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Abstract

Many immune correlates of CD8+ T-cell-mediated control of HIV replication, including polyfunctionality, proliferative ability,
and inhibitory receptor expression, have been discovered. However, no functional correlates using ex vivo cells have been
identified with the known ability to cause the direct elimination of HIV-infected cells. We have recently discovered the ability
of human CD8+ T-cells to rapidly upregulate perforin—an essential molecule for cell-mediated cytotoxicity—following
antigen-specific stimulation. Here, we examined perforin expression capability in a large cross-sectional cohort of chronically
HIV-infected individuals with varying levels of viral load: elite controllers (n = 35), viremic controllers (n = 29), chronic
progressors (n = 27), and viremic nonprogressors (n = 6). Using polychromatic flow cytometry and standard intracellular
cytokine staining assays, we measured perforin upregulation, cytokine production, and degranulation following stimulation
with overlapping peptide pools encompassing all proteins of HIV. We observed that HIV-specific CD8+ T-cells from elite
controllers consistently display an enhanced ability to express perforin directly ex vivo compared to all other groups. This
ability is not restricted to protective HLA-B haplotypes, does not require proliferation or the addition of exogenous factors,
is not restored by HAART, and primarily originates from effector CD8+ T-cells with otherwise limited functional capability.
Notably, we found an inverse relationship between HIV-specific perforin expression and viral load. Thus, the capability of
HIV-specific CD8+ T-cells to rapidly express perforin defines a novel correlate of control in HIV infection.
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Introduction

Approximately 35–40 million people are currently infected with

HIV worldwide. Most of these individuals fail to control HIV

replication, and ultimately progress to acquired immune deficiency

syndrome (AIDS) if left untreated. However, a subset (,1%) of the

HIV-infected population, termed elite controllers (EC), can

spontaneously control viral replication to undetectable levels

[1,2,3]. Understanding the mechanisms of immunologic control

of HIV replication in EC may identify candidate markers of

immune control useful for assessing HIV vaccine strategies.

The host immune response, in particular HIV-specific CD8+ T-

cells, is at least partially responsible for the control of viral

replication in many EC. For example, EC are enriched for certain

HLA alleles, such as HLA-B13, B15, B51, B27, B57, and B58

[4,5,6,7]. EC contain a greater fraction of HIV-specific CD8+ T-

cells that can degranulate, produce multiple functional cytokines

and chemokines and display markedly better proliferative potential

upon HIV peptide stimulation than individuals with progressive

disease [7,8,9,10,11,12,13]. Additionally, recent evidence has

demonstrated that HIV-specific CD8+ T-cells from EC have

enhanced cytotoxic capabilities compared to progressors: Several

groups have shown that HIV-specific CD8+ T-cells from EC

display a superior ability to suppress the replication of HIV during

extended culture [14,15,16]. Using CD8+ T-cells expanded in vitro

for six days, Migueles and colleagues observed a higher cytotoxic

capacity on a per-cell basis of HIV-specific CD8+ T-cells from EC

[17]. Collectively, these findings suggest that CD8+ T-cells may be

critical to the control of HIV replication in vivo.

CD8+ T-cells are thought to kill virally-infected cells predom-

inantly through the release of lytic proteins - mainly perforin and

granzymes - that are secreted via exocytosis of pre-formed granules

following recognition of infected targets [18,19,20]. Granule-

mediated killing by CD8+ T-cells occurs within minutes to hours of
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target cell recognition; however, the reconstitution of intracellular

perforin following degranulation has been reported to first require

cellular proliferation [13,21,22]. We have recently identified

another mechanism by which perforin-mediated CD8+ T-cell

killing can take place: the rapid upregulation and targeted release

of newly produced perforin, which traffics to the immunological

synapse via a route that largely bypasses cytotoxic granules [23].

De novo synthesis of perforin by human CD8+ T-cells can be

detected by flow cytometry in conjunction with standard

intracellular cytokine-staining (ICS) [24], thus permitting simulta-

neous assessment of CD8+ T-cell cytotoxic potential and cytokine

production.

Here, we measured the ability of HIV-specific CD8+ T-cells to

express perforin in a cross-sectional cohort of chronically-infected

individuals that differentially control viral replication. Several

previously published studies have examined perforin expression in

HIV-specific CD8+ T-cells in both progressive and nonprogressive

infection [13,25,26,27]. However, due to the nature of the anti-

perforin antibody employed [23], these studies have uniformly

assessed only pre-formed, granule-associated perforin present

within resting or long-term activated HIV-specific CD8+ T-cells.

In this work we demonstrate that HIV-specific CD8+ T-cells from

EC, compared to progressors, have a superior ability to express

perforin immediately upon activation, without the need for prior

proliferation or the addition of exogenous cytokines. Overall, this

work identifies the rapid expression of perforin as a novel correlate

of control of HIV replication and urges a closer examination of

CD8+ T-cell polyfunctionality in HIV infection.

Results

HIV-specific CD8+ T-cell response between EC and CP did
not vary greatly in total magnitude, degranulation, or
cytokine production
We assessed the magnitude and functional characteristics of

HIV-specific CD8+ T-cells by stimulating PBMC from 35 elite

controllers (EC), 29 viremic controllers (VC), and 27 chronic

progressors (CP) [Table 1 and Table S1] with overlapping peptide

pools encompassing all HIV-1 (clade B) proteins. We developed a

flow cytometric staining panel (Fig. S1A) that simultaneously

measured memory phenotype (CD27, CD45RO, and CD57),

degranulation [surface expression of CD107a [28]], cytokine

expression (IFN-c, TNFa, and IL-2), and chemokine production

(MIP1a). As a sixth functional parameter, we included an anti-

perforin antibody (clone B-D48) to measure perforin upregulation

[23,24]. As shown in Figure S1B, the historically used antibody

(dG9 clone) cannot detect perforin expression within activated

CD8+ T-cells in the same ICS assay format.

As shown in Figure 1A, the total HIV-specific CD8+ T-cell

response magnitude to Pol, Env, Nef, or TRVVV stimulation did

not differ substantively across the groups, but EC displayed a

somewhat higher Gag-specific response. The lack of large

differences in response magnitude is in agreement with previous

studies that measured the total magnitude of CD8+ T-cell

responses in EC and CP using flow cytometry [7,8,13]. We next

determined the relative contribution of CD107a, IFN-c, TNFa,

IL-2, and MIP1a to the HIV-specific CD8+ T-cell response

(Fig. 1B). In general, no clear trends emerged in overall

functionality between the groups. For example, compared to

EC, CP demonstrated a slightly enhanced ability to degranulate,

lower levels of TNFa, but no statistically significant difference in

the proportion of the average HIV-specific CD8+ T-cell response

comprised of either IFN-c or MIP1a. The largest difference in

functionality was IL-2 expression, which was higher among EC

and VC compared to CP. Previous studies have also shown

Author Summary

While the majority HIV-infected individuals progress to
AIDS, a fraction of these individuals—for reasons not
completely understood—do not develop AIDS and also
display sustained control over viral replication; these
subjects are sometimes referred to as elite controllers
(EC). Prior evidence has shown that HIV-specific CD8+ T-
cells, a component of adaptive immunity against intracel-
lular pathogens, from EC exhibit enhanced functionality
compared to individuals with progressive disease. There-
fore, HIV-specific CD8+ T-cells likely play an important role
in the favorable clinical outcomes witnessed in EC. We
show in this study that the ability to control HIV replication
in EC is associated with the expression of a protein called
perforin, a critical molecule that enables CD8+ T-cells to
directly kill infected cells - thereby preventing the spread
of HIV to previously uninfected cells. In infected subjects
with nonprogressive disease, we show that HIV-specific
CD8+ T-cells demonstrate a superior ability to express
perforin upon antigen-specific stimulation, whereas in
progressors this property is diminished. Thus, we identify a
functional capability of CD8+ T-cells, readily measured by
standard intracellular cytokine staining assays, that poten-
tially has a direct impact on HIV replication in vivo. These
findings may, therefore, provide an important qualifier for
future HIV vaccine research.

Table 1. Clinical parameters of HIV infected subject cohorts.

Patient Characteristics Elite Controller Viremic Controller Chronic Progressor Viremic Nonprogressor HAART-treated

Number of subjects 35 29 27 6 15

Plasma HIV RNA, median (IQR),
copies/mL

undetectable 396 (82–874) 24,121 (18,000–41,579) 35,000 (29,672–101,500) undetectable

CD4+ T-cell count, median (IQR),
cells/mm3

811 (702–1,068) 576 (449–785) 508 (401–599) 557 (439–625) 440 (301–610)

Decline in CD4+ T-cell count per year,
median (IQR), cells/mm3

Not determined Not determined 170 (103–319) 36 (26–47) Not determined

Infection duration, median (IQR), years 17 (13–21) 12 (8–19) 7 (4–13) 20 (16–22) 16 (12–20)

Duration of HAART treatment prior to
PBMC sample, median (IQR), years

N/A N/A N/A N/A 2 (1–6)

doi:10.1371/journal.ppat.1000917.t001

Rapid Perforin Expression and Control of HIV
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Figure 1. HIV-specific CD8+ T-cells in EC demonstrate an enhanced ability to express perforin compared to CP. (A) The CD8+ T-cell
response magnitude to all HIV peptide pools was calculated for EC, VC, and CP and plotted as percent of CD8+ T-cells (excluding naı̈ve cells). The total
magnitude was calculated by summing across all functional combinations. (A) The proportion of the average HIV-specific CD8+ T-cell response

Rapid Perforin Expression and Control of HIV
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enhanced production of IL-2 after HIV-specific stimulation in

subjects with low or undetectable viremia [7,8,10]. Similar overall

observations were found for the individual HIV antigens as well

(data not shown).

HIV-specific CD8+ T-cells in EC demonstrated a greater
ability to express perforin than VC and CP
We next assessed perforin expression by HIV-specific CD8+ T-

cells in each cohort group. We consistently observed higher co-

expression of perforin within responding cells from EC compared

to VC or CP for all HIV antigens (Fig. 1C shows representative

Nef-specific responses producing IFN-c; other HIV antigens are

not shown but yielded similar results). In fact, perforin expression

comprised a significantly greater proportion of the average HIV-

specific CD8+ T-cell response in EC than in CP (Fig. 1D). The

relative contribution of perforin to the CD8+ T-cell response was

significantly higher (,3 fold) in EC compared to CP for all of the

individual HIV antigens (Fig. 1E). In addition to the proportion of

the HIV-specific CD8+ T-cell response comprised of perforin, EC

also displayed a greater magnitude of perforin expression upon

stimulation by all HIV antigen pools compared to both VC and

CP (Fig. S2). However, we found no correlation among EC

between the total magnitude of an HIV-specific response and the

corresponding amount of perforin expression (Fig. S3).

As shown in Figure S4, there was, however, some variability

among EC subjects in the contribution of perforin to the HIV-

specific CD8+ T-cell response. Within some EC there was low

perforin expression induced by one HIV antigen (e.g. Gag) but

higher perforin production to another peptide pool (e.g. Pol).

Some EC demonstrated high HIV-specific perforin in response to

every antigen. Although several EC did express low levels of HIV-

specific perforin, only 20% of all EC in the cohort failed to achieve

30% perforin for the CD8+ T-cell response to at least one of the

antigen pools (data not shown). In contrast, only 15% of CP

demonstrated even one HIV antigen-specific CD8+ T-cell

response comprised of 30% perforin (data not shown). Thus, our

data suggests that EC are not simply a homogenous group of HIV-

infected individuals and do demonstrate some variability, which is

in agreement with previous findings [7,29].

Next, we examined the functional profile of the average Nef-

specific CD8+ T-cell response among the EC, VC, and CP groups

(Fig. 2A and 2B; the other HIV antigens are not shown but yielded

similar results). Only the functional combinations that were

significantly different between at least two of the groups are

shown in Figure 2A; all 64 combinations are shown in Figure S5.

We rarely observed simultaneous expression of all six functions

because perforin and IL-2 are generally not co-expressed by the

same cell [30]. The average Nef-specific functional profile in EC

and VC was composed of more CD8+ T-cells than in CP that

simultaneously expressed five functions (Fig. 2B). Additionally, the

percentage of the Nef-specific response that was perforin-positive

(black arcs in Fig. 2B) was significantly higher among EC (44%)

compared to VC (27%; p,0.05) or CP (14%; p,0.001). Similar

findings were observed for Gag-, Pol-, Env-, and TRVVV-specific

responses (data not shown).

The majority of perforin was produced by cells expressing only

a single other function: CD107a or MIP1a (Fig. 2B). The CD8+ T-

cells that co-expressed CD107a and perforin likely upregulated

perforin de novo since a cell that was CD107a+ presumably lost all

(or nearly all) of its granule-associated perforin through the process

of degranulation. As shown in Figure S6, the proportion of the

HIV-specific response in EC that was both CD107a+ and

perforin+ was significantly higher than CP for all HIV antigens.

The second major population of perforin+ cells co-expressed only

MIP1a. The relevance of this population is unclear. However, we

have previously shown that activated CD8+ T-cells can transport

newly synthesized perforin directly to the immunological synapse

without trafficking first through cytolytic granules [23]. Thus,

despite the absence of apparent degranulation, MIP1a+ perforin+

cells may potentially be involved in ongoing cytolytic activity.

Perforin expression is not restricted to the presence of
protective HLA-B alleles
One consistent host factor associated with durable control of

HIV is the presence of certain HLA class I alleles, particularly

HLA-B27 and B57 [1,4,31,32,33]. Other HLA-B alleles have also

been associated with delayed disease progression or lower viral

loads, including HLA-B13, B15, B51, and B58 [5,6]. Among EC

in our cohort, 54% of the subjects expressed HLA-B27 or B57,

while 32% of VC carried these alleles (data not shown).

Additionally, 43% of EC in the study cohort expressed either

HLA-B13, B15, B51, or B58, while 32% of VC carried these

alleles (data not shown). As shown in Figures 3A and S7, we found

no association between protective HLA-B status and perforin

expression to any HIV peptide pool in either EC or VC (Gag

shown in Fig. 3A, Nef shown in Fig. S7, and data not shown), or

when perforin expression to all HIV peptide pools was averaged

within each subject (Fig. 3B). Thus, there was no apparent

relationship between protective HLA-B alleles and the capacity of

HIV-specific CD8+ T-cells to express perforin after stimulation.

Distinct expansion of HIV-specific effector CD8+ T-cells in
EC
We next examined the memory phenotype, based on surface

expression of CD27, CD45RO, and CD57, of HIV-specific CD8+

T-cells in each group. The majority of HIV-specific CD8+ T-cells

that expressed perforin in EC, VC, and CP were

CD27-CD45RO-CD57+/- (Fig. 4A and 4B and data not shown),

commonly considered an effector-type profile, which is in

agreement with previous reports that examined the presence of

perforin in various human CD8+ T-cell memory subsets [34,35].

This phenotype was common to virtually all perforin+ HIV-

specific CD8+ T-cells regardless of their specificity for Gag, Pol,

Nef, Env or TRVVV (Fig. 4A and data not shown). HIV-specific

CD8+ T-cells among many CP subjects were skewed toward a

CD27+CD45RO+/- memory phenotype (Fig. 4C), as previously

comprised of each single functional parameter (except perforin) is shown for EC, VC, and CP. (C) Representative flow cytometric plots of perforin
versus IFN-c are shown from one representative EC, VC, and CP. Percentages represent the proportion of functional cells that stain either positive or
negative for perforin. Values in parentheses are the magnitude of each population and denote percent of CD8+ T-cells (excluding naı̈ve cells). All
reported values have been corrected for background. (D) The proportion of the average HIV-specific CD8+ T-cell response comprised of perforin is
shown for EC, VC, and CP. (E) The relative contribution of perforin to the Gag-, Pol-, Env-, Nef-, and TRVVV-specific CD8+ T-cell responses is shown for
EC, VC, and CP. (A, B, D, E) Statistical analysis was carried out using one-way ANOVA tests (nonparametric; Kruskal-Wallis) followed by a Dunns test for
multiple comparisons. * denotes a p value,0.05, ** denotes a p value,0.01, and *** denotes a p value,0.001. All bars represent the mean and error
bars indicate the standard deviation.
doi:10.1371/journal.ppat.1000917.g001

Rapid Perforin Expression and Control of HIV
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shown [8,36,37]. However, a higher proportion of HIV-specific

CD8+ T-cells in EC than in CP displayed a memory phenotype

consistent with highly differentiated effector cells (Fig. 4C).

Overall, the presence of CD27-CD45RO- HIV-specific CD8+ T-

cells was less common among CP than EC (Fig. S8) in agreement

with a previous study [14]. The absence of effector-like HIV-

specific CD8+ T-cells in CP is not, however, reflective of the total

CD8+ T-cell pool in these individuals. A substantial fraction of

CD8+ T-cells in CP that responded to CEF stimulation were

CD27-CD45RO- (Fig. 4D). However, responding Gag-specific

CD8+ T-cells within the same subjects were primarily

CD27+CD45RO+ (Fig. 4D).

Inverse relationship between HIV-specific perforin
expression and viral load
Having observed higher perforin expression in HIV-specific

CD8+ T-cells in EC, we next examined the relationship between

perforin expression and viral load. We found a significant inverse

correlation between the average HIV-specific perforin expression

within each subject and HIV viral load (Fig. 5A). This inverse

relationship was found for every individual HIV antigen specificity

(data not shown) and when only considering subjects with

detectable viremia (EC subjects excluded; Fig. S9). We also found

a statistically significant positive correlation between CD4+ T-cell

counts in the blood and HIV-specific perforin expression by CD8+

Figure 2. The majority of perforin expression comes from cells with otherwise limited functional capability. (A) The functionality of the
average Nef-specific CD8+ T-cell response is shown; only the functional permutations that varied significantly between at least two of the groups are
shown. ** denotes a p value ,0.01 based on a Lachenbruch’s Two-part Wilcoxon test as described in the Methods. All bars represent the mean and
error bars indicate the standard deviation. (B) The average Nef-specific CD8+ T-cell functional profile is shown for EC, VC, and CP. Responses are
grouped according to the number of positive functions. The relative amount of perforin positivity within each functional group (i.e. each pie slice) is
depicted as black arcs. The relative contribution of perforin (mean value) to the entire response is represented by the percentage in the center of
each pie.
doi:10.1371/journal.ppat.1000917.g002

Rapid Perforin Expression and Control of HIV
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T-cells across all subjects (Fig. S10), a finding most likely driven by

the high CD4+ T-cell counts among the EC subjects (Table 1).

Furthermore, when we examined the other functional parameters

in a similar manner, we only found a statistically significant inverse

relationship between IL-2 expression and viral load (Fig. S11),

which is an expected result based upon previous studies.

To better understand the relationship between viral load and

perforin expression, we next compared HIV-specific CD8+ T-cell

responses among EC to viremic nonprogressors (VNP), who

maintain stable CD4+ T-cell counts in the face of consistently high

viral loads (median 35,000 viral RNA copies/mL plasma; Table 1)

without progressing to AIDS. The infection duration in both

groups was similar (17 vs. 20 years in the absence of therapy;

Table 1). Therefore, by comparing these two groups, we can

control for the rate of CD4+ T-cell decline, progression rate, and

duration of infection. As shown in Figure 5B, perforin expression

by HIV-specific CD8+ T-cells in VNP is significantly lower than

EC and actually closely resembles the perforin levels observed in

CP. Together, these data indicate that the degree of HIV-specific

CD8+ T-cell perforin expression is predictive of the ability to

control viral load independent of the rate of CD4+ T-cell decline,

progression status, or infection duration.

HIV-specific perforin expression is not recovered by
HAART
In order to determine whether the low perforin expression

associated with progression was reversible, we examined HIV-

specific perforin expression by CD8+ T-cells in HAART-treated

individuals with undetectable HIV viremia (Table 1). Compared

to EC, the total CD8+ T cell response magnitude was lower in

HAART-treated subjects to Gag, Pol, and Nef stimulation;

however, only the difference in the total Gag-specific magnitude

reached statistical significance (Fig. S12). Despite some differences

in total magnitude, there were no substantive differences in the

relative contribution of degranulation, IFN-c, TNFa, or MIP1a
production (Fig. S13). However, HIV-specific perforin expression

in HAART-suppressed subjects was considerably lower than EC,

and was similar to the levels observed in CP (Fig. 5B). Thus, the

ability to express and rapidly upregulate perforin by HIV-specific

CD8+ T-cells in chronic HIV infection is not recovered following

HAART.

Discussion

While many cell surface markers, activation profiles, and

functional parameters of both ex vivo HIV-specific CD8+ and

CD4+ T-cells have been shown to correlate with control of viremia

[8,38,39,40,41,42], few, if any, can potentially mediate direct

control of HIV replication through the lysis of infected cells. Here

we have shown that perforin expression by ex vivo HIV-specific

CD8+ T-cells is significantly higher in EC compared to patients

with uncontrolled viral replication. HIV-specific CD8+ T-cells that

express perforin bear predominantly an effector phenotype,

indicating that effector populations, in addition to central memory

populations [43,44], may be critically important to the control of

HIV infection. We also find an inverse correlation between

perforin expression by HIV-specific CD8+ T-cells and viral load.

Together, these results represent an unique assessment of HIV-

specific immunity and provide a novel platform for measuring

potential vaccine efficacy in clinical trials.

There is little question regarding the crucial importance of

perforin in the control of infectious pathogens. Indeed, mutation

or dysregulation of perforin in humans results in compromised

cellular immunity and enhanced susceptibility to viral infections

[45]. Previous reports on ex vivo HIV-specific CD8+ T-cells have

uniformly found low or absent perforin expression in both CP and

EC and no detectable differences in perforin levels between the

groups [13,25,27,37,46]. However, these studies have in retrospect

only defined the level of granule-associated perforin within resting

HIV-specific CD8+ T-cells due to unforeseen limitations in the

anti-perforin antibody employed in these studies [23,24]. Due to

chronic activation and continual presence of viral antigen - albeit

extremely low levels in EC [47] - HIV-specific CD8+ T-cells are

unlikely to reach a true resting state; therefore, it is unlikely these

cells accumulate cytolytic granules containing perforin in vivo.

However, our results indicate that this does not preclude their

Figure 3. Perforin expression is not restricted to the presence
of protective HLA-B alleles. EC were stratified based on the
expression of HLA-B alleles previously shown to be associated with
improved clinical outcomes. The relative amount of perforin expression
is shown for the (A) Gag-specific and (B) average HIV-specific CD8+ T-
cell responses among all EC. Each symbol represents an individual study
subject. Some of the symbols are colored to denote the presence of
another protective HLA-B allele: blue, HLA-B13; green, HLA-B15; orange,
HLA-B51; red, HLA-B58. No statistically significant differences were
found between the groups using a one-way ANOVA test (nonparamet-
ric; Kruskal-Wallis) followed by a Dunns test for multiple comparisons.
The error bars represent the mean and standard deviation.
doi:10.1371/journal.ppat.1000917.g003
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ability to upregulate new perforin upon antigen-specific stimula-

tion, a killing mechanism that we have recently shown potentiates

the cytotoxic ability of human CD8+ T-cells [23].

We have shown previously that both the commonly used anti-

perforin antibody (dG9 clone) and the anti-perforin antibody used

in this study (B-D48 clone) stain resting CD8+ T-cells equivalently

[24]. Thus, previous research that found no difference in the levels

of perforin within resting HIV-specific CD8+ T-cells between EC

and CP [13,25,27,37,46] were not necessarily incorrect. Here, we

have shown using a perforin antibody that can detect both

granule-associated and granule-independent forms of perforin that

HIV-specific CD8+ T-cells from EC express this protein to a

higher degree than patients with uncontrolled viremia. It is

important to note, though, that the B-D48 clone cannot

specifically distinguish pre-formed from newly upregulated

perforin using flow cytometric-based assays. Nevertheless, to

identify the potential contribution of perforin produced de novo,

we examined the proportion of the HIV-specific CD8+ T-cell

Figure 4. Distinct expansion of HIV-specific effector CD8+ T-cells in EC. (A) Gag-, Pol-, and Nef-specific perforin+ functional subsets (red
events) were overlaid onto a density plot (black shading) of the memory phenotype, as determined by CD27, CD45RO, and CD57, of the total CD8+ T-
cell population in three representative EC subjects. (B) The memory phenotype of Gag-, Pol-, and Nef-specific perforin+ functional subsets, as
determined by CD27, CD45RO, and CD57, was determined for all EC. Bars represent the mean and error bars indicate the standard deviation. (C) Gag-,
Pol-, and Nef-specific CD8+ T-cells, as defined by the production of IFN-c or TNFa (green events), were overlaid onto a density plot (black shading) of
the memory phenotype, as determined by CD27 and CD45RO, of the total CD8+ T-cell population in three separate EC and CP subjects. (D) Gag- and
CEF-specific CD8+ T-cells, as defined by the production of IFN-c or TNFa (green events), were overlaid onto a density plot (black shading) of the
memory phenotype, as determined by CD27 and CD45RO, of the total CD8+ T-cell population in two separate CP subjects. (A, C, D) Percentages
represent the fraction of overlaid cells that fall within each quadrant.
doi:10.1371/journal.ppat.1000917.g004
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response that both degranulated (CD107a+) yet remained

perforin+ after six hours of stimulation. These CD8+ T-cells that

co-expressed CD107a and perforin likely upregulated new

perforin; they have presumably lost most or all of their pre-

formed perforin through the process of degranulation. By

analyzing this specific population, we found that the proportion

of the HIV-specific CD8+ T-cell response in EC that co-expressed

CD107a+ and perforin+ was significantly higher than CP to all

HIV antigens. However, we have also shown that newly

synthesized perforin largely bypasses cytotoxic granules [23];

therefore, we are almost certainly underestimating the levels of

perforin upregulation by focusing only on cells that have

degranulated.

The capacity of unstimulated CD8+ T-cells from EC to begin to

eliminate HIV-infected autologous CD4+ T-cell targets within

several hours of co-incubation has been previously reported [14].

The results from this study suggested that HIV-specific CD8+ T-

cells were responsible for the elimination of infected CD4+ T-cells

through a mechanism dependent on cell-to-cell contact and MHC-I

restriction. Our findings on perforin upregulation by HIV-specific

CD8+ T-cells shortly after stimulation are consistent with the results

of Saez-Cirion and colleagues [14] and may even be a mechanism

to explain their findings. Moreover, another previously published

report indicated that HIV-specific CD8+ T-cells kill targets through

the use of cytotoxic granules and not by the Fas/FasL pathway [48].

Therefore, available evidence indicates that the perforin/granzyme

pathway of cytotoxicity is likely the primary means by which HIV-

specific CD8+ T-cells kill infected cells in vivo.

Our findings here suggest that HIV-specific CD8+ T-cells in EC

have a superior cytotoxic potential by expressing higher levels of

Figure 5. Inverse relationship between viral load and HIV-specific perforin expression, which is not rescued by HAART. (A) The
average proportion of HIV-specific perforin expression within each subject was plotted against the HIV viral load from each respective subject. The
most proximal viral load measurement to the time point of the PBMC sample was used in the analysis. Spearman correlation tests (nonparametric;
two-tailed) were performed to determine statistical significance. (B) The relative contribution of perforin to the Gag-, Pol-, and Nef-specific CD8+ T-cell
responses is shown for all EC, CP, VNP, and HAART-suppressed subjects. Each symbol represents an individual study subject. One-way ANOVA tests
(nonparametric; Kruskal-Wallis test) were performed followed by a Dunns test for multiple comparisons. * denotes a p value ,0.05, ** denotes a
p value ,0.01, and *** denotes a p value ,0.001. The error bars represent the mean and standard deviation.
doi:10.1371/journal.ppat.1000917.g005
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perforin. This supposition is supported by recent work from

Migueles and colleagues [17]. These authors showed that HIV-

specific CD8+ T-cells from EC accumulate more granule-

associated perforin as a result of their superior ability to proliferate

in vitro compared to CD8+ T-cells from progressors. They also

found that higher amounts of perforin (and granzyme B) in HIV-

specific cells translate into an enhanced ability to lyse infected

targets. Thus, together with the previous work of Migueles et al.,

our results show that EC have an enhanced ability to upregulate

perforin either directly ex vivo or after in vitro proliferation. Given

what is known about the importance of perforin in orchestrating

cytotoxicity, we can conclude that HIV-specific CD8+ T-cells from

EC certainly have the potential to elicit elimination of infected

targets to a greater degree than progressors, which may directly

impact viral load. Furthermore, we know that newly synthesized

perforin traffics directly to the immunological synapse - the site of

action of cytotoxicity [23].

Besides differences in cytotoxic capabilities, HIV-specific CD8+

T-cells from EC have also been shown to be more polyfunctional

in nature; they can simultaneously degranulate and produce

multiple functional molecules, such as IL-2, IFN-c, and TNFa, to

a greater extent than CD8+ T-cells from progressors [8,49]. Our

results here confirm and extend these findings. Polyfunctional

HIV-specific CD8+ T-cells were also found in this study to

comprise a greater fraction of the response in EC than in CP.

Interestingly, we rarely observed HIV-specific CD8+ T-cells

capable of producing all six functions simultaneously. This results

from a dichotomous relationship between perforin and IL-2

production from the same cell [30]. The implications of this

dichotomy are profound for our understanding of effective HIV-

specific CD8+ T-cell responses: IL-2 producing CD8+ T-cells will

presumably not have immediate cytolytic activity; conversely,

perforin producing CD8+ T-cells may be inherently reliant upon

production of IL-2 from cells in their surrounding environment for

maintenance or modulation. Both cell types are most likely crucial

to maintaining protective immunity. The IL-2 producing cells may

be part of a population of CD8+ T-cells that can maintain itself

through autocrine production of IL-2. This ability may be

important in the setting of diminished CD4+ T-cell help in HIV

infection [10]. Alternatively, these cells may represent a self-

renewing memory population of CD8+ T-cells responsible for

long-term maintenance of effector cells. IL-2 producing cells likely

do not display any direct anti-viral capability directly after

activation [30] but may be able to differentiate into perforin

producing effector cells. The increased IL-2 production observed

by both HIV-specific CD8+ T-cells and CD4+ T-cells [42] in EC

may also directly increase cytotoxic potential, as has recently been

reported [50,51].

Interestingly, we found that a substantial fraction of the total

perforin production by HIV-specific CD8+ T-cells among EC

comes not from polyfunctional populations but instead from cells

that elicit only a single other measured functional parameter:

specifically MIP1a or CD107a. In previous studies, where

perforin upregulation was not measured, the potential importance

and cytotoxic capabilities of these populations was not appreci-

ated. On this note, the degree of functionality of a CD8+ T-cell

response is only reflective of what functional parameters are

actually being measured. For example, we find that most CD8+ T-

cells that upregulate perforin also produce granzyme B upon

stimulation [30]. Therefore, many of the CD8+ T-cells found in

this study to co-express perforin with MIP1a and/or CD107a,

may actually be highly ‘‘polyfunctional’’ if we had also examined

the expression of other parameters critical for cytotoxicity, such as

granzyme B.

Our data show that perforin expressing cells bear effector-like

phenotypic markers. Thus, while a central memory phenotype is

often considered a protective phenotype in HIV infected

individuals, our results suggest that effector cells are also of

significance. It should be noted, however, that simply achieving

effector status does not guarantee the expression of perforin.

Indeed, some HIV-specific CD8+ T-cells in both EC and CP were

CD27-CD45RO- yet did not express perforin. Our results suggest

that effector status is necessary but not sufficient for perforin

upregulation. The importance of effector cells in the control of

HIV infection is further supported by recent observations by

Picker and colleagues who found that a rhesus-CMV-based SIV

vaccine vector could stimulate protective effector SIV-specific

CD8+ T-cells [52].

Our results suggest that perforin expression by HIV-specific

CD8+ T-cells is not readily recovered by inhibition of viral

replication or reduction in chronic immune activation by HAART

- a finding which is consistent with a previous report showing that

HAART treatment does not restore other functional parameters,

such as proliferative capacity, polyfunctionality, or cytotoxic

capacity [53]. We also found that perforin production does not

appear to be directly influenced by beneficial HLA-B haplotypes

or the relative maintenance of CD4+ T-cell levels over time.

Whether perforin expression is lost early, late, or progressively

during infection remains unclear. Further studies are necessary to

identify the mechanism(s) underlying the relative absence of

perforin upregulation in progressive HIV infection, and, if

possible, to discover a means by which this critical function can

be regained or elicited through therapeutic intervention.

Materials and Methods

Ethics statement
Blood specimens were acquired with the written informed

consent of all study patients and with the approval of the

institutional review board at each respective institution where

patient materials were collected: University of Pennsylvania

(IRB# 809316), University Hospitals Case Western Medical

Center (IRB# FWA00003937), University of Alabama at

Birmingham (IRB# X090708004), University of Toronto and

St. Michael’s Hospital (IRB# 07-106), and Harvard University

(IRB# 2003-P-001894 and IRB# 2003-P-001678/75). The study

was conducted following the principles stipulated in the Declara-

tion of Helsinki.

Human subjects
We examined ex vivo HIV-specific CD8+ T-cell responses from

35 elite controllers (EC), 29 viremic controllers (VC), 27 chronic

progressors (CP), and 6 viremic nonprogressors (VNP). Most EC

and VC were recruited from outpatient clinics at local Boston

hospitals as well as from providers throughout the United States

[54]. Several EC were also recruited from clinics associated with

the University of Toronto. PBMC samples from CP were from

clinics associated with the University of Pennsylvania Center for

AIDS Research, the University of Toronto, Case Western Reserve

University, and the University of Alabama at Birmingham. VNP

samples were obtained from the University of Toronto and Case

Western Reserve University. PBMC samples from 15 HAART-

suppressed patients were obtained from Harvard University and

the University of Toronto.

EC were defined by consistent plasma HIV RNA levels below

the limit of detection (e.g. ,75 copies/mL by bDNA or ,50

copies/mL by ultrasensitive PCR) in a minimum of three

determinations of plasma HIV RNA spanning at least a 12-
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month period. VC consistently maintained viral load between 50

and 2,000 copies/mL, while the majority of viral load measure-

ments of CP were above 10,000 copies/mL. CD4+ T-cell counts

were not considered for inclusion criteria in the EC, VC, or CP

groups. VNP were identified as subjects with consistently high

viremia (above 10,000 copies/mL on average) but with relatively

stable CD4+ T-cell counts after long-term infection. It is the

relative preservation of CD4+ T-cell numbers in spite of sustained

high level HIV replication that was used to distinguish the VNP

group clinically from CP. All subjects from the EC, VC, CP, and

VNP groups were off antiretroviral therapy for at least 6 months

prior to the sampling date; yet most subjects were treatment-naive.

Refer to Table 1 and Table S1 for more detailed information on

the study cohort.

Antibodies
The following antibodies were used in this study: anti-CD4 PE

Cy5.5, anti-CD14 APC Alexa 750, anti-CD19 APC Alexa 750,

anti-CD8 Texas Red-PE, anti-IFN-c Alexa 700 (Invitrogen,

Carlsbad, CA), anti-CD107a FITC, anti-IL-2 APC, anti-TNFa
PE Cy7 (BD Pharmingen, San Diego, CA), anti-MIP1a PE (R&D

Systems, Minneapolis, MN), anti-CD27 PE Cy5 (Beckman

Coulter, Fullerton, CA), anti-CD57 Qdot 565, anti-CD3 Qdot

585, and anti-CD45RO Qdot 605 or 705 (custom). Custom

conjugations to Quantum (Q) dot nanocrystals were performed in

our laboratory with reagents purchased from Invitrogen. The anti-

perforin antibody (B-D48 clone) was purchased from Diaclone

(Besancon, France) and conjugated to Pacific Blue (Invitrogen) in

our laboratory.

PBMC stimulation assays
Cryopreserved PBMC were thawed and subsequently rested

overnight at 37uC, 5% CO2 in complete medium (RPMI

supplemented with 10% FBS and 1% L-glutamine). The following

morning, the cells were washed with complete medium and

resuspended at a concentration of 26106 cells/mL if sufficient cell

numbers were available. Costimulatory antibodies (anti-CD28 and

anti-CD48d; each at 1 mg/ml final concentration; BD Biosciences;

San Jose, California), monensin (1 mg/ml final concentration; BD

Biosciences; San Jose, California) and Brefeldin A (1 mg/ml final

concentration; Sigma-Aldrich; St. Louis, Missouri) were also

added to each condition. Anti-CD107a was added at the start of

all stimulation periods, as described previously [28]. PBMC were

incubated at 37uC, 5% CO2 for six hours with overlapping 15-mer

peptide pools encompassing HIV-1 (clade B) Gag, Pol, Env, Nef,

and the viral accessory proteins (TRVVV) [as 5 separate

conditions]. PBMC from many of the subjects were also stimulated

with a CEF peptide pool, which contains peptides derived from

CMV, EBV, and Influenza virus. Each individual peptide in the

pools was at a final concentration of 2 mg/mL for all stimulations.

At the end of six hours, cells were stained with Aqua amine-

reactive dye (Invitrogen; Carlsbad, California) for 15 minutes in

the dark at room temperature in order to later identify viable cells.

A cocktail of antibodies was then added to the cells to stain for

surface markers for an additional 20 minutes. Following staining

for cell surface molecules, cells were permeabilized using the

Cytofix/Cytoperm kit (BD Biosciences; San Jose, California)

according to the manufacturer’s instructions. A cocktail of

antibodies against intracellular markers was then added to the

cells and allowed to incubate for one hour in the dark at room

temperature. Finally, cells were fixed in 1x PBS containing 1%

paraformaldehyde (Sigma-Aldrich; St. Louis, Missouri) before

being stored in the dark at 4uC until the time of collection on the

flow cytometer.

Flow cytometric analysis
For each stimulation condition, at least 500,000 total events

were acquired using a modified LSRII (BD Immunocytometry

Systems, San Jose, California). Data analysis was performed using

FlowJo (version 8.8.4; TreeStar, Ashland, Oregon) and Spice

(version 4.2.3, Dr. Mario Roederer, NIH, Bethesda, Maryland).

Reported data have been corrected for background, and only

responses with a total frequency above 0.25% of memory CD8+ T-

cells (after background subtraction) were considered for analysis.

Boolean gating analysis was carried out once positive gates were

established for each functional parameter. This analysis resulted in

64 possible combinations of the 6 measured functions. Important-

ly, two combinations were ignored in all analyses: (1) events

negative for all measured functional parameters and (2) perforin

single-positive cells. By analyzing the data in such a manner, we

only examined perforin expression resulting from HIV-specific

stimulation. For this reason, perforin expression was only

considered within activated, HIV-specific CD8+ T-cells expressing

at least one other functional parameter. Refer to Figure S1A for

further information on the gating strategy. As indicated by the

gating strategy, naı̈ve cells (CD27+CD45RO-) were excluded when

performing all analyses except for the memory phenotyping data

presented in Figure 4.

Statistical analysis
All graphing and statistical analysis was performed using R

(version 2.8.1), JMP (version 7), or GraphPad Prism software

(version 5.0a). Functionality was compared between study groups

using nonparametric tests (Mann-Whitney test for two groups;

Kruskal-Wallis test followed by a Dunns test for multiple

comparisons when comparing three or more groups). Correlations

between viral load or CD4+ T-cell counts and perforin expression

were based on Spearman correlation coefficients. Comparisons

between groups of specific functional permutations were based on

a Lachenbruch’s Two-part Wilcoxon test. This analysis simulta-

neously tests for a difference in the proportion of subjects who

have an above zero response and a difference in the magnitude of

the response [55,56]. Only those functional combinations for

which the average response was greater than zero were considered

to be relevant for consideration. Functional permutations were

considered significantly different if the p value was below 0.01. In

all figures, * denotes a p value ,0.05, ** denotes a p value ,0.01,

and *** denotes a p value ,0.001. Unless otherwise noted, error

bars represent the standard deviation.

Supporting Information

Figure S1 Perforin upregulation can be detected using a
polychromatic flow cytometric staining panel. (A) The

gating strategy from a representative subject: PBMC from an EC

were stimulated with SEB for six hours and then stained for six

CD8+ T-cell functions (perforin, CD107a, IFN-c, IL-2, TNFa,
and MIP1a) along with lineage (CD14, CD19, CD3, CD4, CD8)

and memory (CD27, CD45RO, and CD57) markers. The no

stimulation control is also shown. (B) PBMC were stimulated with

SEB for six hours in the presence of BFA and monensin. Perforin

was stained either using the dG9 (left) or B-D48 (right) antibody

clones. The red box denotes granule-associated perforin within the

population of CD8+ T-cells that did not respond to SEB

stimulation (i.e. resting CD8+ T-cells not producing IFN-c). The
black box denotes a population of CD8+ T-cells expressing both

perforin and IFN-c that can be detected using the B-D48 clone in

a conventional ICS assay.

Found at: doi:10.1371/journal.ppat.1000917.s001 (0.60 MB TIF)
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Figure S2 EC demonstrate higher perforin magnitude
than CP. In addition to the relative contribution of perforin to

the HIV-specific CD8+ T-cell response, EC also demonstrate

higher perforin magnitude. Total perforin production induced by

each HIV antigen pool is represented as the frequency of CD8+ T-

cells (excluding naı̈ve cells). One-way ANOVA tests (nonparamet-

ric; Kruskal-Wallis test) were performed followed by a Dunns test

for multiple comparisons. * denotes a p value , 0.05, ** denotes a

p value , 0.01, and *** denotes a p value , 0.001. All bars

represent the mean and error bars indicate the standard deviation.

Found at: doi:10.1371/journal.ppat.1000917.s002 (0.08 MB TIF)

Figure S3 There is no association between HIV re-
sponse magnitude and corresponding perforin expres-
sion. The Gag-, Pol-, and Nef-specific response magnitude (as the

frequency of CD8+ T-cells; excluding naı̈ve cells) is plotted against

the corresponding proportion of perforin expression for each

CD8+ T-cell response among all EC subjects. Spearman

correlation tests (nonparametric; two-tailed) revealed no statisti-

cally significant relationship.

Found at: doi:10.1371/journal.ppat.1000917.s003 (0.16 MB TIF)

Figure S4 EC demonstrate some variability in HIV-
specific perforin expression. The relative contribution of

perforin for the CD8+ T-cell response to each HIV antigen pool is

shown for a selected subset of EC. Each symbol represents a

different EC subject, and symbols of the same color represent

responses from the same individual. These subjects were chosen

partly because they mounted a positive response to all five HIV

peptide pools.

Found at: doi:10.1371/journal.ppat.1000917.s004 (0.06 MB TIF)

Figure S5 Breakdown of the average Nef-specific re-
sponse from EC, VC, and CP into all 64 possible
functional permutations. The entire response was broken

down into the contribution of each functional combination for the

average Nef-specific CD8+ T-cell response. Note that two

functional permutations are ignored in the analysis: perforin single

positive and all negative. All bars represent the mean and error

bars indicate the standard deviation.

Found at: doi:10.1371/journal.ppat.1000917.s005 (0.14 MB TIF)

Figure S6 EC have an increased capacity for de novo

perforin synthesis. The proportion of the CD8+ T-cell

response comprised of every CD107a+perforin+ functional subset

was calculated for all HIV antigens in EC, VC, and CP. One-way

ANOVA tests (nonparametric; Kruskal-Wallis test) were per-

formed followed by a Dunns test for multiple comparisons.

* denotes a p value , 0.05, ** denotes a p value , 0.01, and

*** denotes a p value , 0.001. All bars represent the mean and

error bars indicate the standard deviation.

Found at: doi:10.1371/journal.ppat.1000917.s006 (0.10 MB TIF)

Figure S7 Perforin expression is not restricted to the
presence of protective HLA-B alleles. EC were stratified

based on the expression of HLA-B alleles previously shown to be

associated with improved clinical outcomes. The relative amount

of perforin expression is shown for the Nef-specific CD8+ T-cell

responses among all EC. Each symbol represents an individual

study subject. Some of the symbols are colored to denote the

presence of another protective HLA-B allele: blue, HLA-B13;

green, HLA-B15; orange, HLA-B51; red, HLA-B58. No statisti-

cally significant differences were found between the groups using a

one-way ANOVA test (nonparametric; Kruskal-Wallis) followed

by a Dunns test for multiple comparisons. The error bars represent

the mean and standard deviation.

Found at: doi:10.1371/journal.ppat.1000917.s007 (0.21 MB TIF)

Figure S8 EC display an expansion of CD27-CD45RO-

effector HIV-specific CD8+ T-cells. The memory phenotype,

based on the surface expression of CD27 and CD45RO, was

determined for the average HIV-specific CD8+ T-cell response, as

defined by the production of IFN-c or TNFa, among EC and CP.

Mann-Whitney tests (nonparametric; two-tailed) were performed

for each phenotypic combination. ** denotes a p value , 0.01. All

bars represent the mean and error bars indicate the standard

deviation.

Found at: doi:10.1371/journal.ppat.1000917.s008 (0.09 MB TIF)

Figure S9 Negative correlation between HIV-specific
perforin expression and viral load when considering
only VC, CP, and VNP subjects. The average percentage of

HIV-specific perforin expression from CD8+ T-cells within each

subject was plotted against the HIV viral load among all subjects

excluding EC. The most proximal viral load measurement to the

time point of the PBMC sample was used in the analysis.

Spearman correlation tests (nonparametric; two-tailed) were

performed to determine statistical significance.

Found at: doi:10.1371/journal.ppat.1000917.s009 (0.09 MB TIF)

Figure S10 Positive correlation between HIV-specific
perforin expression and peripheral blood CD4+ T-cell
counts. The percentage of Gag-, Pol-, and Nef-specific perforin

expression within each subject was plotted against CD4+ T-cell

counts. The average percentage of HIV-specific perforin expres-

sion within each individual was also plotted against CD4+ T-cell

counts. The most proximal CD4+ T-cell count to the time point of

the PBMC sample was used in the analysis. Spearman correlation

tests (nonparametric; two-tailed) were performed to determine

statistical significance.

Found at: doi:10.1371/journal.ppat.1000917.s010 (0.17 MB TIF)

Figure S11 Not all functional parameters are correlated
with control of HIV replication. The proportion of each

measured functional parameter (except perforin) comprising the

average HIV-specific CD8+ T-cell response in each subject was

plotted against the HIV viral load from each respective subject.

The most proximal viral load measurement to the time point of

the PBMC sample was used in the analysis. Spearman correlation

tests (nonparametric; two-tailed) were performed to determine

statistical significance.

Found at: doi:10.1371/journal.ppat.1000917.s011 (0.31 MB TIF)

Figure S12 HIV-specific CD8+ T-cell response magni-
tude is slightly higher in EC than HAART-treated
individuals. The CD8+ T-cell response magnitude to Gag,

Pol, and Nef peptide pools was calculated for EC and HAART-

treated subjects and plotted as percent of CD8+ T-cells (excluding

naı̈ve cells). The total magnitude was calculated by summing

across all functional combinations. Mann-Whitney tests (nonpara-

metric; two-tailed) were performed for each HIV antigen.

** denotes a p value , 0.01. All bars represent the mean and

error bars indicate the standard deviation.

Found at: doi:10.1371/journal.ppat.1000917.s012 (0.06 MB TIF)

Figure S13 The HIV-specific CD8+ T-cell response
between EC and HAART-treated subjects does not vary
greatly in degranulation, cytokine production, or che-
mokine expression. The proportion of the average HIV-

specific CD8+ T-cell response comprised of each single functional

parameter (except perforin) is shown among EC and HAART-

treated subjects. Mann-Whitney tests (nonparametric; two-tailed)

were performed for each functional parameter. * denotes a p value

, 0.05. All bars represent the mean and error bars indicate the

standard deviation.
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Found at: doi:10.1371/journal.ppat.1000917.s013 (0.09 MB TIF)

Table S1 Complete study cohort with relevant clinical
parameters.
Found at: doi:10.1371/journal.ppat.1000917.s014 (1.50 MB TIF)
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