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Performability Analysis: 
A New Algorithm 

HBdi Nabli and  Bruno Sericola 

Abstract-We propose, ifl this paper, a new algorithm to compute the 
performability distribution. Its computational complexity is polynomial 
and it deals only with nonnegative numbers bounded by one. This 
important property allows us to determine truncation steps and so to 
improve the execution time of the algorithm. 

Index Terms-Fault tolerance, repairable systems, Markov processes, 
performability, performance, reliability, uniformization. 
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1 INTRODUCTION 

AS recognized in a large number of studies, the quantitative 
evaluation of fault-tolerant computer systems requires to deal 
simultaneously with aspects of both performance and reliability. 
For this purpose, Meyer [l] developed the concept of performabil- 
ity of a system which is defined as the accomplishment level of the 
system over a specified time period t. The distribution II’ {Y, E B) 
is then the probability that the system performs at a level in B, 
where B is a set of accomplishment levels. The increasing need in 
evaluating performability measures comes from the fact that in 
highly available systems, steady state measures can be very poor, 
even if the mission time is not small. The use of expectations also 
suffers from similar drawbacks. Considering, for instance, critical 
applications, it is crucial for the user to ensure that the probability 
that its system will achieve a given performance level is high 
enough. 

Formally, the system fault-repair behavior is assumed to be 
modeled by a homogeneous Markov process. Its state space is 
divided into disjoint subsets, which represent the different con- 
figurations of the system. A performance level (reward rate) is 
associated with each of these configurations. This reward rate 
quantifies the ability of the system to perform in the correspond- 
ing configuration. Performability is then the accumulated reward 
over the mission time. The distribution of this random variable 
(r.v.) has been studied in previous papers. Some of these papers 
(see [2] for references) are restricted to the case of acyclic Markov 
processes which are used to model nonrepairable systems. 

To model the repair of faulty components in repairable sys- 
tems, cyclic Markov processes are needed. For absorbing semi- 
Markov processes, Ciardo et al. 131 gave an algorithm to compute 
the distribution of accumulated reward until system failure. 

The distribution of accumulated reward over a finite mission is 
more complex to obtain. In 141, Iyer et al. proposed an algorithm to 
compute recursively the moments of the accumulated reward over 
the mission time, with a polynomial computational complexity in 
the number of states. In [5], the distribution of this r.v. has been 
derived using Laplace transform and numerical inversion proce- 
dures to get the result in the time domain. De Souza e Silva and 
Gail [6] proposed a method based on the uniformization tech- 
nique, however their method exibits an exponential computational 
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complexity in the number of reward rates. Using the same tech- 
nique, Donatiello and Grassi [7] obtained an algorithm with a 
polynomial computational complexity. However this algorithm 
seems to be numerically instable since the coefficient computed in 
their recursion can have positive and negative signs and are un- 
bounded which can lead to severe numerical errors and overflow 
problems. More recently, De Souza e Silva and Gail [8] obtained 
also an algorithm with a polynomial computational complexity 
which is linear in a parameter that is smaller than the number of 
rewards, but their algorithm seems to have the same instability 
problem due the use of both positive and negative coefficients. 
Pattipati et al. [91 obtained the distribution of the accumulated 
reward for nonhomogeneous Markov processes as the solution of 
a system of linear hyperbolic partial differential equations which is 
numerically solved by using a discretization approach. 

In this paper we develop a new algorithm to compute the per- 
formability distribution. As in [7] or [8], this method is based on 
the uniformization technique. The main contribution of this paper 
is that our algorithm is numerically stable by the fact it deals only 
with nonnegative numbers bounded by 1. Moreover, the compu- 
tational complexity is improved by the use of truncation steps and 
the precision of the result can be given in advance. The remainder 
of the paper is organized as follows. In the next section, we give 
the proposed solution and describe the algorithm and its compu- 
tational complexity. In the third section, a model of a fault-tolerant 
computer system is presented and solved for a given performabil- 
ity measure. The last section is devoted to some conclusions. 

2 MODEL SOLUTION AND ALGORITHMICAL ASPECTS 
We consider a system modeled by a homogeneous Markov process 
X =: {X,, u t 0) with a finite state space E = (1, ., M). A performance 
levfd or reward rate fii) is associated with each state i of E. These 
reward rates are assumed to be time independent as usual. We  de- 
note by r, > v,_~ > . > r, the m  + 1 reward rates (m < M). The state 
space E can be then divided into disjoint subsets B,, B,-1, . . . . B, 
where Bi is composed by the states of E having as reward rate yi, that 
is Bi = {i E E/p(j) = rJ. The process X is given by its infinitesimal 
generator A and by its initial probability distribution a: For any 
S c: E, we denote by 1s (resp. 0s) the column vector of size the num- 
ber of states in S, with all elements equal to 1 (resp. 0). 

Using the uniformization technique [lo], we denote by P the 
tra-nsition probability matrix of the uniformized Markov chain with 
respect to the uniformization rate /z which verifies /z t sup(- A(i, i), 
i E E). The matrix P is then related to A by P = I + A//l, where I de- 
notes the identity matrix. In the following, to simplify notation, we 
will consider X as the uniformized process. For every i, j =  0, ., m, 
we denote by P8isi the submatrix of P containing the transition 

probabilities from states of Bi to states of Bi and by aB, the subvector 

of a containing the initial probabilities corresponding to states of B,. 

The r.v. of interest is denoted by Y, and represents the accumulated 
reward over the interval of time [0, t]. It is defined by 

where l,,, = 1 if condition c  is true and 0 otherwise. The r.v. Yt 
takes its values in the interval [rot, r,t] and we wish to calculate 
IF’ {Y, > s]. The reward rates ri are arbitrary real numbers, but we 
assume without loss of generality that r0 = 0 (see [Z]). The main 
result of this paper, which is the distribution of Y, is given by the 
following theorem (see [2] for the proof). 
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THEOREM 2.1. 

where 
s  - +t 

‘i = (rj - yjel)t 

and coefficients b”(n, k) are given by 

b”‘(n, k) = 2 a,$+, k) 
i=O 

and column vectors bt(n, k) are given by the following recursive 

expressions 

[forjS1SmandlIkSM] 

bg’(n,O) = l,, and bg’(n, 0) = bi-l’(n, n) for j 11 

b”‘(n k) = 
r.-r m  

BI ’ 
b”’ I ‘i-,’ 

i I-’ 
,$~,k-I)+/_ ;I; 2 BIB, 8 r, - r P b”‘(n-l,k-1) 

[forO~1~j-landO~k5n-l] 

bt’(n, n) = O,[ and by(n, n) = br”(n, 0) for j < m  

r 
b$;(n, k) = e b$n, k  + 1) + 

I 1 
Note that for j 5 15 m  we have 

5-Y r -r 
O<-- 1 -1-J '-'$I 

r, - r 1-l YI - 5-l 

forO<l<j-lwehave 

&L3=*=1_ r, - 5-l 
5 - yi 

- 51; rj - yI 

andforOII<mwehave 

For every n 2 0, the initial value bg)(n, 0) is equal to l,, if 1 t 1 and 

the final value bg’(n, n) is equal to O,,if I I m  - 1. We then easily 

obtain by recurrence that 0 B, I bi’(n, k) 5 l,, Moreover, for every 

j=l I ...I m, and rj-1 t 5 s < rjt, we have 0 S sj < 1. These remarks are 
essential from a computational point of view since the manipula- 
tion of nonnegative quantities bounded by 1 allows us to avoid the 
instability problems which may appear in the algorithms de- 
scribed in [7] and 181. Let us now define for every j = 1, . . . . m, a 
partition of the state space E as 

Uj= B, U U B]andDj= BI-, U ... U Bo 
For j = 1, _, m, T denoting 
following column vectors 

transpose operator, we define the 

b (n k) = 
Ul ’ 

b”’ (n k)T ._. b”i(n k)T B, ’ f 1 Bi 1 

and 

b,, (IT, k) = byI (n, k)T, . . . . b$)(n, k)T ! 
With this notation, Fig. 1 and Fig. 2 illustrate the sequence of com- 
putations (drawn only for n = 0, 1, 2, 3) that have to be done in 

order to evaluate the bt(n, k)s. Note that the upper part of the 

diagonal of by of each triangle of cells is reported in the upper part 
of the first column of the next one and the lower part of the first 
column of each triangle of cells is reported in the lower part of the 
diagonal of the previous triangle of cells. The study of the recur- 
rence described in Theorem 2.1 leads to the following remarks. In 
the case where j = m, illustrated in Fig. 2, the triangle of cells can 
be calculated either in a diagonal by diagonal manner provided 
that the first cell of a diagonal is known or in a line by line manner. 
In the case where j = 1, the triangle of cells is computed in a line by 
line manner but it can be also calculated in a column by column 
manner provided that the first cell of a column is known. This is 
not possible for the other triangles of cells (that is for j = 2, . . . . 
m  - 1). These cells can be calculated only in a line by line manner. 
The way in which the computation of each cell (n, k) is performed 
is shown in Fig. 3. We now show that the computation of the last 
triangle of cells, which corresponds to j = m, in a diagonal by di- 
agonal manner is very useful to reduce the complexity in the case 

where the value of s  is near from the value of r,t 
Given a tolerance error E, we define integer N as 

(rm-lt < s < r,t). 

The distribution of Y, given in Theorem 2.1 can then be written as 

where e(N) verifies e(N) 4 z/2. Another truncation can be per- 
formed as follows when s  is such that rmelt < s  < r,t. If integer C is 
defined as 

where x  = a(1 - .sJ, we have (see [2]) 

lP(Y, >s) = ig e~“~(;)s,-L(l-s,~~)“b’“‘(,r, n-k) 
k=O rl=k 
+ e,W, C) + e(N) 

where er(N, C) verifies e,(AJ, C) 5 ~‘2. In practice the value of s  must 

be very close to r,t since the requirement is generally that the r.v. 

Y, is close to its maximum value r,t with a probability close to 1; 

this gives a value of s, close to 1 and thus the value of C will be 
small with respect to the value of N. The global computational 
scheme using the truncation step C is shown in Fig. 4, where only 
the gray part has to be computed. It is shown in [2] that the com- 

putational effort required to compute the distribution of Y, is 
O(dM[C(N - C) + mC2/2]) where d denotes the maximum number 
of nonzero entries in each row of matrix P, and the storage 
complexity is O([(m - 1)C + NIM), where we set C = N when 

sir m-lt. The computational effort required by the method of [7] is 
O(dMmr\l2/2) and the storage requirement is also O(mMN). The 
computational effort required by the method of [B] is stated to be 
O(d M  B i3), where B is an integer smaller than m/2 and equal or 
near to 1 in most cases and the storage requirement is O(MN). 
Thus the algorithm proposed in this paper compares favorably 
with the methods of [7] and [S] when we wish to evaluate the up- 

per tail of the distribution of Y,, which is the case for many per- 



IEEE TRANSACTIONS ON COMPUTERS,  VOL. 45, NO. 4, APRIL 1996 

formability models. Another improvement in our algorithm leads 
to its numerical stability since it deals only with positive number 
bounded by 1. Some values of N and C are given in the next 
section. 
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Fig. 1. In cell (n, k) the vectors b,, (n, k) and b,, (M, k) 
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Fig. 2. In cell (n, k) the vectors, b,] (n, k) and bDl (n, k). 
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Fig. 3. Computation of cell (n, k) 
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Fig. 4. In gray, the computed area 
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3 APPLICATION TO A FAULT-TOLERANT COMPUTER 
SYSTEM 

In this section we present a model of an architecture for a fault 
tolerant shared memory multiprocessor which has been intro- 
duced by 1111. It consists of n CPUs, a bus and a Recoverable 
Shared Memory (RSM). Each CPU is composed of two processors 
in active redundancy whose outputs are compared in order to 
detect failures. Each processor gets access to the shared memory 
through a private cache which contains the most recent data used 
by the processor. This architecture has been designed in a such a 
way that the RSM only requires specialized hardware and can 
therefore use standard processors, caches and cache coherence 
protocols. The backward recovery protocol which is used in this 
architecture to tolerate some processor failures is implemented by 
the RSM. To provide backward recovery the basic mechanism of 
the RSM has to maintain two copies for each memory’s location 
which are respectively one current copy accessible by the CPUs 
and one recovery copy corresponding to the previous recovery 
point. When a recovery point is established, the current copy is 
reproduced on the recovery copy so that they both contain identi- 
cal data. Subsequent updates at a location only concern one single 
copy as the other one keeps a record of the data that was at that 
location at the last recovery point instant. Here we assume that 
both the bus and the RSM are totally reliable. On the other hand 
the fault which occurs in a processor can always be detected, 
whether it is a transient or a permanent fault, by running diagnos- 
tic checks on the defective CPU for instance. The defective CPU 
will still be used within the system if the fault is transient but not if 
permanent. The failure rate of each CPU is given by fi A transient 
fault occurs with probability d and a permanent one with prob- 
ability 1 - d. After such an event, the backward recovery protocol 
is then run during a time exponentially distributed with rate ,LL. 
Moreover, we assume that the backward recovery protocol recon- 
figures the system correctly with probability c  and fails with prob- 
ability 1 - c. This factor c  is usually called the coverage factor of 
the system. This establishes a Markov process shown in Fig. 5 for a 
number of CPU M  = 3. State i, 1 I i I n, corresponds to the state of 
the system where i CPU are operationnal. In this state a fault oc- 
curs with rate i/3 State y1 + i, 1 < i 5 n, corresponds to the state of 
the system where the backward recovery protocol tries to recon- 
figure the system with i CPU when the fault is transient and with 
i - 1 CPU, i > 1, when it is permanent. State 0 represents the situa- 
tion when the system is down. The cost of fault tolerance in this 
architecture is mainly due to the establishment of recovery points. 
It has been evaluated to 30% of the power of the system in the 
worst case. For instance, for a standard architecture with ~1 opera- 
tional processors and no fault tolerance which has an assumed 
power equal to n, the reward rate ri associated to state i, 1 2 i < M, is 
0.7i in our model. The reward rates associated to the other states 
are null. With this reward structure associated to our model the 
performability distribution II’ (Y, / t > r) represents the probability 
that the power of the architecture during [0, t] averaged over time 
t is, greater than r with r taken in the interval [O, rJ. 

We  illustrate the model with the following parameters c  = 0.95, 
d :- 0.9 and p = 1 per second. This means for instance that the aver- 
age execution time of the backward recovery protocol is 1 second. 
With these numerical values, Fig. 6 and Fig. 7 both show the prob- 
ability that the power of the system is greater than 99.99% 
(6= 0.9999) of its max imum power for a one day mission time in 
function of the number n of CPLJs and for different values of the 
failure rate fi We  note that when /3 = lO-5 the probability of reaching 

more than 99.99% of the max imum power of the system is smaller 
than 0.8 independently of n. We  also observe that the number of 
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CPUs must be at most 4 if I= lo& to obtain that probability greater 
than 0.95. For smaller values of the failure rate p (see Fig. 7) more 
than 99.99% of the maximum power of the system with a probability 
greater than 0.997 can only be reached if the system has two CPU’s 

when /3 = 10m7 and a number of CPU’s equal to 8 when ,l3 = 10e8. Fi- 

nally, for all these computations the value of the truncation step N is 
N = 87701. The value of truncation step C increases from C = 38 (for 
n = 2) to C = 109 (for rr = 8). These small values of C with respect to N 
show that the computational cost of our algorithm is, in this case, 
better than those presented in [71 and [8]. 

Fig. 5. The Markov process for three CPU 
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Fig. 6. A one day mission time 
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Fig. 7. A one day mission time. 

4 CONCLUSIONS 
The proposed method for evaluating the performability distribution 
leads to a new algorithm for which the number of operations is lin- 
ear in the number of states of the system and linear in the number of 
rewards. Its main advantage with respect to existing algorithms, is 
that the number of operation is linear in the truncation step N and 
quadratic in the truncation step C which is in practice very small in 
comparison to N. Moreover this algorithm deals only with positive 
numbers bounded by 1, thus improving its stability. 

ACKNOWLEDGMENT 
This work has been partly supported by the FASST Esprit project 
(5212). 

REFERENCES 
RI 

121 

[31 

I41 

151 

[61 

[71 

@I 

191 

DO1 
[111 

J.F. Meyer, “On Evaluating the Performability of Degradable 
Computing Systems,” IEEE Trans. Computers, vol. 29, no. 8, pp. 
720-731, Aug. 1980. 
H. Nabli and B. Sericola, “Performability Analysis of Fault- 
Tolerant Computer Systems,” Tech. Report 2254, INRIA, Campus 
de Beaulieu, 35042 Rennes Cedex, France, May 1994. 
G. Ciardo, R. Marie, B. Sericola, and KS. Trivedi, “Performability 
Analysis Using Semi-Markov Reward Processes,” IEEE Trans. 
Computers, vol. 39, no. 10, pp. 1,251-1,264, Oct. 1990. 
B.R. Iyer, L. Donatiello, and P. Heidelberger, “Analysis of Per- 
formability for Stochastic Models of Fault-Tolerant Systems,” 
IEEE Trans. Computers, vol. 35, no. 10, pp. 902-907, Oct. 1986. 
R.M. Smith, K.S. Trivedi, and A.V. Ramesh, “Performability 
Analysis: Measures, an Algorithm, and a Case Study,” IEEE 
Truns. Computers, vol. 37, no. 4, pp. 406-417, Apr. 1988. 
E. de Souza e Silva and H.R. Gail, “Calculating Availability and 
Performability Measures of Repairable Computer Systems Using 
Randomization,” no. 4,]. ACM, vol. 36, pp. 171-193, Jan. 1989. 
L. Donatiello and V. Grassi, “On Evaluating the Cumulative Per- 
formance Distribution of Fault-Tolerant Computer Systems,” 
IEEE Trans. Computers, vol. 40, no. 11, pp. 1,301-1,307, Nov. 1991. 
E. de Souza e Silva and H. R. Gail, “Calculating Transient Distri- 
butions of Cumulative Reward,” Tech. Report CDS-930033, Univ. 
of California, Los Angeles, Sept. 1993. 
K.R. Pattipati, Y. Li, and H.A.P. Blom, “A Unified Framework for 
the Preformability Evaluation of Fault-Tolerant Computer Sys- 
tems,” IEEE Trans. Computers, vol. 42, no. 3, pp. 312-326, Mar. 
1993. 
SM. Ross, Stochastic Processes. John Wiley & Sons, 1983. 
M. Bandtre, A. Gefflaut, P. Joubert, P. Lee, and C. Morin, “An 
Architecture for Tolerating Processor Failures in Shared-Memory 
Multiprocessors,” Tech. Report 1965, INRIA, Campus de Beau- 
lieu, 35042 Rennes Cedex, France, Mar. 1993. 


