-shared multiplication-triple on behalf of D. Moreover, if some honest party
computes its output shares at time T , then by time T+2∆, all honest parties will compute
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their respective output shares.
– ta-Strong Commitment: The (honest) parties eventually output a ts-shared multiplication-

triple on the behalf of D.
– The protocol incurs a communication of O(n6 log |F|) bits from the honest parties and invokes

O(n2) instances of ΠBA.

Proof. We first consider an honest D and prove the corresponding properties. We first consider
a synchronous network with up to ts corruptions. At time TVSS, the multiplication-triples {(x(j),
y(j), z(j))}j=1,...,2ts+1 will be ts-shared. This follows from the ts-correctness property of ΠVSS in
the synchronous network. Moreover, these triples will be random from the point of view of the
adversary, which follows from the ts-privacy property of ΠVSS. Since the instance of ΠACS is
invoked in parallel with the instance of ΠVSS invoked by D, at time TACS, all honest parties will
have a common subset W from the instance of ΠACS, with every honest Pj being present in the
W. This follows from the properties of ΠACS in the synchronous network. At time TACS + ∆, the
multiplication-triples shared by D will be transformed and parties will have ts-shared multiplication-
triples {(x(j),y(j), z(j))}j=1,...,2ts+1 and there will exist ts-degree polynomials X(·),Y(·) and 2ts-
degree polynomial Z(·) where Z(·) = X(·) ·Y(·) holds. This follows from the properties of ΠTripTrans

in the synchronous network.
Next, corresponding to every honest Pj ∈ W, the value z

(j) will be the same as x(j) · y(j),
which follows from the properties of ΠBeaver and the fact that the corresponding verification-triple
(u(j), v(j), w(j)) will be a multiplication-triple. Hence, γ(j) = z(j)− z

(j) will be 0 and so each honest

Pi will set flag
(j)
i to 0, without suspecting and reconstructing the triple (x(j),y(j), z(j)). Moreover,

in this case, no additional information about (x(j),y(j), z(j)) is revealed, which follows from the
properties of ΠBeaver and the fact that the verification-triple (u(j), v(j), w(j)) remains random from
the point of view of the adversary. On the other hand, if Pj ∈ W is corrupt, then γ(j) may not be

0. However, in this case each honest Pi will reset flag
(j)
i to 0 after reconstructing the corresponding

suspected-triple (x(j),y(j), z(j)), since it will be a multiplication-triple. The process of computing
z
(j) and the difference γ(j) will take 2∆ time and additionally ∆ time might be required to publicly
reconstruct suspected-triples corresponding to corrupt Pj ∈ W. Hence, at time TACS + 4∆, each
honest Pi sets flagi = 1 and hence, the honest parties output ts-shared triple (a, b, c). Moreover,
the triple will be a multiplication-triple, since (a, b, c) is the same as (X(β),Y(β),Z(β)). Since at
most ts triples (x(j),y(j), z(j)) may be publicly reconstructed corresponding to the corrupt parties
Pj ∈ W, it follows that adversary will learn at most ts distinct points on the X(·),Y(·) and Z(·)
polynomials. This further implies that (X(β),Y(β),Z(β)) will be random from the point of view of
the adversary, since X(·),Y(·) are ts-degree polynomials and Z(·) is a 2ts-degree polynomial. This
completes the proof of the ts-correctness in the synchronous network, as well as the proof of the
ts-privacy property.

If D is honest and the network is asynchronous with up to ta corruptions, then the proof of the
ta-correctness property is similar to the above proof, except that now we now use the ta-correctness
property of ΠVSS and the properties of ΠACS, ΠBeaver in the asynchronous network. Moreover, the
privacy property holds since adversary now corrupt ta < ts parties.

We next consider a corrupt D and prove the strong-commitment properties. We first consider
a synchronous network with up to ts corruptions. Note that irrespective of whether D shares any
triples through instance of ΠVSS or not, all honest parties will output a set W at time TACS during
the instance of ΠACS, with every honest Pj being present in the W. This follows from the properties
of ΠACS in the synchronous network. If no honest party computes any output in the protocol, then
strong-commitment holds trivially. So consider the case when some honest party computes an
output. This implies that at least one honest party, say Ph, must have computed an output during
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the instance of ΠVSS invoked by D, as otherwise no honest party computes any output in the
protocol. Let T be the time at which Ph has the output for the instance of ΠVSS invoked by D.
Note that T ≥ TVSS and T could be greater than TACS, as a corrupt D may delay the start of the
instances of ΠVSS. From the ts-strong commitment property of ΠVSS in the synchronous network, it
then follows that by time T + 2∆, all honest parties compute their output in the instance of ΠVSS

invoked by D. Hence at time T + 2∆, there are 2ts + 1 triples which are ts-shared by D.
If T ≤ TACS − 2∆, then at time TACS, all honest parties will have their respective shares

corresponding to the ts-shared triples of D, as well as the set W and the shares corresponding
to the verification-triples, shared by the parties in W. The instance of ΠTripTrans will produce its
output at time TACS +∆. The follow up instances of ΠBeaver to recompute the products will take
∆ time, followed by ∆ time for publicly reconstructing the difference values γ(j). Additionally,
the parties may take ∆ time to publicly reconstruct any suspected triples. Hence in this case, all
honest parties will have their respective output shares at time TACS + 4∆.

On the other hand, if T > TACS − 2∆, then each honest party computes its output during the
instance of ΠTripTrans, either at time T +∆ or at time T + 3∆. Then, each honest party computes
its output from the instances of ΠBeaver, either at time T +2∆ or at time T +4∆. This implies that
the difference values γ(j) are available with the honest parties, either at time T + 3∆ or T + 5∆.
Consequently, the suspected triples (if any) will be available with the honest parties, either at time
T + 4∆ or T + 6∆. Hence each honest party computes its output share in the protocol either at
time T + 4∆ or T + 6∆. Notice that in this case there might be a difference of at most 2∆ time
within which the honest parties compute their output in the protocol, due to a possible difference
of 2∆ time in getting the output in the instances of ΠVSS invoked by the corrupt D.

If the triples shared by D during the instances of ΠVSS are all multiplication-triples, then similar
to the proof of the correctness property for an honest D, it follows that the honest parties will
output a ts-shared multiplication-triple on behalf of D. So consider the case when all the triples
shared by D are not multiplication-triples. This implies that Z(·) 6= X(·) · Y(·), where X(·),Y(·) are
the ts-degree polynomials and Z(·) is the 2ts-degree polynomial, which are guaranteed to exist from
the protocol ΠTripTrans. Let Pj be an honest party, such that Z(αj) 6= X(αj) · Y(αj). This further
implies that the transformed triple (x(j),y(j), z(j)) is not a multiplication-triple. Such a Pj is bound
to exist. This is because there are at least 2ts + 1 honest parties Pj . And if Z(αj) = X(αj) · Y(αj)
holds corresponding to every honest Pj, then it implies that Z(·) = X(·) · Y(·) holds (due to the
degrees of the respective polynomials), which is a contradiction.

We next show that each honest Pi will set flag
(j)
i = 1 and hence flagi = 1. For this, we

note that Pj ∈ W. This follows from the properties of ΠACS in the synchronous network, which
guarantees that all honest parties (and not just Pj) will be present in W. Since the verification-
triple (u(j), v(j), w(j)) shared by Pj will be a multiplication-triple, from the properties of ΠBeaver

in the synchronous network, it follows that z
(j) = x(j) · y(j) holds. But since z(j) 6= x(j) · y(j), it

follows that γ(j) = z(j)−z
(j) 6= 0. Consequently, the parties will publicly reconstruct the suspected-

triple (x(j),y(j), z(j)) and find that it is not a multiplication-triple. Hence each honest Pi will set

flag
(j)
i = 1 and hence flagi = 1. So the parties output a default ts-sharing of the multiplication-triple

(0, 0, 0) on behalf of D.
The proof for the ta-strong-commitment property in the asynchronous network is similar to

the above proof, except that we now use the ta-strong-Commitment property of ΠVSS and the
properties of ΠACS and ΠBeaver in the asynchronous network. Moreover, there will be at least
n− ts − ta ≥ 2ts + 1 honest parties in W, who will lead the verification of at least 2ts + 1 distinct
points on the polynomials X(·),Y(·) and Z(·), through their respective verification-triples.

The communication complexity follows from communication complexity of ΠACS,ΠVSS,ΠTripTrans
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and ΠBeaver.

We next discuss the modifications needed in the protocol ΠTripSh to handle L multiplication-
triples.

Protocol ΠTripSh for Sharing L Multiplication-Triples: Protocol ΠTripSh can be easily gen-
eralized so that L multiplication-triples are shared on behalf of D. Namely, D now has to share
L · (2ts + 1) random multiplication-triples through ΠVSS, while each party Pj will need to select L
verification-triples during the instance of ΠACS. Moreover, there will be L instances of ΠTripTrans

to transform D’s shared triples, resulting in L triplets of shared polynomials (X(·),Y(·),Z(·)), each
of which is independently verified by performing supervised verification. To avoid repetition, we
do not provide the formal details. The modified ΠTripSh protocol will incur a communication of
O(n4L log |F|+ n6 log |F|) bits from the honest parties and invokes O(n2) instances of ΠBA.

6.4 best-of-both-worlds Triple-Extraction Protocol

Protocol ΠTripExt (Fig 9) takes as input a publicly-known subset CS of 2d+ 1 parties, where d ≥ ts
and where it will be ensured that each party Pj ∈ CS has ts-shared a multiplication-triple. It will
also be ensured that if Pj is honest, then the multiplication-triple is random from the point of view
of the adversary. The protocol outputs d+1− ts number of ts-shared multiplication-triples, which
will be random from the point of view of the adversary. The high level idea of the protocol is very
simple. The parties first invoke an instance of ΠTripTrans to “transform” the input triples into a set of
co-related triples. Since all the input triples are multiplication-triples, the output triples will also be
multiplication-triples. Let (X(·),Y(·),Z(·)) be the triplet of shared polynomials which is guaranteed
to exist after ΠTripTrans. From the properties of ΠTripTrans, it follows that adversary will know at most
ts distinct points on these polynomials and hence at least d+1− ts points on these polynomials are
random for the adversary. Hence, the parties output d+ 1− ts “new” points on these polynomials
(in a ts-shared fashion), which are guaranteed to be random from the point of view of the adversary.
This requires the parties to perform only local computation.

– Transforming the Input Multiplication-Triples — The parties jointly do the following:
– Participate in an instance ΠTripTrans(d, {[x(j)], [y(j)], [z(j)]}Pj∈CS) of ΠTripTrans.

– Let {[x(j)], [y(j)], [z(j)]}Pj∈CS be the shared multiplication-triples obtained from ΠTripTrans.
Moreover, let X(·),Y(·) be the d-degree polynomials and Z(·) be the 2d-degree
polynomial where Z(·) = X(·) · Y(·) and where X(αj) = x(j), Y(αj) = y(j) and
Z(αj) = z(j) holds corresponding to every Pj ∈ CS.

– For j = 1, . . . , d+ 1− ts, locally compute [a(j)], [b(j)] and [c(j)] from {[x(j)]}j=1,...,d+1,
[{y(j)]}j=1,...,d+1 and {[z(j)]}j=1,...,2d+1 respectively by applying the corresponding
Lagrange’s linear function. Here a(j) = X(βj), b

(j) = Y(βj) and c(j) = Z(βj), where
β1, . . . , βd+1−ts are distinct, non-zero elements from F, different from α1, . . . , αn.

– Output {[a(j)], [b(j)], [c(j)]}j=1,...,d+1−ts .

Protocol ΠTripExt(CS, {[x(j)], [y(j)], [z(j)]}Pj∈CS)

Figure 9: Protocol for extracting d + 1 − ts random ts-shared random multiplication-triples from a set of
2d+ 1 ts-shared multiplication triples, where d ≥ ts.

Lemma 6.4. Let CS be a set of 2d + 1 parties where d ≥ ts, such that each party Pj ∈ CS
has a multiplication-triple (x(j), y(j), z(j)) which is ts-shared. Moreover, if Pj is honest, then the
multiplication-triple is random from the point of view of the adversary. Then protocol ΠTripExt

achieves the following properties.
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– ts-Correctness: If the network is synchronous, then after time ∆, the parties output ts-shared
multiplication-triples {a(j),b(j), c(j)}j=1,...,d+1−ts .

– ta-Correctness: If the network is asynchronous, then the parties eventually output ts-shared
multiplication-triples {a(j),b(j), c(j)}j=1,...,d+1−ts .

– ts-Privacy: Irrespective of the network type, the triples {a(j),b(j), c(j)}j=1,...,d+1−ts will be
random from the point of view of the adversary.

– The protocol incurs a communication of O(dn2 log |F|) bits from the honest parties.

Proof. If the network is synchronous, then from the properties of ΠTripTrans in the synchronous net-
work, it follows that after time ∆, the honest parties have ts-shared triples {x(j),y(j), z(j)}Pj∈CS .

Moreover, all these triples will be multiplication-triples, since all the input triples {x(j), y(j), z(j)}Pj∈CS

are guaranteed to be multiplication-triples. This further implies that the condition Z(·) = X(·) ·Y(·)
holds, where X(·),Y(·) and Z(·) are the d, d and 2d-degree polynomials respectively, which are guar-
anteed to exist from ΠTripTrans, such that X(αj) = x(j), Y(αj) = y(j) and Z(αj) = z(j) holds for
every j, such that Pj ∈ CS. It now follows that the honest parties output the ts-shared triples
{(a(j),b(j), c(j))}j=1,...,d+1−ts after time ∆, where X(βj) = a(j), Y(βj) = b(j) and Z(βj) = c(j).
Moreover, the triples will be multiplication-triples, because Z(·) = X(·) · Y(·) holds.

If the network is asynchronous, then the proof of ta-correctness property will be similar as
above, except that we now depend upon the properties of ΠTripTrans in the asynchronous network.

For privacy, we note that there will be at most ts corrupt parties in CS and hence adversary
will know at most ts multiplication-triples in the set {x(j),y(j), z(j)}Pj∈CS , which follows from the
properties of ΠTripTrans. This implies that adversary will know at most ts distinct points on the
polynomials X(·),Y(·) and Z(·), leaving d + 1 − ts degrees of freedom on the these polynomials.
This further implies that the multiplication-triples {(X(βj),Y(βj),Z(βj))}j=1,...,d+1−ts , which are
the same as {a(j),b(j), c(j)}j=1,...,d+1−ts , will be random from the point of view of the adversary.
Namely, there will be a one-to-one correspondence between the d+ 1− ts multiplication-triples in
the set {x(j),y(j), z(j)}Pj∈CS which are unknown to the adversary and the output multiplication-

triples {a(j),b(j), c(j)}j=1,...,d+1−ts . Hence adversary’s view will be consistent with every candidate
value of the output d+ 1− ts multiplication-triples.

The communication complexity simply follows from the fact that the protocol requires one
instance of ΠTripTrans.

6.5 The best-of-both-worlds Preprocessing Phase Protocol

We finally present our best-of-both-worlds preprocessing phase protocol ΠPreProcessing , which gen-
erates cM number of ts-shared multiplication-triples, which will be random from the point of view
of the adversary. The protocol is formally presented in Fig 10. In the protocol, each party acts
as a dealer and invokes an instance of ΠTripSh, so that cM

(n−ts−1

2
+1−ts)

random multiplication-triples

are shared on its behalf. As corrupt dealers may not invoke their instances of ΠTripSh (even in
a synchronous network), the parties agree on a common subset CS of n − ts parties, who have
shared multiplication-triples, by executing instances of ΠBA (similar to the protocol ΠACS). The
multiplication-triples shared on the behalf of up to ts corrupt triple-providers in CS will be known to
adversary, while the multiplication-triples shared on the behalf of the honest triple-providers in CS
will be random for the adversary. Since the exact identity of the honest triple-providers in CS will
not be known, the parties execute cM

(n−ts−1

2
+1−ts)

instances of ΠTripExt to securely extract cM shared

multiplication-triples, which will be random for the adversary. In the protocol, for simplicity and
without loss of generality, we assume that n− ts is of the form 2d+1.
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Let L
def
= cM

(n−ts−1
2 +1−ts)

.

– Phase 1 — Sharing Random Multiplication-Triples: Each Pi ∈ P does the following.

– Act as a dealer D and invoke an instance Π
(i)
TripSh of ΠTripSh, so that L random multiplication-

triples are shared on Pi’s behalf.

– For j = 1, . . . , n, participate in the instance Π
(j)
TripSh invoked by Pj and wait for time TTripSh.

– Initialize a set Ci = ∅ and include Pj in Ci, if an output is obtained from Π
(j)
TripSh.

– Phase II — Agreement on a Common Subset of Triple-Providers: Each Pi ∈ P does the
following.

– For j = 1, . . . , n, participate in an instance of Π
(j)
BA of ΠBA with input 1, if Pj ∈ Ci.

– Once n − ts instances of ΠBA have produced an output 1, then participate with input 0 in all

the ΠBA instances Π
(j)
BA, such that Pj 6∈ Ci.

– Once a binary output is computed in all the n instances of ΠBA, set CS to be the set of first

n− ts parties Pj , such that 1 is computed as the output in the instance Π
(j)
BA.

– Phase III — Extracting Random Multiplication-Triples: The parties do the following.
– For every Pj ∈ CS, let {[x(j,ℓ)], [y(j,ℓ)], [z(j,ℓ)]}ℓ=1,...,L be the ts-shared multiplication-triples,

shared on Pj ’s behalf, during the instance Π
(j)
TripSh.

– For ℓ = 1, . . . , L, the parties participate in an instance ΠTripExt(CS, {[x
(j,ℓ)], [y(j,ℓ)], [z(j,ℓ)]}Pj∈CS)

of ΠTripExt and compute the output {[a(j,ℓ)], [b(j,ℓ)], [c(j,ℓ)]}
j=1,...,n−ts−1

2 +1−ts
.

– Output the shared triples {[a(j,ℓ)], [b(j,ℓ)], [c(j,ℓ)]}j=1,...,n−ts−1
2 +1−ts,ℓ=1,...,L.

Protocol ΠPreProcessing

Figure 10: The best-of-both-worlds preprocessing phase protocol for generating shared random
multiplication-triples.

Theorem 6.5. Protocol ΠPreProcessing achieves the following properties.
– In a synchronous network, by time TTripGen = TTripSh + 2TBA +∆, the honest parties output a

ts-sharing of cM multiplication-triples.
– In an asynchronous network, almost-surely, the honest parties eventually output a ts-sharing

of cM multiplication-triples.
– Irrespective of the network type, the view of the adversary remains independent of the output

multiplication-triples.
– The protocol incurs a communication of O( n5

ta
2
+1

cM log |F| + n7 log |F|) bits from the honest

parties and invokes O(n3) instances of ΠBA.

Proof. Let the network be synchronous with up to ts corruptions. Let H be the set of parties,
where |H| ≥ n − ts. Corresponding to each Pj ∈ H, at time TTripSh, L multiplication-triples

{x(j,ℓ), y(j,ℓ), z(j,ℓ)}ℓ=1,...,L will be ts-shared on the behalf of Pj during the instance Π
(j)
TripSh, which

follows from the ts-correctness of ΠTripSh in the synchronous network. Consequently, the set Ci will
be of size at least n− ts for every honest Pi. After time TTripSh, corresponding to each Pj ∈ H, each

honest Pi participates with input 1 in the instance Π
(j)
BA. It then follows from the ts-validity and

ts-guaranteed liveness of ΠBA in the synchronous network that corresponding to every Pj ∈ H, every

honest Pi computes the output 1 during the instance Π
(j)
BA, at time TTripSh + TBA. Consequently,

after time TTripSh +TBA, every honest party will start participating in the remaining ΠBA instances
for which no input has been provided yet (if there are any). And from the ts-guaranteed liveness
and ts-consistency of ΠBA in the synchronous network, all honest parties will compute a common
output in these ΠBA instances, at time TTripSh +2TBA. Consequently, by time TTripSh +2TBA, every
honest party has a common CS of size n− ts.
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Consider an arbitrary party Pj ∈ CS. If Pj is honest, then as shown above, L multiplication-

triples will be shared on behalf of Pj at time TTripSh during the instance Π
(j)
TripSh. Next consider a

corrupt Pj ∈ CS. Since Pj ∈ CS , it follows that the honest parties computed the output 1 during

the instance Π
(j)
BA. This implies that at least one honest Pi must have computed some output during

the instance Π
(j)
TripSh, within time TTripSh + TBA (implying that Pj ∈ Ci) and participated with input

1 in the instance Π
(j)
BA. This is because if Pj does not belong to the Ci set of any honest Pi at time

TTripSh + TBA, then it implies that all honest parties participate with input 0 in the instance Π
(j)
BA

after time TTripSh + TBA. And then from the ts-validity of ΠBA in the synchronous network, every

honest party would compute the output 0 in the instance Π
(j)
BA and hence Pj will not be present in

CS, which is a contradiction. Now if Pi has computed some output in Π
(j)
TripSh by time TTripSh+TBA,

then from the ts-strong-commitment of ΠTripSh in the synchronous network, it follows that there
exist L multiplication-triples, say {(x(j,ℓ), y(j,ℓ), z(j,ℓ))}ℓ=1,...,L, which will be ts-shared among the
parties on behalf of Pj by time (TTripSh + TBA + 2∆) < (TTripSh + 2TBA); the latter follows because
2∆ < TBA.

From the above discussion, it follows that there will be L multiplication-triples, which will be ts-
shared on behalf of each Pj ∈ CS by time TTripSh+2TBA. Hence each instance of ΠTripExt will output
n−ts−1

2 + 1 − ts number of ts-shared multiplication-triples by time TTripGen = TTripSh + 2TBA + ∆.
This follows from the ts-correctness property of ΠTripExt in the synchronous network by substituting
|CS| = n− ts and d = n−ts−1

2 in Lemma 6.4. Since there are L = cM
(n−ts−1

2
+1−ts)

instances of ΠTripExt,

it follows that at time TTripGen, the parties have L ·
(

n−ts−1
2 + 1 − ts

)

= cM number of ts-shared

multiplication-triples. This completes the proof of the ts-correctness property in the synchronous
network.

The proof of the ta-correctness property in the asynchronous network is similar as above, ex-
cept that we now use the ta-correctness and ta-strong-commitment properties of ΠTripSh in the
asynchronous network, the ta-correctness property of ΠTripExt in the asynchronous network and the
properties of ΠBA in the asynchronous network.

From the ts-privacy property of ΠTripSh, it follows that the multiplication-triples which are
ts-shared on behalf of the honest parties Pj ∈ CS will be random from the point of view of the
adversary under the presence of up to ts corrupt parties, irrespective of the network type. It then
follows from the ts-privacy property of ΠTripExt that the ts-shared multiplication-triples generated
from each instance of ΠTripExt will be random from the point of view of the adversary. This proves
the ts-privacy property.

The communication complexity follows from the communication complexity of ΠTripSh and
ΠTripExt, and from the fact that n−ts−1

2 + 1− ts ≥
ta
2 + 1.

7 The best-of-both-worlds Circuit-Evaluation Protocol

The best-of-both-worlds protocol ΠCirEval for evaluating cir has four phases. In the first phase,
the parties generate ts-sharing of cM random multiplication-triples through ΠPreProcessing . The
parties also invoke an instance of ΠACS to generate ts-sharing of their respective inputs for f and
agree on a common subset CS of at least n − ts parties, whose inputs for f are ts-shared, while
the remaining inputs are set to 0. In a synchronous network, all honest parties will be in CS, thus
ensuring that the inputs of all honest parties are considered for the circuit-evaluation. In the second
phase, each gate is evaluated in a ts-shared fashion after which the parties publicly reconstruct the
secret-shared output in the third phase. The fourth phase is the termination phase, where the
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parties check whether “sufficiently many” parties have obtained the same output, in which case the
parties “safely” take that output and terminate the protocol (and all the underlying sub-protocols).
Protocol ΠCirEval is formally presented in Fig 11.

– Preprocessing and Input-Sharing — The parties do the following:
– Each Pi ∈ P on having the input x(i) for f , selects a random ts-degree polynomial fx(i)(·)

where fx(i)(0) = x(i) and participates in an instance of ΠACS with input fx(i)(·). Let CS be
the common subset of parties, computed as an output during the instance of ΠACS, where
|CS| ≥ n− ts. Corresponding to every Pj 6∈ CS, set x(j) = 0 and set [x(j)] to a default
ts-sharing of 0.

– In parallel, participate in an instance of ΠPreProcessing. Let {[a(j)], [b(j)], [c(j)]}j=1,...,cM be the
ts-shared multiplication-triples, computed as an output during the instance of ΠPreProcessing.

– Circuit Evaluation — Let G1, . . . , Gm be a publicly-known topological ordering of the gates of
cir. For k = 1, . . . ,m, the parties do the following for gate Gk:
– If Gk is an addition gate: the parties locally compute [w] = [u] + [v], where u and v are

gate-inputs and w is the gate-output.
– If Gk is a multiplication-with-a-constant gate with constant c: the parties locally compute

[v] = c · [u], where u is the gate-input and v is the gate-output.
– If Gk is an addition-with-a-constant gate with constant c: the parties locally compute

[v] = c+ [u], where u is the gate-input. and v is the gate-output.
– If Gk is a multiplication gate: Let Gk be the ℓth multiplication gate in cir where ℓ ∈ {1, . . . , cM}

and let ([a(ℓ)], [b(ℓ)], [c(ℓ)]) be the ℓth shared multiplication-triple, generated from ΠPreProcessing .
Moreover, let [u] and [v] be the shared gate-inputs of Gk. Then the parties participate in an
instance ΠBeaver(([u], [v]), ([a

(ℓ)], [b(ℓ)], [c(ℓ)])) of ΠBeaver and compute the output [w].
– Output Computation — Let [y] be the ts-shared circuit-output. The parties exchange their

respective shares of y and apply the OEC(ts, ts,P) procedure on the received shares to reconstruct
y.

– Termination: Each Pi does the following.
– If y has been computed during output computation phase, then send (ready, y) message to all

the parties.
– If the message (ready, y) is received from at least ts + 1 distinct parties, then send (ready, y)

message to all the parties, if not sent earlier.
– If the message (ready, y) is received from at least 2ts + 1 distinct parties, then output y and

terminate all the sub-protocols.

Protocol ΠCirEval

Figure 11: A best-of-both-worlds perfectly-secure protocol for securely evaluating the arithmetic circuit cir.

We now prove the properties of the protocol ΠCirEval.

Theorem 7.1. Let ta < ts, such that 3ts + ta < n. Moreover, let f : Fn → F be a function
represented by an arithmetic circuit cir over F consisting of cM number of multiplication gates,
and whose multiplicative depth is DM . Moreover, let party Pi has input x(i) for f . Then, ΠCirEval

achieves the following.
– In a synchronous network, all honest parties output y = f(x(1), . . . , x(n)) at time (120n +

DM +6k−20) ·∆, where x(j) = 0 for every Pj 6∈ CS, such that |CS| ≥ n− ts and every honest
party Pj ∈ P is present in CS. Here k is the constant from Lemma 3.3, as determined by the
underlying (existing) perfectly-secure ABA protocol ΠABA.

– In an asynchronous network, almost-surely, the honest parties eventually output y = f(x(1),
. . . , x(n)) where x(j) = 0 for every Pj 6∈ CS and where |CS| ≥ n− ts.

– Irrespective of the network type, the view of the adversary will be independent of the inputs of
the honest parties in CS.
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– The protocol incurs a communication of O( n5

ta
2
+1

cM log |F| + n7 log |F|) bits from the honest

parties and invokes O(n3) instances of ΠBA.

Proof. Consider a synchronous network with up to ts corruptions. From the properties of ΠPreProcessing

in the synchronous network, at time TTripGen, the (honest) parties output cM number of ts-shared
multiplication-triples, during the instance of ΠPreProcessing. From the ts-correctness property of
ΠACS in the synchronous network, at time TACS, the (honest) parties output a common subset of
parties CS during the instance of ΠACS, where all honest parties will be present in CS and where
|CS| ≥ n − ts. Moreover, corresponding to every Pj ∈ CS, there will be some x(j) available with
Pj (which will be the same as Pj ’s input for f for an honest Pj), such that x(j) will be ts-shared.
As CS will be known publicly, the parties take a default ts-sharing of 0 on the behalf of the parties
Pj outside CS by considering x(j) = 0. Since TACS < TTripGen, it follows that at time TTripGen, the
parties will hold ts-sharing of cM multiplication-triples and ts-sharing of x(1), . . . , x(n).

The circuit-evaluation will take DM ·∆ time. This follows from the fact that linear gates are
evaluated locally, while all the independent multiplication gates can be evaluated in parallel by
running the corresponding instances of ΠBeaver in parallel, where each such instance requires ∆
time. From the properties of ΠBeaver in the synchronous network, the multiplication-gates will
be evaluated correctly and hence, during the output-computation phase, the parties will hold a
ts-sharing of y, where y = f(x(1), . . . , x(n)). From the properties of OEC, it will take ∆ time
for every party to reconstruct y. Hence, during the termination phase, all honest parties will
send a ready message for y. Since there are at least 2ts + 1 honest parties, every honest party
will then terminate with output y at time TTripGen + (DM + 2) · ∆. By substituting the values
of TTripGen, TTripSh, TACS, TVSS, TWPS, TBC, TBA, TSBA and TABA and by noting that all instances of
ΠBC in ΠCirEval are invoked with t = ts, we get that the parties terminate the protocol at time
(120n + DM + 6k − 20) · ∆, where k is the constant from Lemma 3.3, as determined by the
underlying (existing) perfectly-secure ABA protocol ΠABA.

The proof of the properties in an asynchronous network is similar as above, except that we now
use the security properties of the building blocks ΠPreProcessing ,ΠACS,ΠBeaver and ΠRecPriv in the
asynchronous network. During the termination phase, at most ta corrupt parties can send ready

messages for y′ 6= y and there will be at least 2ts + 1 honest parties, who eventually send ready

messages for y. Moreover, if some honest party Ph terminates with output y, then every honest
party eventually terminates the protocol with output y. This is because Ph must have received
ready messages for y from at least ts + 1 honest parties before termination, which are eventually
delivered to every honest party. Consequently, irrespective of which stage of the protocol an honest
party is in, every honest party (including Ph) eventually sends a ready message for y which are
eventually delivered. As there are at least 2ts + 1 honest parties, this implies that every honest
party eventually terminates with output y.

From the ts-privacy property of ΠACS, corresponding to every honest Pj ∈ CS, the input x(j) will
be random from the point of view of the adversary. Moreover, from the properties of ΠPreProcessing ,
the multiplication-triples generated through ΠPreProcessing will be random from the point of view
of the adversary. During the evaluation of linear gates, no interaction happens among the parties
and hence, no additional information about the inputs of the honest parties is revealed. The same
is true during the evaluation of multiplication-gates as well, which follows from the properties of
ΠBeaver.

The communication complexity of the protocol follows from the communication complexity of
ΠPreProcessing ,ΠACS and ΠBeaver.
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8 Conclusion and Open Problems

In this work, we presented the first best-of-both-worlds perfectly-secure MPC protocol, which re-
mains secure both in a synchronous as well as an asynchronous network. To design the protocol, we
presented a best-of-both-worlds perfectly-secure VSS protocol and a best-of-both-worlds perfectly-
secure BA protocol. Our work leaves the following interesting open problems.
– We could not prove whether the condition 3ts + ta < n is also necessary for any best-of-both-

worlds perfectly-secure MPC protocol and conjecture that it is indeed the case.
– Our main focus in this work is on the existence of best-of-both-worlds perfectly-secure MPC

protocols. Improving the efficiency of the protocol is left open for future work.

Acknowledgements: We would like to sincerely thank the anonymous reviewers of PODC 20222
for their excellent reviews on the preliminary version of this article, which got published as an
extended abstract.
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A Properties of the Existing (Asynchronous) Primitives

In this section we discuss the existing asynchronous primitives in detail.

A.1 Online Error-Correction (OEC)

The OEC procedure uses a Reed-Solomon (RS) error-correcting procedure RSDec(d, r,W), that
takes as input a set W of distinct points on a d-degree polynomial and tries to output a d-degree
polynomial, by correcting at most r incorrect points in W. Coding theory [42] says that RS-Dec
can correct up to r errors in W and correctly interpolate back the original polynomial if and only
if |W| ≥ d+ 2r + 1 holds. There are several efficient implementations of RSDec (for example, the
algorithm of Berlekamp-Welch).

Suppose P ′ ⊆ P contains at most t corrupt parties and let there exist some d-degree polynomial
q(·), with every (honest) Pi ∈ P ′ having a point q(αi). The goal is to make some designated party
PR reconstruct q(·). For this, each Pi ∈ P ′ sends q(αi) to PR, who then applies the OEC procedure
OEC as described in Fig 12.

Setting: There exists a subset of parties P ′ containing at most t corrupt parties, with each Pi ∈ P ′

having a point q(αi) on some d-degree polynomial q(·). Every (honest) party in P ′ is supposed to send
its respective point to PR, who is designated to reconstruct q(·).

– Output Computation — For r = 0, . . . , t, party PR does the following in iteration r:
– Let W denote the set of parties in P ′ from whom PR has received the points and let Ir denote

the points received from the parties in W , when W contains exactly d+ t+ 1 + r parties.
– Wait until W ≥ d+ t+ 1 + r. Execute RSDec(d, r, Ir) to get a d-degree polynomial, say qr(·).

If no polynomial is obtained, then skip the next step and proceed to the next iteration.
– If for at least d+ t+ 1 values vi ∈ Ir it holds that qr(αi) = vi, then output qr(·). Otherwise,

proceed to the next iteration.

Protocol OEC(d, t,P ′)

Figure 12: The online error-correction procedure.
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Lemma A.1 ([21]). Let P ′ ⊆ P contain at most t corrupt parties and let there exist some d-degree
polynomial q(·), with every (honest) Pi ∈ P ′ having a point q(αi). Then the OEC protocol prescribed
in Fig 12 achieves the following for an honest PR in the presence of up to t corruptions.

– If d < (|P ′| − 2t), then in a synchronous network, it takes at most ∆ time for PR to output
q(·). And in an asynchronous network, PR eventually outputs q(·).

– If PR obtains any output, then irrespective of the network type, the output polynomial is the
same as q(·).

– The protocol incurs a communication of O(n log |F|) bits from the honest parties.

Proof. The communication complexity follows from the fact that each party send its point to PR.
We next show that if PR outputs a d-degree polynomial, say qr(·), during the iteration number r,
then qr(·) is the same as q(·), irrespective of the network type. However, this easily follows from
the fact that qr(·) is consistent with d + t + 1 values from Ir, out of which at least d + 1 values
belong to the honest parties and thus, they lie on the polynomial q(·) as well. Furthermore, two
different d-degree polynomials can have at most d distinct points in common.

We next prove the first property, assuming an asynchronous network. We first argue that an
honest PR eventually obtains some output, provided d < (|P ′|−2t). Let adversary control r̂ parties
in P ′, where r̂ ≤ t. Assume that r̂1 corrupt parties send incorrect points to PR and the remaining
r̂2 = r̂ − r̂1 corrupt parties do not send anything at all. Then, consider iteration number t − r̂2.
Since r̂2 parties never send any value, PR will receive at least d+t+1+t− r̂2 distinct points on q(·),
of which r̂1 could be corrupted. Since |Id+t+1+t−r̂2 | ≥ d+ 2r̂1 + 1 holds, the algorithm RSDec will
correct r̂1 errors and will return the polynomial q(·) during the iteration number t− r̂2. Therefore
PR will obtain an output, latest after (t− r̂2) iterations.

The proof of the first property in the synchronous network is the same as above. In this case,
it should be noted that the points of all honest parties reach PR within ∆ time.

A.2 Bracha’s Acast Protocol

Bracha’s Acast protocol [20] tolerating t < n/3 corruptions is presented in Fig 13.

1. If Pi = S, then on input m, send (init, S,m) to all the parties.
2. Upon receiving the message (init, S,m) from S, send (echo, S,m) to all the parties. Do not execute

this step, more than once.
3. Upon receiving (echo, S,m⋆) from n− t parties, send (ready, S,m⋆) to all the parties.
4. Upon receiving (ready, S,m⋆) from t+ 1 parties, send (ready, S,m⋆) to all the parties.
5. Upon receiving (ready, S,m⋆) from n− t parties, output m⋆.

Protocol ΠACast

Figure 13: Bracha’s Acast protocol. The above code is executed by every Pi ∈ P including the sender S.

We now prove the properties of the protocol ΠACast.

Lemma 2.4. Bracha’s Acast protocol ΠACast achieves the following in the presence of up to t < n/3
corruptions, where S has an input m ∈ {0, 1}ℓ for the protocol.
– Asynchronous Network:

– (a) t-Liveness: If S is honest, then all honest parties eventually obtain some output.
– (b) t-Validity: If S is honest, then every honest party with an output, outputs m.
– (c) t-Consistency: If S is corrupt and some honest party outputs m⋆, then every honest

party eventually outputs m⋆.
– Synchronous Network:
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– (a) t-Liveness: If S is honest, then all honest parties obtain an output within time 3∆.
– (b) t-Validity: If S is honest, then every honest party with an output, outputs m.
– (c) t-Consistency: If S is corrupt and some honest party outputs m⋆ at time T , then every

honest Pi outputs m⋆ by the end of time T + 2∆.
– Irrespective of the network type, O(n2ℓ) bits are communicated by the honest parties.

Proof. We first prove the properties assuming an asynchronous network with up to t corruptions.
We start with the validity and liveness properties, for which we consider an honest S. We show
that all honest parties eventually output m. This is because all honest parties complete steps 2− 5
in the protocol, even if the corrupt parties do not send their messages. This is because there are
at least n − t honest parties, whose messages are eventually selected for delivery. Moreover, the
adversary may send at most t echo messages for m′, where m′ 6= m, on behalf of corrupt parties.
Similarly, the adversary may send at most t ready messages for m′, where m′ 6= m, on behalf of
corrupt parties. Consequently, no honest party ever generates a ready message for m′, neither in
step 3, nor in step 4. This is because n− t > t, as t < n/3.

For consistency, we consider a corrupt S and let Ph be an honest party, who outputs m⋆. We
next show that all honest parties eventually outputs m⋆. Since Ph outputs m⋆, it implies that it
receives n − t ready messages for m⋆ during step 5 of the protocol. Let H be the set of honest
parties whose ready messages are received by Ph during step 5. It is easy to see that |H| ≥ t+ 1.
The ready messages of the parties in H are eventually delivered to every honest party and hence
each honest party (including Ph) eventually executes step 4 and sends a ready message for m⋆. As
there are at least n − t honest parties, it follows that eventually n − t ready messages for m⋆ are
delivered to every honest party (irrespective of whether adversary sends all the required messages).
This guarantees that all honest parties eventually obtain some output. To complete the proof, we
show that this output is m⋆.

On contrary, let Ph′ be another honest party, different from Ph, who outputs m⋆⋆ 6= m⋆. This
implies that Ph′ received ready messages for m⋆⋆ from at least t + 1 honest parties during step
5 of the protocol. Now from the protocol steps, it follow that an honest party generates a ready

message for some potential m, only if it either receives n− t echo messages for the m during step 3
or t+ 1 ready messages for m (one of which has to come from an honest party) during step 4. So
all in all, in order that n− t ready messages are eventually generated for some potential m during
step 5, it must be the case that some honest party has to receive n− t echo messages for m during
step 2 and generate a ready message for m. Now since Ph receives n − t ready messages for m⋆,
some honest party must have received n− t echo messages for m⋆, at most t of which could come
from the corrupt parties. Similarly, since Ph′ receives n − t ready messages for m⋆⋆, some honest
party must have received n− t echo messages for m⋆⋆. However, since n− t > 2t, it follows that in
order that n− t echo messages are produced for both m⋆ as well as m⋆⋆, it must be the case that
some honest party must have generated an echo message, both for m⋆, as well as m⋆⋆ during step
2, which is impossible. This is because an honest party executes step 2 at most once and hence
generates an echo message at most once.

The proofs of the properties in the synchronous network closely follow the proofs of the prop-
erties in the asynchronous network. If S is honest, then it will send the init message for m to all
the parties, which will be delivered within time ∆. Consequently, every honest party will send an
echo message for m to all the parties, which will be delivered within time 2∆. Hence every honest
party will send a ready message for m to all the parties, which will be delivered within time 3∆.
As there are at least n − t honest parties, every honest party will receive ready messages for m
from at least n− t parties within time 3∆ and output m.

If S is corrupt and some honest party Ph outputs m⋆ at time T , then it implies that Ph has
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received ready messages for m⋆ during step 5 of the protocol at time T from a set H of at least
t + 1 honest parties. These ready messages are guaranteed to be received by every other honest
party within time T +∆. Consequently, every honest party who has not yet executed step 4 will do
so and will send a ready message for m⋆ at time T +∆. Consequently, by the end of time T +∆,
every honest party would have sent a ready message for m⋆ to every other honest party, which will
be delivered within time T +2∆. Hence, every honest party will output m⋆ latest at time T +2∆.

The communication complexity (both in a synchronous as well as asynchronous network) simply
follows from the fact that every party may need to send an echo and ready message for m to every
other party.

B An Overview of the Existing ABA Protocols [3, 7]

In this section, we give a very high level overview of the existing t-perfectly-secure ABA protocols
of [3, 7]. Both these protocols are perfectly-secure and can tolerate up to t < n/3 corruptions. The
protocols follow the standard framework of Rabin and Ben-Or [46, 12], which uses two building-
blocks to get a BA protocol. The first building-block is a voting protocol (often called gradecast
or graded consensus in the literature) and which is a deterministic protocol. The second building-
block is a coin-flipping protocol which is a randomized protocol. In the sequel, we review these
building blocks and discuss how they are “combined” to get an ABA protocol. While presenting
these building-blocks, unless it is explicitly stated, we assume an asynchronous network. Also, for
simplicity, we present these building-blocks without specifying any termination criteria and hence,
the parties may keep on running these building-blocks (as well as the ABA protocol) even after
obtaining an output.12

B.1 The Voting Protocol

Informally, the voting protocol does “whatever can be done deterministically” to reach agreement.
In a voting protocol, every party has a single bit as input. The protocol tries to find out whether
there is a detectable majority for some value among the inputs of the parties. In the protocol, each
party’s output can have five different forms:
– For σ ∈ {0, 1}, the output (σ, 2) stands for “overwhelming majority for σ”;
– For σ ∈ {0, 1}, the output (σ, 1) stands for “distinct majority for σ”;
– The output (Λ, 0) stands for “non-distinct majority”.

The protocol code of the voting protocol taken from [21] is presented in Fig 14.

– On having the input xi, Acast (input, Pi, xi).
– Create a dynamic set Xi which is initialized to ∅. Add (Pj , xj) to Xi if (input, Pj , xj) is received

from the Acast of Pj .
– Wait until |Xi| = n− t. Then assign Xi = Xi, set ai to the majority bit among {xj | (Pj , xj) ∈ Xi}.

Acast (vote, Pi, Xi, ai).
– Create a dynamic set Yi, which is initialized to ∅. Add (Pj , Xj, aj) to Yi if (vote, Pj , Xj, aj) is

received from the Acast of Pj , Xj ⊆ Xi, and aj is the majority bit of Xj .
– Wait until |Yi| = n− t. Then assign Yi = Yi, set bi to the majority bit among {aj | (Pj , Xj , aj) ∈ Yi}

and Acast (re-vote, Pi, Yi, bi).
– Create a set Zi, which is initialized to ∅. Add (Pj , Yj , bj) to Zi if (re-vote, Pj , Yj , bj) is received

Protocol ΠVote

12Recall that we do not put any termination criteria for any of our sub-protocols, as the termination of the MPC
protocol will automatically ensure that all the underlying sub-protocols also get terminated.
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from the Acast of Pj , Yj ⊆ Yi, and bj is the majority bit of Yj .
– Wait until |Zi| = n− t. Then compute the output as follows.

– If all the parties Pj ∈ Yi have the same vote aj = σ, then output (σ, 2).
– Else if all the parties Pj ∈ Zi have the same re-vote bj = σ, then output (σ, 1).
– Else output (Λ, 0).

Figure 14: The vote protocol. The above code is executed by every Pi ∈ P .

The properties of the voting protocol are stated in Lemma B.1. While these properties hold in an
asynchronous network, it automatically implies that they hold even for a synchronous network. We
refer the readers to [21, 7] for the proof of these properties.

Lemma B.1 ([21, 7]). Protocol ΠVote achieves the following properties, both in the synchronous as
well as asynchronous network, if the adversary corrupts up to t < n/3 parties, where all the parties
participate with an input bit.

– If each honest party has the same input σ, then each honest party outputs (σ, 2);
– If some honest party outputs (σ, 2), then every other honest party outputs either (σ, 2) or

(σ, 1);
– If some honest party outputs (σ, 1) and no honest party outputs (σ, 2) then each honest party

outputs either (σ, 1) or (Λ, 0).
– The protocol incurs a communication of O(n3) bits from the honest parties.

An additional property which protocol ΠVote achieves in a synchronous network is that all
honest parties will have their output by the end of time 9∆. Intuitively, this is because the protocol
involves three different “phases” of Acast, each of which will produce an output within time 3∆
for honest sender parties in a synchronous network. Moreover, from Lemma B.1, this output will
be (σ, 2), if all the honest parties have the same input σ. We will require this property later while
claiming the properties of the resultant ABA protocol in a synchronous network. Hence, we prove
this property.

Lemma B.2. If the network is synchronous and if the adversary corrupts up to t < n/3 parties,
then in protocol ΠVote, all honest parties obtain their output within time 9∆. Moreover, the output
will be (σ, 2), if all the honest parties have the same input σ.

Proof. Consider an arbitrary honest Pj . Party Pj will Acast its input xj and from the t-liveness
and t-validity properties of Acast in the synchronous network, every honest party will receive the
output xj , from the corresponding Acast instance within time 3∆. As there are at least n−t honest
parties, it implies that every honest Pi will obtain a set Xi of size n − t within time 3∆. Hence
each honest Pi will Acast a (vote, Pi,Xi, ai) message latest at time 3∆ and every honest party
receives this message from the corresponding Acast instance within time 6∆. We also note that if
there is a corrupt Pj such that (Pj , xj) is included by an honest Pi in its set Xi when Pi Acasts
Xi, then from the t-consistency property of Acast in the synchronous network, every honest party
Pk will include (Pj , xj) in its set Xk, latest by time 5∆. This further implies that upon receiving
the message (vote, Pi,Xi, ai) from the Acast of any honest Pi, all honest parties Pk will be able to
verify this message and include (Pi,Xi, ai) in their respective Yk sets within time 6∆.

As there are at least n− t honest parties Pi whose vote messages are received and verified by
all honest parties Pk within time 6∆, it follows that every honest party Acasts a re-vote message,
latest at time 6∆, which is received by every honest party within time 9∆. Moreover, as argued
for the case of vote messages, every honest party will be able to verify these re-vote messages
and include in their respective Zi within time 9∆. Since there are at least n− t honest parties, it
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follows that the Zi sets of every honest party will attain the size of n− t within time 9∆ and hence
every honest party will obtain an output, latest at time 9∆.

If all the honest parties have the same input σ, then there will be at most t corrupt parties who
may Acast 1−σ. Hence every party (both honest as well as corrupt) will send a vote message only
for σ.13 Consequently, every honest party will output (σ, 2).

B.2 Coin-Flipping Protocol

The coin-flipping protocol denoted by ΠCoinFlip (also called as the common-coin protocol) is an
n-party (asynchronous) protocol, where the parties have local random inputs and the protocol
outputs a bit for all the parties. The protocol achieves the following properties in an asynchronous
(and hence synchronous) network in the presence of any t < n/3 corruptions.
– In an asynchronous network, all honest parties eventually obtain an output, while in a syn-

chronous network, the honest parties obtain an output within some fixed time c ·∆, where c
is a publicly-known constant.

– One of the following holds:
– If no party deviates from the protocol, then with probability at least p, the output bits

of all the honest parties are same. The probability p where p < 1 is often called as the
success-probability of the protocol and is a parameter of the protocol.

– Else, all honest parties will have the same output bit with probability less than p. But
in this case, the protocol allows some honest party(ies) to locally identify and shun a
(subset) of corrupt party(ies) from any future communication. Namely, the protocol
locally outputs ordered pairs of the form (Pi, Pj), where Pi is some honest party and
Pj is some corrupt party, such that Pi identifies Pj as a corrupt party and does not
consider any communication from Pj for the rest of the protocol execution. Such pairs
are called as local-conflicts. We stress that the local-conflicts are identified only locally.
For instance, if an honest Pi has shunned a corrupt Pj during an instance of the coin-
flipping protocol, then it is not necessary that every other honest party Pk also shuns Pj

during the same instance, as Pj may decide to behave “honestly” towards Pk.
The coin-flipping protocol of [3] guarantees that at least one new local-conflict is iden-
tified if, during an instance of the coin-flipping protocol, the parties obtain the same
output bit with probability less than p. On the other hand, the coin-flipping protocol
of [7] guarantees that Θ(n) number of new local-conflicts are identified, if the parties
obtain the same output bit with probability less than p.

Protocol ΠCoinFlip is designed using a weaker variant of perfectly-secure AVSS called shunning AVSS
(SAVSS), introduced in [3]. The SAVSS primitive is weaker than AVSS in the following aspects:
– It is not guaranteed that every honest party obtains a point on D’s sharing-polynomial (and

hence a share of D’s secret), even if D is honest;
– If D is corrupt, then it may not participate with a t-degree polynomial and hence, the underlying

shared value could be ⊥, which is different from every element of F;
– Irrespective of D, depending upon the behaviour of the corrupt parties, the honest parties later

may either reconstruct the same secret as shared by D or an all-together different value. How-
ever, in the latter case, the protocol ensures that at least one new local-conflict is identified.

In [3], a perfectly-secure SAVSS protocol is designed with t < n/3. By executing n2 instances of
this protocol in parallel using the framework of [32, 21], a coin-flipping protocol is presented in [3],

13If a corrupt party Pj sends a vote message for 1− σ, then it will never be accepted and no honest party Pi will
ever include (Pj , Xj , 1 − σ) in its Yi set. This is because 1 − σ will not be the majority among the inputs of the
honest parties in Xj .
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where the success-probability p is 1
4 . The protocol incurs a communication of O(poly(n) log |F|)

bits from the honest parties.
The coin-flipping protocol of [7] also uses the same framework of [32, 21], but substitutes the

SAVSS of [3] with a “better” and more efficient SAVSS with t < n/3. Their SAVSS ensures
that Θ(n) number of new local-conflicts are identified, if the value reconstructed by the parties is
different from the one shared by D. The success-probability p remains 1

4 and the communication
complexity of the protocol is O(poly(n) log |F|) bits.

B.3 Vote + Coin-Flipping ⇒ ABA

We now show how to “combine” protocols ΠVote and ΠCoinFlip to get the protocol ΠABA (see Fig
15). The current description of ΠABA is taken from [17]. The protocol consists of several iterations,
where each iteration consists of two instances of ΠVote protocol and one instance of ΠCoinFlip, which
are carefully “stitched” together.

In the first instance of ΠVote, the parties participate with their “current input”, which is ini-
tialized to their respective bits for ABA in the first iteration. Then, independent of the output
received from the instance of ΠVote, the parties participate in an instance of ΠCoinFlip. Next, the
parties decide their respective inputs for the second instance of ΠVote protocol, based on the output
they received from the first instance. If a party has received the highest grade (namely 2) during the
first instance of ΠVote, then the party continues with the bit received from that ΠVote instance for
the second ΠVote instance. Otherwise, the party switches to the output received from ΠCoinFlip. The
output from the second instance of ΠVote is then set as the modified input for the next iteration, if
it is obtained with a grade higher than 0. Otherwise, the output of ΠCoinFlip is taken as the modified
input for the next iteration.

If during any iteration a party obtains the highest grade from the second instance of ΠVote, then
it indicates this publicly by sending a ready message to every party, along with the bit received.
The ready message is an indication for the others about the “readiness” of the sender party to
consider the corresponding bit as the output. Finally, once a party receives this readiness indication
for a common bit b from at least 2t + 1 parties, then that bit is taken as the output. To ensure
that every other party also outputs the same bit, a party upon receiving the ready message for a
common bit from at least t+ 1 honest parties, itself sends a ready message for the same bit (if it
has not done so earlier).

The idea behind the protocol is the following. In the protocol there can be two cases. The first
case is when all the honest parties start with the same input bit, say b. Then, they will obtain the
output b from all the instances of ΠVote protocol in all the iterations and the outputs from ΠCoinFlip

will be never considered. Consequently, each honest party will eventually send a ready message for
b. Moreover, there can be at most t corrupt parties who may send a ready message for 1− b and
hence no honest party ever sends a ready message for 1 − b. Hence, each honest party eventually
outputs b.

The second case is when the honest parties start the protocol with different input bits. In
this case, the protocol tries to take the help of ΠCoinFlip to ensure that all honest parties reach
an iteration with a common input bit for that iteration. Once such an iteration is reached, this
second case gets “transformed” to the first case and hence all honest parties will eventually output
that common bit. In more detail, in each iteration k, it will be ensured that either every honest
party have the same input bit for the second instance of ΠVote with probability at least p · 12 or else
certain number of new local-conflicts are identified.14 This is because the input for second instance

14The number of local-conflicts identified will depend upon the ΠCoinFlip protocol: while the ΠCoinFlip protocol of [3]
will ensure that at least 1 new local-conflict is identified, the ΠCoinFlip protocol of [7] will ensure that Θ(n) number of
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of ΠVote is either the output bit of the first instance of ΠVote or the output of ΠCoinFlip, both of
which are independent of each other. Hence if the output of ΠCoinFlip is same for all the parties
with probability p, then with probability p · 12 , this bit will be the same as output bit from the first
instance of ΠVote. If in any iteration k, it is guaranteed that all honest parties have the same inputs
for the second instance of ΠVote, then the parties will obtain a common output and with highest
grade from the second instance of ΠVote. And then from the next iteration onward, all parties will
stick to that common bit and eventually output that common bit.

One can show that it requires O(poly(n)) number of iterations in expectation before a “good”
iteration is reached, where an iteration is considered good, if it is guaranteed that all honest parties
have the same input for the second instance of ΠVote. Intuitively, this is because there can be
O(poly(n)) number of “bad” iterations in which the honest parties may have different outputs
from the corresponding instances of ΠCoinFlip. This follows from the fact that the corrupt parties
may deviate from the protocol instructions during the instances of ΠCoinFlip. There can be at most
t(n− t) local-conflicts which may occur (t potentially corrupt parties getting in conflict with n− t
honest parties) overall during various “failed” instances of ΠCoinFlip (where a failed instance means
that different honest parties obtain different outputs) and only after all these local-conflicts are
identified, the parties may start witnessing “clean” instances of ΠCoinFlip where all honest parties
shun communication from all corrupt parties and where it is ensured that all honest parties obtain
the same output bit with probability p. Now depending upon the number of new local-conflicts
which are revealed from a single failed instance of ΠCoinFlip, the parties may witness O(poly(n))
number of bad iterations.15 Now, once all the bad iterations are over and all potential local-conflicts
are identified, in each subsequent iteration, all honest parties will then have the same output from
ΠCoinFlip (and hence, same input for the second instance of ΠVote) with probability at least p

2 .
Consequently, if p is a constant, then it will take Θ(1) expected number of such iterations before
the parties reach a good iteration where it is guaranteed that all honest parties have the same
inputs for the second instance of ΠVote.

16

Input: Party Pi has the bit bi as input for the ABA protocol.
– Initialization: Set b = bi, committed = false and k = 1. Then do the following.

1. Participate in an instance of ΠVote protocol with input b.
2. Once an output (b, g) is received from the instance of ΠVote, participate in an instance of ΠCoinFlip.

Let Coink denote the output received from ΠCoinFlip.
3. If g < 2, then set b = Coink.
4. Participate in an instance of ΠVote protocol with input b and let (b′, g′) be the output received. If

g′ > 0, then set b = b′.
5. If g′ = 2 and committed = false, then set committed = true and send (ready, b) to all the parties.
6. Set k = k + 1 and repeat from 1.

– Output Computation:
– If (ready, b) is received from at least t+ 1 parties, then send (ready, b) to all the parties.
– If (ready, b) is received from at least 2t+ 1 parties, then output b.

Protocol ΠABA

Figure 15: The ABA protocol from ΠVote and ΠCoinFlip. The above code is executed by every Pi ∈ P .

new local-conflicts are identified.
15Since each failed instance of the ΠCoinFlip protocol of [3] may reveal only 1 new local-conflict, the number of bad

iterations could be O(n2). On the other hand, each failed instance of the ΠCoinFlip protocol of [7] reveals Θ(n) new
local-conflicts and hence there can be O(n) number of bad iterations.

16One can show that if one sets p = 1

4
as done in [22, 3, 7], then it takes expected 16 iterations after all the

local-conflicts are identified to reach a good iteration.
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Lemma 3.3 now follows easily from the above discussion. Let c · ∆ be the time within which
the protocol ΠCoinFlip generates output for the honest parties in a synchronous network, where c is
some publicly-known constant. Note that c is determined by the underlying SAVSS protocol and
is different for the SAVSS protocols of [3] and [7]. If all honest parties have the same input b in
a synchronous network, then at the end of the first iteration itself, every party will send a ready

message for b to every other party. Consequently, in this case, all honest parties will obtain their
output within time (c+18+1) ·∆. This is because each instance of ΠVote during the first iteration
will take at most 9∆ time to produce output, while the instance of ΠCoinFlip will take at most c ·∆
time. Additionally, ∆ time will be taken by each party to send a ready message for b to every
other party. Consequently, TABA will be (c+ 19) ·∆.

64


	1 Introduction
	1.1 Technical Overview
	1.2 Related Work

	2 Preliminaries and Definitions
	2.1 Existing Primitives

	3 best-of-both-worlds Perfectly-Secure Byzantine Agreement
	3.1 Synchronous Broadcast with Asynchronous Guarantees
	3.2 BC+ ABA best-of-both-worlds BA

	4 best-of-both-worlds Perfectly-Secure VSS
	4.1 The best-of-both-worlds Weak Polynomial-Sharing (WPS) Protocol
	4.2 The VSS Protocol

	5 Agreement on a Common Subset (ACS)
	6 The Preprocessing Phase Protocol
	6.1 best-of-both-worlds Beaver's Multiplication Protocol
	6.2 best-of-both-worlds Triple-Transformation Protocol
	6.3 best-of-both-worlds Triple-Sharing Protocol
	6.4 best-of-both-worlds Triple-Extraction Protocol
	6.5 The best-of-both-worlds Preprocessing Phase Protocol

	7 The best-of-both-worlds Circuit-Evaluation Protocol
	8 Conclusion and Open Problems
	A Properties of the Existing (Asynchronous) Primitives
	A.1 Online Error-Correction (OEC)
	A.2 Bracha's Acast Protocol

	B An Overview of the Existing ABA Protocols ADH08,BCP20
	B.1 The Voting Protocol
	B.2 Coin-Flipping Protocol
	B.3 Vote + Coin-Flipping  ABA


