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PERFECTNESS OF THE

HIGSON AND SMIRNOV COMPACTIFICATIONS

BY

YUJI AKAIKE (Hiroshima), NAOTSUGU CHINEN (Okinawa) and
KAZUO TOMOYASU (Miyazaki)

Abstract. We provide a necessary and sufficient condition for the Higson compac-
tification to be perfect for the noncompact, locally connected, proper metric spaces. We
also discuss perfectness of the Smirnov compactification.

1. Introduction. The aim of this paper is to study perfectness of the
Higson and Smirnov compactifications. We follow the notation and termi-
nology of [4].

The notion of perfect compactification was first introduced by E. G.
Sklyarenko. A compactification αX of a completely regular space X is said
to be perfect if the natural projection f : βX → αX is monotone, where βX
is the Stone–Čech compactification of X. Note that the natural projection
f : βX → αX is monotone if and only if f |βXrX : βX r X → αX r X is
monotone. E. G. Sklyarenko showed the following basic facts for perfect com-
pactifications (see [8, Theorems 30.8 and 30.10] or [10, Theorems 1 and 2]).

Proposition 1.1. Let αX be a compactification of a completely regular

space X. Then the following conditions are equivalent:

(1) αX is a perfect compactification of X.

(2) For every open subset U of X and every A ⊂ U , ClαX A ∩
ClαX FrX U = ∅ is equivalent to ClαX A ∩ ClαX(X r U) = ∅.

(3) For every open set U of X, ClαX FrX U = FrαX ExtαX U , where

ExtαX U = αX r ClαX(X r U).

By definition, the Stone–Čech compactification of a completely regular
space is perfect. Furthermore, it is known that the one-point compactifica-
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tion of the n-dimensional Euclidean space R
n is perfect if and only if n > 1

(cf. [5]).

In the next section, we investigate perfectness of the Higson compacti-
fication. Here, the Higson compactification is defined for all proper metric
spaces and is metric-dependent. A metric d on a space X is said to be proper

if for every r > 0, ClX Br(x, d) is compact, where Br(x, d) = {y ∈ X :
d(x, y) < r}. The Higson compactification of the proper metric space (X, d)

is denoted by X
d

and is the unique compactification associated with the set
of all slowly oscillating bounded continuous real-valued functions on (X, d).
See [2] and [7] for details. In this paper, we introduce the notion of coarse

uniform connectedness at ∞, and show that X
d

is perfect for every proper

metric space (X, d) with this property. By virtue of this, R
ndn

is perfect for
each n-dimensional Euclidean space R

n with the usual metric dn. Moreover,

we show that for every locally connected proper metric space (X, d), X
d

is
perfect if and only if X is coarsely uniformly connected at ∞.

In the last section, we investigate perfectness of the Smirnov compactifi-
cation. The Smirnov compactification is defined for all metric spaces and is
metric-dependent. The Smirnov compactification of the metric space (X, d)
is denoted by udX and is the unique compactification associated with the
set of all bounded uniformly continuous real-valued functions on (X, d). See
[8] or [11] for details. In [1], M. G. Charalambous showed that for every
convex subset X of an arbitrary normed linear space with the subspace
metric d, udX is perfect. His result is a simple solution for a question raised
in R. G. Woods’ paper [11]. As a result, udn

R
n is a perfect compactifica-

tion of (Rn, dn) for each n ∈ N. In this paper, we introduce the notion of
uniform local connectedness at ∞, and show that udX is perfect for every
metric space (X, d) with this property. Moreover, we show that for every
noncompact, locally connected, proper metric space (X, d), udX is perfect
if and only if X is uniformly locally connected at ∞.

2. Perfectness of the Higson compactification. The following char-
acterization was proved by A. N. Dranishnikov, J. Keesling and V. V. Us-
penskij in [2, Proposition 2.3].

Proposition 2.1. Let X be a noncompact metric space with a proper

metric d. Then the following conditions are equivalent:

(1) A compactification αX of X is equivalent to X
d
.

(2) For disjoint closed sets A, B ⊂ X, ClαX A ∩ ClαX B = ∅ if and

only if the system {A, B} diverges, i.e., for any n ∈ N there exists

a compact subset Kn of X such that d(x, A) + d(x, B) > n for all

x ∈ X r Kn.
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Now, we introduce the following definitions.

Definition 2.2.

(1) (Cf. [3, p. 206].) A metric space (X, d) is coarsely uniformly connected

if for any ε > 0 there exists a δ > 0 such that for any two points
x, y ∈ X with d(x, y) < ε there exists a connected set P in X
satisfying x, y ∈ P and diamP < δ.

(2) A metric space (X, d) is coarsely uniformly connected at ∞ if for any
ε > 0 there exist a δ > 0 and a compact set K in X such that for any
two points x, y ∈ X r K with d(x, y) < ε there exists a connected
set P in X satisfying x, y ∈ P and diamP < δ.

The following theorem provides a sufficient condition for the Higson com-

pactification X
d

of the proper metric space (X, d) to be perfect.

Theorem 2.3. If a proper metric space (X, d) is coarsely uniformly con-

nected at ∞, then X
d

is a perfect compactification of (X, d).

Proof. For brevity, let Y = X
d
. Let U be an open subset of X. Put W0 =

ClX U , W1 = X r U , and V = X r W0. Since the inclusion ClY FrX U ⊂
FrY ExtY U always holds, it suffices to show that ClY FrX U ⊃ FrY ExtY U .

If either W0 or W1 is compact, then FrY ExtY U = FrX U = ClY FrX U .
Thus, we may assume that both W0 and W1 are not compact. First, we show
the following claim:

Claim. ClY (W0 ∩ W1) = ClY W0 ∩ ClY W1.

We notice that ClY (W0∩W1) ⊂ ClY W0∩ClY W1 always holds. Suppose
that there exists a p ∈ ClY W0∩ClY W1 rClY (W0∩W1). Since Y is normal,
there exists a closed neighborhood S of p in Y with S∩ClY (W0∩W1) = ∅ and
S∩Wi 6= ∅ for i = 0, 1. Since S∩(W0∩W1) = ∅ and X r(W0∩W1) = U ∪V ,
we obtain S∩X ⊂ U ∪V . Thus W0∩S ⊂ (U ∪V )∩ClX U = U ∪(V ∩ClX U)
= U . Similarly, W1 ∩S ⊂ V . Here, we note that ClY (W0 ∩S)∩ClY (W1 ∩S)
6= ∅ because p ∈ ClY (Wi∩S) for i = 0, 1. By Proposition 2.1, {W0∩S, W1∩S}
does not diverge. Hence, there exist an ε > 0, a compact cover {Kn}n∈N

with Kn ⊂ Kn+1, and an xn ∈ X rClX Bε(Kn, d) such that d(xn, W0∩S)+
d(xn, W1 ∩ S) < ε for each n ∈ N. Since d is proper, for every n ∈ N there
exists a wi,n ∈ Wi ∩S for i = 0, 1 such that d(xn, W0 ∩S)+ d(xn, W1 ∩S) =
d(xn, w0,n)+d(xn, w1,n). Thus, we obtain sequences {w0,n}n∈N ⊂ W0∩S ⊂ U
and {w1,n}n∈N ⊂ W1∩S ⊂ V such that d(w0,n, w1,n) < ε and w0,n, w1,n 6∈ Kn

for each n ∈ N. Since (X, d) is coarsely uniformly connected at ∞, there exist
a δ > 0, an l ∈ N, and a connected set Pn joining w0,n and w1,n in X with
diamPn < δ for each n ≥ l. Since U ∪ V is not connected, we see that
Pn ∩ (X r (U ∪ V )) 6= ∅ for each n ≥ l. Hence, Pn ∩ (W0 ∩W1) 6= ∅ because
X r (U ∪ V ) = W0 ∩ W1. Take a yn ∈ Pn ∩ (W0 ∩ W1) for each n ≥ l.
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Since diamPn < δ for each n ≥ l, we see that d(wi,n, yn) < δ for i = 0, 1
and each n ≥ l. Thus, {W0 ∩ W1, Wi ∩ S} does not diverge for i = 0, 1.
This implies that ClY (W0 ∩ W1) ∩ ClY (Wi ∩ S) 6= ∅, and thus we obtain
ClY (W0 ∩W1)∩S 6= ∅. This is a contradiction which completes the proof of
the claim.

Now, we note that ExtY U = Y r ClY W1 and ExtY V = Y r ClY W0.
From the claim above, we have Y r (ExtY U ∪ExtY V ) = ClY (W0 ∩W1) =
ClY FrX U . So Y = ExtY U ∪ExtY V ∪ClY FrX U and ExtY U ∩ExtY V = ∅.
Here, take an x ∈ FrY ExtY U . Since ExtY U ∩ ExtY V = ∅, we note that
neither x ∈ ExtY U nor x ∈ ExtY V . We then see that x ∈ ClY FrX U .

Therefore, we conclude that X
d

is perfect.

By Theorem 2.3, we have the following corollary.

Corollary 2.4. Rndn

is a perfect compactification of the n-dimensional

Euclidean space (Rn, dn) for each n ∈ N.

It is known that the Stone–Čech compactification βX of a completely
regular space X is a perfect compactification of X. Here, by Theorem 2.3,
we provide an alternative proof of this fact for a countable discrete space.

Corollary 2.5. Let X be a noncompact , locally compact , separable

metrizable space. If the set of nonisolated points of X is compact , then there

exists a proper metric d on X such that X
d

is a perfect compactification of

(X, d) equivalent to βX.

Proof. By [6, Proposition 2.6], there exists a proper metric d on X such
that for every r > 0, there exists a compact subset Kr ⊂ X with X r Kr

being r-discrete, i.e., Br(x, d) ∩ (X r Kr) = {x} for all x ∈ X r Kr. This
shows that (X, d) is coarsely uniformly connected at ∞. By Theorem 2.3, we

note that X
d

is perfect. Also, every bounded continuous real-valued function

on (X, d) is slowly oscillating, so X
d

is equivalent to βX.

The main result of this section is the following result.

Theorem 2.6. Let (X, d) be a noncompact , locally connected , proper

metric space. Then X
d

is a perfect compactification of (X, d) if and only if

(X, d) is coarsely uniformly connected at ∞.

Proof. Suppose that X is not coarsely uniformly connected at ∞. By

Theorem 2.3, it suffices to show that X
d

is not perfect.
By assumption there exist a strictly increasing compact cover {Kn}n∈N

and an ε > 0 such that for every n ∈ N we have two points xn, yn ∈ X rKn

satisfying d(xn, yn) < ε and diamP ≥ n for all connected subsets P joining
xn and yn. Furthermore, we may assume that Bn({xn, yn}, d) ⊂ Kn+1 r Kn

and d(Kn∪ClX Bn({xn, yn}, d), ClX(XrKn+1)) > n for each n ∈ N. Let Cn
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be the component of Bn/3(xn, d) containing xn. We see that U =
⋃

n∈N
Cn

contains no yn for all n ∈ N. Since X is locally connected, Cn is open for
each n ∈ N. Then U is open in X and FrX U =

⋃
n∈N

FrX Cn because the
family {FrX Cn : n ∈ N} is discrete. Let A = {xn : n ∈ N}. Note that
{A, X r U} does not diverge because {A, {yn}n∈N} does not diverge. By
virtue of Proposition 2.1, we have Cl

X
d A ∩ Cl

X
d(X r U) 6= ∅.

We are going to show that Cl
X

d A ∩ Cl
X

d FrX U = ∅, thus completing
the proof by Proposition 1.1. Suppose first that there exists an l ∈ N such
that FrX Cn = ∅ for each n ≥ l. Since FrX U =

⋃
n<l FrX Cn, we have

Cl
X

d A ∩ Cl
X

d FrX U = Cl
X

d A ∩ FrX U = ∅. Hence, we may assume that

FrX Cn 6= ∅ for all n ∈ N. By Propositions 1.1 and 2.1 it suffices to show
that {A, FrX U} diverges. It follows from the local connectedness of X that
FrX Cn ⊂ {y ∈ X : d(xn, y) = n/3}. Thus, d(A, FrX Cn) ≥ n/3 for each
n ∈ N. Now, let x ∈ X r K3n+1. If x 6∈ ClX

⋃
k∈N

Bk/3(xk, d), then

d(x, A) + d(x, FrX U)

≥ d(x, A)

= min{inf{d(x, xk) : k ≥ 3n}, inf{d(x, xk) : k ≤ 3n − 1}} > n.

If x ∈ ClX
⋃

k∈N
Bk/3(xk, d), then, since there exists an m > 3n + 1 such

that x ∈ ClX Bm/3(xm, d), we have

d(x, A)+d(x, FrX U) = d(x, xm)+d(x, FrX Cm) ≥ d(xm, FrX Cm) ≥
m

3
> n.

This indicates that {A, FrX U} diverges.

We note that every coarsely uniformly connected metric space is con-
nected and is coarsely uniformly connected at ∞.

Lemma 2.7. Let (X, d) be a locally connected , proper metric space. Then

(X, d) is connected and coarsely uniformly connected at ∞ if and only if it

is coarsely uniformly connected.

Proof. Assume that (X, d) is connected and coarsely uniformly con-
nected at ∞. Let ε > 0. There exist a compact set K of X and a δ0 > 0
such that for any x, y ∈ X r K with d(x, y) < ε there exists a connected
set P satisfying x, y ∈ P and diamP < δ0. Since (X, d) is a locally con-
nected, proper metric space, there exist continua K1, . . . , Kn such that
ClX Bε(K, d) ⊂

⋃n
i=1

Ki.
Fix a point z ∈ X r K. Let

L(z) = {p ∈ X : p and z belong to a continuum in X}.

Since X is locally connected and locally compact, L(z) is open and closed.
Since X is connected, we have L(z) = X. Thus, for any i = 1, . . . , n, there
exists a continuum Li in X such that z ∈ Li and Li ∩ Ki 6= ∅. Let K ′ =⋃n

i=1
(Ki ∪ Li) and δ = diamK ′ + δ0. Note that K ′ is a continuum.



94 Y. AKAIKE ET AL.

Let x, y ∈ X with d(x, y) < ε. If x ∈ K, then x, y ∈ K ′ and diamK ′ < δ.
If x, y ∈ X r K, then by assumption, there exists a connected set P such
that x, y ∈ P and diamP < δ0 < δ. Then X is coarsely uniformly connected,
as claimed.

The following corollary is an immediate consequence of Theorem 2.6 and
Lemma 2.7.

Corollary 2.8. Let (X, d) be a noncompact , locally connected , con-

nected , proper metric space. Then the following statements are equivalent:

(1) X
d

is a perfect compactification of (X, d).
(2) (X, d) is coarsely uniformly connected at ∞.

(3) (X, d) is coarsely uniformly connected.

Each of the following examples is equipped with a subspace metric in-
duced by the usual metric in R

n.

Example 2.9. (1) Let X = [0,∞)×{0, 1}∪
⋃

n∈N
{2n}× [0, 1] ⊂ R

2 with
the subspace metric d. Note that (X, d) is connected and locally connected,
but not coarsely uniformly connected. By Corollary 2.8, (X, d) is not coarsely

uniformly connected at ∞ and X
d

is not perfect.
(2) Let Y = [0,∞) × {0, 1} ∪

⋃
n∈N

{n} × [0, 1] ⊂ R
2 with the subspace

metric ̺. Note that (Y, ̺) is connected, locally connected and coarsely uni-
formly connected. By Corollary 2.8, Y

̺
is perfect.

(3) Let Zn = {(x, y) ∈ R
2 : n ≤ x ≤ n + 2−n and y = 2−m for m ∈ N}

∪ {n} × [0, 1] ⊂ R
2 for each n ∈ N and Z = [0,∞) × {0, 1} ∪

⋃
n∈N

Zn ⊂ R
2

with the subspace metric σ. Note that (Z, σ) is connected and coarsely
uniformly connected, but not locally connected. By Theorem 2.3, Z

σ
is

perfect.
(4) Let N = {2n ∈ R : n ∈ N} with the subspace metric µ. Note that

(N, µ) is coarsely uniformly connected at ∞, but not coarsely uniformly
connected. By Theorem 2.3, N

µ
is perfect and is equivalent to the Stone–

Čech compactification βN .

Question 2.10. Can we omit the local connectedness in Lemma 2.7?

3. Perfectness of the Smirnov compactification. In this section, we
provide a necessary and sufficient condition for the Smirnov compactification
to be perfect for noncompact, locally connected, proper metric spaces.

Proposition 3.1 ([11, Theorem 2.5]). Let X be a noncompact metric

space with a metric d. Then the following conditions are equivalent:

(1) A compactification αX of X is equivalent to udX.

(2) For disjoint closed sets A, B ⊂ X, ClαX A ∩ClαX B = ∅ if and only

if d(A, B) > 0.
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Definition 3.2.

(1) ([9, Exercise 8.42]) A metric space (X, d) is uniformly locally con-

nected if for any ε > 0 there exists a δ > 0 such that for any two
points x, y ∈ X with d(x, y) < δ there exists a connected subset P
in X satisfying x, y ∈ P and diamP < ε.

(2) A metric space (X, d) is uniformly locally connected at ∞ if for any
ε > 0 there exist a δ > 0 and a compact set K in X such that for any
two points x, y ∈ X r K with d(x, y) < δ there exists a connected
subset P in X satisfying x, y ∈ P and diamP < ε.

Theorem 3.3. If a metric space (X, d) is uniformly locally connected

at ∞, then udX is a perfect compactification of (X, d).

Proof. The proof is the same as that of Theorem 2.3 except for some
modifications. Let Y = udX. Also let U , W0, W1, and V be as in the
proof of Theorem 2.3. Here, we may assume that both W0 and W1 are
noncompact. It suffices to show ClY (W0∩W1) ⊃ ClY W0∩ClY W1. Suppose
that there exists a p ∈ ClY W0 ∩ ClY W1 r ClY (W0 ∩ W1) and a closed
neighborhood S of p in Y such that S ∩ClY (W0 ∩W1) = ∅ and S ∩Wi 6= ∅
for i = 0, 1. Notice that ClY (W0∩S)∩ClY (W1∩S) 6= ∅. By Proposition 3.1,
d(W0 ∩S, W1 ∩S) = 0. Then there exist sequences {x0,n}n∈N ⊂ W0 ∩S ⊂ U
and {x1,n}n∈N ⊂ W1 ∩ S ⊂ V such that d(x0,n, x1,n) < 1/n for each n ∈ N.
Without loss of generality, we may assume that for every compact set K
in X, there exists an l ∈ N such that {x0,n, x1,n} ∩ K = ∅ for each n ≥ l.
Furthermore, since X is uniformly locally connected at ∞, we may assume
that for every n ∈ N there exists a connected set Pn joining x0,n and x1,n in
X such that diamPn → 0 if n → ∞. Since U∪V is not connected, we see that
Pn ∩ (W0 ∩ W1) 6= ∅ for each n ∈ N. Take an element yn ∈ Pn ∩ (W0 ∩ W1)
for each n ∈ N. It follows that d(xi,n, yn) → 0 as n → ∞ for i = 0, 1.
By Proposition 3.1, we have d(W0 ∩ W1, Wi ∩ S) = 0 for i = 0, 1. This
gives ClY (W0 ∩ W1) ∩ ClY (Wi ∩ S) 6= ∅, thus ClY (W0 ∩ W1) ∩ S 6= ∅,
a contradiction.

Since all noncompact convex subsets of normed linear spaces are uni-
formly locally connected at ∞, we have the following result of Charalambous
as a corollary.

Corollary 3.4 ([1]). For every noncompact convex subset X of an ar-

bitrary normed linear space with the subspace metric d, the Smirnov compac-

tification udX is a perfect compactification of (X, d). In particular , udn
R

n

is a perfect compactification of the n-dimensional Euclidean space (Rn, dn)
for each n ∈ N.

From Corollary 2.5 combined with the fact that udX ≥ X
d
, we get the

following corollary.
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Corollary 3.5. Let X be a noncompact , locally compact , separable

metrizable space. If the set of nonisolated points of X is compact , then there

exists a proper metric d on X such that udX is a perfect compactification

of (X, d) equivalent to βX.

Now we are ready to prove the main result of this section.

Theorem 3.6. Let (X, d) be a noncompact , locally connected , proper

metric space. Then udX is a perfect compactification of (X, d) if and only

if (X, d) is uniformly locally connected at ∞.

Proof. If X is not uniformly locally connected at ∞, then, by Theorem
3.3, it suffices to show that udX is not perfect.

The proof is similar to that of Theorem 2.6. Since X is not uniformly
locally connected at ∞, there exist a strictly increasing compact cover
{Kn}n∈N and an ε > 0 such that for every n ∈ N there exist two points
xn, yn ∈ X r Kn with d(xn, yn) < 1/n and diamP ≥ ε for all connected
subsets P joining xn and yn.

Without loss of generality, we may assume Bε({xn, yn}, d) ⊂ Kn+1 rKn

and d(Kn∪ClX Bε({xn, yn}, d), ClX(X rKn+1)) > ε for each n ∈ N. Denote
by Cn the component of Bε/3(xn, d) containing xn. We see that U =

⋃
n∈N

Cn

is open and contains no yn for all n ∈ N, and FrX U =
⋃

n∈N
FrX Cn because

the family {FrX Cn : n ∈ N} is discrete. Let A = {xn : n ∈ N}. Note that
d(A, X r U) ≤ d(A, {yn : n ∈ N}) = 0. By the local connectedness of X,
FrX Cn ⊂ {y ∈ X : d(xn, y) = ε/3}. Consequently, d(A, FrX U) ≥ ε/3. By
Proposition 1.1, this implies that udX is not perfect.

It is clear that every uniformly locally connected metric space is locally
connected and is uniformly locally connected at ∞.

Lemma 3.7. Let (X, d) be a locally compact metric space. Then (X, d)
is locally connected and uniformly locally connected at ∞ if and only if it is

uniformly locally connected.

Proof. Let ε > 0. Since X is uniformly locally connected at ∞, there
exist a compact subset K of X and a δ0 > 0 such that for any x, y ∈ X rK
with d(x, y) < δ0 there exists a connected set P satisfying x, y ∈ P and
diamP < ε. Since X is locally compact, there is a δ1 > 0 such that K1 =
ClX Bδ1(K, d) is compact. Since X is locally connected, there exist connected
open subsets U1, . . . , Un such that K1 ⊂

⋃n
i=1

Ui and max{diam Ui : 1 ≤ i
≤ n} < ε. Let δ2 > 0 be a Lebesgue number of the cover {Ui : i = 1, . . . , n},
i.e., for any x, y ∈ K1 with d(x, y) < δ2 there exists an i such that x, y ∈ Ui.

Let δ = min{δ0, δ1, δ2}. It is easy to check that if x, y ∈ X with d(x, y)
< δ, then x and y belong to a connected set of diameter less than ε.
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The following corollary is an immediate consequence of Theorem 3.6 and
Lemma 3.7.

Corollary 3.8. Let (X, d) be a noncompact , locally connected , proper

metric space. Then the following statements are equivalent:

(1) udX is a perfect compactification of (X, d).
(2) (X, d) is uniformly locally connected at ∞.

(3) (X, d) is uniformly locally connected.

The following examples are equipped with the subspace metric induced
by the Euclidean metric in R

n.

Example 3.9. (1) Fix an n ∈ N. Let

X ′

0 = {(x1, . . . , xn, 0) ∈ R
n+1 : x1 ≥ 0},

X ′

1 = {(0, x2, . . . , xn, xn+1) ∈ R
n+1 : 0 ≤ xn+1 ≤ 1},

X ′

2,0 = {(x1, . . . , xn+1) ∈ R
n+1 : x1 ≥ 0, xn+1 = 1},

X ′

2,1 = {(x1, . . . , xn+1) ∈ R
n+1 : x1 ≥ 0, xn+1 = 2−x1},

and Xi = X ′

0 ∪ X ′

1 ∪ X ′

2,i with the subspace metric ̺i for i = 0, 1. Note
that each (Xi, ̺i) is locally connected and connected because it is homeo-
morphic to R

n. Also, (X0, ̺0) is uniformly locally connected, but (X0, ̺0)
is not coarsely uniformly connected and (X1, ̺1) is not uniformly locally
connected. By Corollaries 2.8 and 3.8, u̺0

X0 is perfect but neither u̺1
X1

nor X0

̺0 is perfect.
(2) Let Yn = {n + kn−1 ∈ R : k = 0, 1, . . . , n − 1} and Y =

⋃
n∈N

Yn

with the subspace metric s. Note that (Y, s) is locally connected, but not
uniformly locally connected at ∞. By Corollary 3.8, (Y, s) is not uniformly
locally connected and usY is not perfect.

(3) Let (Z, σ) be as in Example 2.9(3). Note that (Z, σ) is uniformly
locally connected at ∞, but neither locally connected nor uniformly locally
connected. By Theorem 3.3, uσZ is perfect.

(4) Consider N as a subset of R with the subspace metric µ. Note that
(N, µ) is uniformly locally connected. By Theorem 3.3, uµN is perfect and
is equivalent to the Stone–Čech compactification βN.

(5) Let Xn = {(x, y) ∈ R
2 : 0 ≤ y ≤ 1 and x = n + 2−m for m ∈ N}

∪ {n}× [0, 1] ⊂ R
2 for each n ∈ N and X = [0,∞)×{0, 1} ∪

⋃
n∈N

Xn ⊂ R
2

with the subspace metric d. Then (X, d) is coarsely uniformly connected
at ∞, but neither locally connected nor uniformly locally connected at ∞.

By Theorem 2.3, X
d

is perfect. Let Wn = {(x, y) ∈ X : x = n + 2−m for
m ∈ N with m ≥ n} ∪ {n} × [0, 1] ∪ [n, n + 2−n] × {0, 1} for each n ∈ N,
W =

⋃
n∈N

Wn, U = IntX W , and A = {(n, 2−1) : n ∈ N}. We see that
d(A, FrX U) ≥ 2−1 and d(A, X r U) = 0, therefore, udX is not perfect by
Propositions 1.1 and 3.1.
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