
IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 4, APRIL 1996

Performability Analysis:
A New Algorithm

HBdi Nabli and Bruno Sericola

Abstract-We propose, ifl this paper, a new algorithm to compute the
performability distribution. Its computational complexity is polynomial
and it deals only with nonnegative numbers bounded by one. This
important property allows us to determine truncation steps and so to
improve the execution time of the algorithm.

Index Terms-Fault tolerance, repairable systems, Markov processes,
performability, performance, reliability, uniformization.

+

1 INTRODUCTION

AS recognized in a large number of studies, the quantitative
evaluation of fault-tolerant computer systems requires to deal
simultaneously with aspects of both performance and reliability.
For this purpose, Meyer [l] developed the concept of performabil-
ity of a system which is defined as the accomplishment level of the
system over a specified time period t. The distribution II’ {Y, E B)
is then the probability that the system performs at a level in B,
where B is a set of accomplishment levels. The increasing need in
evaluating performability measures comes from the fact that in
highly available systems, steady state measures can be very poor,
even if the mission time is not small. The use of expectations also
suffers from similar drawbacks. Considering, for instance, critical
applications, it is crucial for the user to ensure that the probability
that its system will achieve a given performance level is high
enough.

Formally, the system fault-repair behavior is assumed to be
modeled by a homogeneous Markov process. Its state space is
divided into disjoint subsets, which represent the different con-
figurations of the system. A performance level (reward rate) is
associated with each of these configurations. This reward rate
quantifies the ability of the system to perform in the correspond-
ing configuration. Performability is then the accumulated reward
over the mission time. The distribution of this random variable
(r.v.) has been studied in previous papers. Some of these papers
(see [2] for references) are restricted to the case of acyclic Markov
processes which are used to model nonrepairable systems.

To model the repair of faulty components in repairable sys-
tems, cyclic Markov processes are needed. For absorbing semi-
Markov processes, Ciardo et al. 131 gave an algorithm to compute
the distribution of accumulated reward until system failure.

The distribution of accumulated reward over a finite mission is
more complex to obtain. In 141, Iyer et al. proposed an algorithm to
compute recursively the moments of the accumulated reward over
the mission time, with a polynomial computational complexity in
the number of states. In [5], the distribution of this r.v. has been
derived using Laplace transform and numerical inversion proce-
dures to get the result in the time domain. De Souza e Silva and
Gail [6] proposed a method based on the uniformization tech-
nique, however their method exibits an exponential computational

l H. Nabli is with IRISA-CNRS, Campus de Beaulieu, 35042 Rennes Ciddex,
France.

l B. Sericola is with IRISA-INRIA, Campus de Beaulieu, 35042 Rennes Gdex,
France. E-mail: sericoln@irisa.fv.

Manuscript received May 9,1994.
For information on obtaining reprints of this article, please send e-mail to:
transactions@computer.oug, and Yeference IEEECS Log Number C95158.

491

complexity in the number of reward rates. Using the same tech-
nique, Donatiello and Grassi [7] obtained an algorithm with a
polynomial computational complexity. However this algorithm
seems to be numerically instable since the coefficient computed in
their recursion can have positive and negative signs and are un-
bounded which can lead to severe numerical errors and overflow
problems. More recently, De Souza e Silva and Gail [8] obtained
also an algorithm with a polynomial computational complexity
which is linear in a parameter that is smaller than the number of
rewards, but their algorithm seems to have the same instability
problem due the use of both positive and negative coefficients.
Pattipati et al. [91 obtained the distribution of the accumulated
reward for nonhomogeneous Markov processes as the solution of
a system of linear hyperbolic partial differential equations which is
numerically solved by using a discretization approach.

In this paper we develop a new algorithm to compute the per-
formability distribution. As in [7] or [8], this method is based on
the uniformization technique. The main contribution of this paper
is that our algorithm is numerically stable by the fact it deals only
with nonnegative numbers bounded by 1. Moreover, the compu-
tational complexity is improved by the use of truncation steps and
the precision of the result can be given in advance. The remainder
of the paper is organized as follows. In the next section, we give
the proposed solution and describe the algorithm and its compu-
tational complexity. In the third section, a model of a fault-tolerant
computer system is presented and solved for a given performabil-
ity measure. The last section is devoted to some conclusions.

2 MODEL SOLUTION AND ALGORITHMICAL ASPECTS
We consider a system modeled by a homogeneous Markov process
X =: {X,, u t 0) with a finite state space E = (1, ., M). A performance
levfd or reward rate fii) is associated with each state i of E. These
reward rates are assumed to be time independent as usual. We de-
note by r, > v,_~ > . > r, the m + 1 reward rates (m < M). The state
space E can be then divided into disjoint subsets B,, B,-1, B,
where Bi is composed by the states of E having as reward rate yi, that
is Bi = {i E E/p(j) = rJ. The process X is given by its infinitesimal
generator A and by its initial probability distribution a: For any
S c: E, we denote by 1s (resp. 0s) the column vector of size the num-
ber of states in S, with all elements equal to 1 (resp. 0).

Using the uniformization technique [lo], we denote by P the
tra-nsition probability matrix of the uniformized Markov chain with
respect to the uniformization rate /z which verifies /z t sup(- A(i, i),
i E E). The matrix P is then related to A by P = I + A//l, where I de-
notes the identity matrix. In the following, to simplify notation, we
will consider X as the uniformized process. For every i, j = 0, ., m,
we denote by P8isi the submatrix of P containing the transition

probabilities from states of Bi to states of Bi and by aB, the subvector

of a containing the initial probabilities corresponding to states of B,.

The r.v. of interest is denoted by Y, and represents the accumulated
reward over the interval of time [0, t]. It is defined by

where l,,, = 1 if condition c is true and 0 otherwise. The r.v. Yt
takes its values in the interval [rot, r,t] and we wish to calculate
IF’ {Y, > s]. The reward rates ri are arbitrary real numbers, but we
assume without loss of generality that r0 = 0 (see [Z]). The main
result of this paper, which is the distribution of Y, is given by the
following theorem (see [2] for the proof).

001%9340/96$05.00 841996 IEEE

492 IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 4, APRIL 1996

THEOREM 2.1.

where
s - +t

‘i = (rj - yjel)t

and coefficients b”(n, k) are given by

b”‘(n, k) = 2 a,$+, k)
i=O

and column vectors bt(n, k) are given by the following recursive

expressions

[forjS1SmandlIkSM]

bg’(n,O) = l,, and bg’(n, 0) = bi-l’(n, n) for j 11

b”‘(n k) =
r.-r m

BI ’
b”’ I ‘i-,’

i I-’
,$~,k-I)+/_ ;I; 2 BIB, 8 r, - r P b”‘(n-l,k-1)

[forO~1~j-landO~k5n-l]

bt’(n, n) = O,[and by(n, n) = br”(n, 0) for j < m

r
b$;(n, k) = e b$n, k + 1) +

I 1
Note that for j 5 15 m we have

5-Y r -r
O<-- 1 -1-J '-'$I

r, - r 1-l YI - 5-l

forO<l<j-lwehave

&L3=*=1_ r, - 5-l
5 - yi

- 51; rj - yI

andforOII<mwehave

For every n 2 0, the initial value bg)(n, 0) is equal to l,, if 1 t 1 and

the final value bg’(n, n) is equal to O,,if I I m - 1. We then easily

obtain by recurrence that 0 B, I bi’(n, k) 5 l,, Moreover, for every

j=l I ...I m, and rj-1 t 5 s < rjt, we have 0 S sj < 1. These remarks are
essential from a computational point of view since the manipula-
tion of nonnegative quantities bounded by 1 allows us to avoid the
instability problems which may appear in the algorithms de-
scribed in [7] and 181. Let us now define for every j = 1, m, a
partition of the state space E as

Uj= B, U U B]andDj= BI-, U ... U Bo
For j = 1, _, m, T denoting
following column vectors

transpose operator, we define the

b (n k) =
Ul ’

b”’ (n k)T ._. b”i(n k)T B, ’ f 1 Bi 1

and

b,, (IT, k) = byI (n, k)T, b$)(n, k)T !
With this notation, Fig. 1 and Fig. 2 illustrate the sequence of com-
putations (drawn only for n = 0, 1, 2, 3) that have to be done in

order to evaluate the bt(n, k)s. Note that the upper part of the

diagonal of by of each triangle of cells is reported in the upper part
of the first column of the next one and the lower part of the first
column of each triangle of cells is reported in the lower part of the
diagonal of the previous triangle of cells. The study of the recur-
rence described in Theorem 2.1 leads to the following remarks. In
the case where j = m, illustrated in Fig. 2, the triangle of cells can
be calculated either in a diagonal by diagonal manner provided
that the first cell of a diagonal is known or in a line by line manner.
In the case where j = 1, the triangle of cells is computed in a line by
line manner but it can be also calculated in a column by column
manner provided that the first cell of a column is known. This is
not possible for the other triangles of cells (that is for j = 2,
m - 1). These cells can be calculated only in a line by line manner.
The way in which the computation of each cell (n, k) is performed
is shown in Fig. 3. We now show that the computation of the last
triangle of cells, which corresponds to j = m, in a diagonal by di-
agonal manner is very useful to reduce the complexity in the case

where the value of s is near from the value of r,t
Given a tolerance error E, we define integer N as

(rm-lt < s < r,t).

The distribution of Y, given in Theorem 2.1 can then be written as

where e(N) verifies e(N) 4 z/2. Another truncation can be per-
formed as follows when s is such that rmelt < s < r,t. If integer C is
defined as

where x = a(1 - .sJ, we have (see [2])

lP(Y, >s) = ig e~“~(;)s,-L(l-s,~~)“b’“‘(,r, n-k)
k=O rl=k
+ e,W, C) + e(N)

where er(N, C) verifies e,(AJ, C) 5 ~‘2. In practice the value of s must

be very close to r,t since the requirement is generally that the r.v.

Y, is close to its maximum value r,t with a probability close to 1;

this gives a value of s, close to 1 and thus the value of C will be
small with respect to the value of N. The global computational
scheme using the truncation step C is shown in Fig. 4, where only
the gray part has to be computed. It is shown in [2] that the com-

putational effort required to compute the distribution of Y, is
O(dM[C(N - C) + mC2/2]) where d denotes the maximum number
of nonzero entries in each row of matrix P, and the storage
complexity is O([(m - 1)C + NIM), where we set C = N when

sir m-lt. The computational effort required by the method of [7] is
O(dMmr\l2/2) and the storage requirement is also O(mMN). The
computational effort required by the method of [B] is stated to be
O(d M B i3), where B is an integer smaller than m/2 and equal or
near to 1 in most cases and the storage requirement is O(MN).
Thus the algorithm proposed in this paper compares favorably
with the methods of [7] and [S] when we wish to evaluate the up-

per tail of the distribution of Y,, which is the case for many per-

IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 4, APRIL 1996

formability models. Another improvement in our algorithm leads
to its numerical stability since it deals only with positive number
bounded by 1. Some values of N and C are given in the next
section.

k
n

j=l

o 1 2 3

j=2

Fig. 1. In cell (n, k) the vectors b,, (n, k) and b,, (M, k)

k0 12 3 0 1 2 3
n

0

l-l

"m-1

D,-I r-l lu?n oDm

j=m-I j=m

Fig. 2. In cell (n, k) the vectors, b,] (n, k) and bDl (n, k).

n-l

k-l k k+l

Fig. 3. Computation of cell (n, k)

j=l j=m-I j=m

Fig. 4. In gray, the computed area

493

3 APPLICATION TO A FAULT-TOLERANT COMPUTER
SYSTEM

In this section we present a model of an architecture for a fault
tolerant shared memory multiprocessor which has been intro-
duced by 1111. It consists of n CPUs, a bus and a Recoverable
Shared Memory (RSM). Each CPU is composed of two processors
in active redundancy whose outputs are compared in order to
detect failures. Each processor gets access to the shared memory
through a private cache which contains the most recent data used
by the processor. This architecture has been designed in a such a
way that the RSM only requires specialized hardware and can
therefore use standard processors, caches and cache coherence
protocols. The backward recovery protocol which is used in this
architecture to tolerate some processor failures is implemented by
the RSM. To provide backward recovery the basic mechanism of
the RSM has to maintain two copies for each memory’s location
which are respectively one current copy accessible by the CPUs
and one recovery copy corresponding to the previous recovery
point. When a recovery point is established, the current copy is
reproduced on the recovery copy so that they both contain identi-
cal data. Subsequent updates at a location only concern one single
copy as the other one keeps a record of the data that was at that
location at the last recovery point instant. Here we assume that
both the bus and the RSM are totally reliable. On the other hand
the fault which occurs in a processor can always be detected,
whether it is a transient or a permanent fault, by running diagnos-
tic checks on the defective CPU for instance. The defective CPU
will still be used within the system if the fault is transient but not if
permanent. The failure rate of each CPU is given by fi A transient
fault occurs with probability d and a permanent one with prob-
ability 1 - d. After such an event, the backward recovery protocol
is then run during a time exponentially distributed with rate ,LL.
Moreover, we assume that the backward recovery protocol recon-
figures the system correctly with probability c and fails with prob-
ability 1 - c. This factor c is usually called the coverage factor of
the system. This establishes a Markov process shown in Fig. 5 for a
number of CPU M = 3. State i, 1 I i I n, corresponds to the state of
the system where i CPU are operationnal. In this state a fault oc-
curs with rate i/3 State y1 + i, 1 < i 5 n, corresponds to the state of
the system where the backward recovery protocol tries to recon-
figure the system with i CPU when the fault is transient and with
i - 1 CPU, i > 1, when it is permanent. State 0 represents the situa-
tion when the system is down. The cost of fault tolerance in this
architecture is mainly due to the establishment of recovery points.
It has been evaluated to 30% of the power of the system in the
worst case. For instance, for a standard architecture with ~1 opera-
tional processors and no fault tolerance which has an assumed
power equal to n, the reward rate ri associated to state i, 1 2 i < M, is
0.7i in our model. The reward rates associated to the other states
are null. With this reward structure associated to our model the
performability distribution II’ (Y, / t > r) represents the probability
that the power of the architecture during [0, t] averaged over time
t is, greater than r with r taken in the interval [O, rJ.

We illustrate the model with the following parameters c = 0.95,
d :- 0.9 and p = 1 per second. This means for instance that the aver-
age execution time of the backward recovery protocol is 1 second.
With these numerical values, Fig. 6 and Fig. 7 both show the prob-
ability that the power of the system is greater than 99.99%
(6= 0.9999) of its max imum power for a one day mission time in
function of the number n of CPLJs and for different values of the
failure rate fi We note that when /3 = lO-5 the probability of reaching

more than 99.99% of the max imum power of the system is smaller
than 0.8 independently of n. We also observe that the number of

494 IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 4, APRIL 1996

CPUs must be at most 4 if I= lo& to obtain that probability greater
than 0.95. For smaller values of the failure rate p (see Fig. 7) more
than 99.99% of the maximum power of the system with a probability
greater than 0.997 can only be reached if the system has two CPU’s

when /3 = 10m7 and a number of CPU’s equal to 8 when ,l3 = 10e8. Fi-

nally, for all these computations the value of the truncation step N is
N = 87701. The value of truncation step C increases from C = 38 (for
n = 2) to C = 109 (for rr = 8). These small values of C with respect to N
show that the computational cost of our algorithm is, in this case,
better than those presented in [71 and [8].

Fig. 5. The Markov process for three CPU

lP{? >

1

0.8

0.6

Jr,]
0.4

0.2

0
2 3 4 5 6 7 8

12

Fig. 6. A one day mission time

0.992

0.99 >
2 3 4 5 6 7 s

72

Fig. 7. A one day mission time.

4 CONCLUSIONS
The proposed method for evaluating the performability distribution
leads to a new algorithm for which the number of operations is lin-
ear in the number of states of the system and linear in the number of
rewards. Its main advantage with respect to existing algorithms, is
that the number of operation is linear in the truncation step N and
quadratic in the truncation step C which is in practice very small in
comparison to N. Moreover this algorithm deals only with positive
numbers bounded by 1, thus improving its stability.

ACKNOWLEDGMENT
This work has been partly supported by the FASST Esprit project
(5212).

REFERENCES
RI

121

[31

I41

151

[61

[71

@I

191

DO1
[111

J.F. Meyer, “On Evaluating the Performability of Degradable
Computing Systems,” IEEE Trans. Computers, vol. 29, no. 8, pp.
720-731, Aug. 1980.
H. Nabli and B. Sericola, “Performability Analysis of Fault-
Tolerant Computer Systems,” Tech. Report 2254, INRIA, Campus
de Beaulieu, 35042 Rennes Cedex, France, May 1994.
G. Ciardo, R. Marie, B. Sericola, and KS. Trivedi, “Performability
Analysis Using Semi-Markov Reward Processes,” IEEE Trans.
Computers, vol. 39, no. 10, pp. 1,251-1,264, Oct. 1990.
B.R. Iyer, L. Donatiello, and P. Heidelberger, “Analysis of Per-
formability for Stochastic Models of Fault-Tolerant Systems,”
IEEE Trans. Computers, vol. 35, no. 10, pp. 902-907, Oct. 1986.
R.M. Smith, K.S. Trivedi, and A.V. Ramesh, “Performability
Analysis: Measures, an Algorithm, and a Case Study,” IEEE
Truns. Computers, vol. 37, no. 4, pp. 406-417, Apr. 1988.
E. de Souza e Silva and H.R. Gail, “Calculating Availability and
Performability Measures of Repairable Computer Systems Using
Randomization,” no. 4,]. ACM, vol. 36, pp. 171-193, Jan. 1989.
L. Donatiello and V. Grassi, “On Evaluating the Cumulative Per-
formance Distribution of Fault-Tolerant Computer Systems,”
IEEE Trans. Computers, vol. 40, no. 11, pp. 1,301-1,307, Nov. 1991.
E. de Souza e Silva and H. R. Gail, “Calculating Transient Distri-
butions of Cumulative Reward,” Tech. Report CDS-930033, Univ.
of California, Los Angeles, Sept. 1993.
K.R. Pattipati, Y. Li, and H.A.P. Blom, “A Unified Framework for
the Preformability Evaluation of Fault-Tolerant Computer Sys-
tems,” IEEE Trans. Computers, vol. 42, no. 3, pp. 312-326, Mar.
1993.
SM. Ross, Stochastic Processes. John Wiley & Sons, 1983.
M. Bandtre, A. Gefflaut, P. Joubert, P. Lee, and C. Morin, “An
Architecture for Tolerating Processor Failures in Shared-Memory
Multiprocessors,” Tech. Report 1965, INRIA, Campus de Beau-
lieu, 35042 Rennes Cedex, France, Mar. 1993.

