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Performance analysis and visualization of the N -body tree code PEPC
on massively parallel computers

P. Gibbona, W. Fringsa, S. Dominiczaka, B. Mohra,

aJohn-von-Neumann Institute for Computing, Forschungszentrum Jülich GmbH, ZAM,
D–52425 Jülich, Germany

The performance and scalability of a parallel tree code for rapid computation of long-range
Coulomb forces is investigated using both visual and analytical techniques. The present code uses
a variation of the Hashed-Oct-Tree algorithm, in which communication overhead is minimised by
bundling multipole data for large groups of particles prior to shipment between processors. The two
critical components of this algorithm, the tree traversal and load-balancing, are examined in highly
dynamic physical context with the help of the KOJAK performance analysis toolkit and the online
visualisation packages VISIT and XNBODY. The parallel scalability of PEPC is investigated on the
Jülich IBM p690 and BlueGene/L machines.

1. Introduction

Even in the era of Teraflop computing, the N -body problem for systems dominated by long-range
potentials remains a formidable algorithmic and computational challenge. The brute-force approach,
in which all N(N − 1) mutual interactions between simulation particles are computed directly,
is simply impractical for many N -body systems such as plasmas, gravitational systems, or large
molecules in ionized solution. This is particularly true when the global dynamic behaviour of the
system is of primary interest, rather than the microscopic details of individual particle trajectories.
For this class of problem there is often no need to compute potentials and forces to higher accuracy
than the error incurred in integrating the equations of motion, typically in the 10�4–10�2 range.

Two techniques developed in the mid-1980s—the hierarchical Tree Code [1] and the Fast Mul-
tipole Method (FMM) [2], with respective algorithmic scalings of O(N log N) and O(N)—have
revolutionized long-range N -body simulation across a broad range of fields [3]. These methods
reduce the number of direct particle-particle interactions through the systematic use of multipole
expansions, making it possible perform simulations with many millions of particles. Despite this
progress on the algorithmic side, recent advances in the massively parallel computing paradigm have
prompted a further challenge: can hierarchical algorithms be effectively implemented on a parallel
machine with thousands of processors?

At first sight, the recursive data structure of tree codes would seem to rule out parallelism al-
together, but in fact the construction of both the tree and particle interaction lists can be cast in
data-parallel form on a shared-memory machine [4], leaving a straightforward N ×N

list
force sum-

mation to contend with. On a distributed-memory machine, the tree structure either has to be known
to all processors—restricting the maximum simulation size—or somehow divided up equally among
them. In the latter case, a locally essential tree can be built comprising only the information required
to compute forces for locally held particles. Over the past decade various parallel tree algorithms
have been proposed and implemented, including virtual shared-memory approaches [5], and dis-
tributed memory schemes [6,7].

This paper describes an efficient, portable implementation of a parallel tree code—PEPC (Pretty
Efficient Parallel Coulomb-solver)—initially designed for mesh-free modelling of nonlinear, com-
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plex plasma systems [8], but recently extended to other application areas ranging from molecular
dynamics to protoplanetary accretion discs [9]. For PEPC, we have adopted the Warren-Salmon
‘hashed oct-tree’ scheme based on a space-filling ‘Morton’ curve, derived from 64-bit particle-
coordinate keys. The discontinuities inherent in this curve, potentially leading to disjointed domains
and additional communication overhead [10] is found to be a relatively minor issue compared to
load-balancing and geometrical factors.

While the performance of PEPC on both commodity and high-end clusters is such that multi-
million-body simulations can already be routinely performed, porting the code to new architectures
with many thousands of processors such as BlueGene/L presents a much tougher challenge. To
isolate and unravel the communication-critical parts of the code more systematically, we have made
use of the automatic performance toolkit KOJAK [11].

PEPC has also been equipped with a combination of visualization toolkits VISIT [12] and XNBODY

[13] to assist in tracking progress and enable real-time computational steering (user-feedback) of
simulations. We have extended this online visualisation and steering (OVS) capability for PEPC by
incorporating details of the tree structure on each processor, thus allowing visual monitoring of the
inner, dynamic workings of the algorithm, such as the domain decomposition or load balancing.

The structure of this paper is as follows: In Section 2 we briefly review the hashed oct-tree al-
gorithm and the various implementations of the tree-traversal routine available in PEPC. In Section
3 some benchmarks for ‘static’ systems are presented demonstrating the code’s scalability on the
Jülich IBM p690 cluster JUMP. The tree-traversal variations are then examined with the help of the
KOJAK toolkit with a view to porting the code onto the BlueGene system. Finally, in Section 4 the
dynamic evolution of the code performance for a plasma physics application is then discussed with
the help of online visualization techniques.

2. Variations on the Hashed Oct Tree algorithm: asynchronous vs. collective

The Hashed Oct Tree algorithm is well documented in the literature [6] so we need not dwell
on the details of tree construction here: features particular to the code PEPC are also described
elsewhere [14]. A summary of the algorithm implemented in PEPC is depicted in Table 1, along with
the theoretical scaling and relative effort for each major routine. All of the above routines can be
performed in parallel, requiring an effort O(N/P ), give or take a slowly varying logarithmic factor.

Code region Scaling % CPU time
Domain decomposition: weighted key-sort N/P 3
Construct local trees and multipole moments P log N/P 4
Construct interaction lists (tree walk) N/P log N 43
Compute forces and potential N/P log N 49
Update particle velocities and positions N/P 1

Table 1
Algorithmic scaling and relative computational effort of major routines in PEPC. The symbols N
and P represent the total number of particles and processors respectively.

As mentioned above, the HOT algorithm employs 64-bit keys derived from the (3-dimensional)
particle-coordinates. Domain decomposition is acheived by cutting out equal portions of the sorted
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particle key-list and allocating these to the processors. The fully parallel sort currently imple-
mented is an adaptation of the PSRS (parallel sort by regular sampling) scheme originally pro-
posed in Ref. [15]. Since the distribution of keys depends sensitively on the geometry of the system
simulated—that is, whether the particles are initially arranged in a cube, sphere or more complex
geometry—regular sampling tends to produce highly imbalanced particle numbers across the pro-
cessors. To compensate this effect, we instead use load-weighted sampling, which allows for the
actual distribution of keys along the whole space-filling curve. Problems may arise here if the key
distribution is not finely enough resolved, a feature which we return to in Sec. 4.

Figure 1. a) Domain decomposition and b)-d) parallel tree-walk for 3 CPUs.

To facilitate the exchange of information (in particular, multipole moments) between processors,
a set of local ‘branch’ nodes is defined, comprising the minimum number of complete twig and leaf
nodes covering the whole local domain—Fig. 2a). This set of branch nodes is then broadcast to
all other processors, so that each one subsequently knows where to find (or request) any missing
non-local particle or tree node.

By far the most algorithmically demanding part of this code is the tree walk, which in PEPC

combines a previous list-based vectorised algorithm [4] with the asynchronous scheme of Warren &
Salmon [6] for requesting multipole information on-the-fly from non-local processor domains. In
the present scheme, rather than performing complete traversals for one particle at a time, as many
‘simultaneous’ traversals are made as possible, thus i) minimizing the duplication incurred when
the same non-local multipole node is requested many times and ii) maximising the communication
bandwidth by accumulating large numbers of nodes before shipment. In practice, this means creating
interaction lists for batches of around 1000 particles at a time before actually computing their forces.

In the first pass of the walk (Fig. 2b), traversals are made through the local trees using the familiar
divide-and-conquer strategy common to sequential tree codes [4]. The multipole acceptance crite-
rion (MAC) determines whether to accept or subdivide local nodes as usual, but also provides for a
third possibility: the subdivision of a non-local node for which child data is not yet available. This
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is then placed on a special ‘request’ list (dark-shaded nodes) to be processed in the 2nd ‘exchange’
half of the routine (Fig. 2c) when all particles have completed their traversals as far as they can with
the available node data. Each processor then compiles a lists of nodes it needs child data from, and
sends them to the owners of the parent nodes. In the first pass, these will just be the branch nodes.
On receipt of a request list, a processor packages and ships back the multipole data for the children.
The use of non-blocking SENDS and RECEIVES for the multipole information in principle allows
some overlap of communication with the creation of new local tree nodes (copies). At the end of
subsequent passes (Fig.2d: here just 2 are needed), each processor’s local tree contains all the nodes
required to compute the forces on its own particles. With increasing system size, the nodes fetched
during the traversals eventually take up most of the space in the local hash-table.

Three further variations of this procedure are currently implemented in PEPC: i) a prefetch mode
in which lists of the fetched and requested nodes are retained for the subsequent timestep, allowing
most of the locally essential tree to be rebuilt via a prune-and-graft procedure; ii) a purely collective
exchange replacing the asynchronous SEND/RECEIVE swaps for each pass and iii) a freeze mode in
which the entire tree structure is held fixed for several timesteps, but where the multipole information
is updated and exchanged where necessary.

Once an interaction list has been found for a particle, it is a straightforward task to compute its
force and/or potential. Separation of the actual force sum from the tree traversal has the advantage
that this floating-point-intensive routine can be cache-optimised. Also, the physics and algorithm are
kept naturally apart, so that additional forces and/or boundary conditions can be added with relative
ease. In the present implementation, forces are computed for each batch of interaction lists returned
from the tree-walk routine. One subtlety which arises here is that even if overall load-balancing has
been arranged during the domain decomposition, it is not necessarily guaranteed for each batch of
particles. To redress this problem, the batch size N

b
for each processor is determined individually,

so that the integral
∑

Nb
p=1 Nint(p) is the same, and each processor computes the same number of

interaction pairs during each pass.

3. Analysis of algorithm performance and scaling using KOJAK

The KOJAK performance-analysis tool environment [11] provides a complete tracing-based solu-
tion for automatic performance analysis of MPI, OpenMP, or hybrid applications running on parallel
computers. KOJAK automatically searches execution traces of the application for patterns that indi-
cate inefficient use of the underlying programming model(s). The KOJAK analysis process is com-
posed of two parts: a semi-automatic multi-level instrumentation of the user application followed by
an automatic analysis of the generated performance data.

The instrumentation inserts extra measurement code to capture begin and end of important phases
in the user code (e.g., subroutines or loops), MPI message transfers and collective operations, as
well as OpenMP constructs. KOJAK can handle C, C++, and Fortran source code. If necessary, the
application can also be linked to the PAPI library [16] for collection of hardware counter metrics as
part of the trace file.

Running the instrumented executable generates a trace file in the EPILOG format. After program
termination, the trace file is fed into the EXPERT analyzer. EXPERT transforms event traces into a
compact representation of performance behavior, which is essentially a mapping of tuples (perfor-
mance problem, call path, location) onto the time spent on a particular performance problem while
the program was executing in a particular call path at a particular location. There are two classes
of search patterns, those that collect simple profiling information, such as communication or exe-
cution time, and those that identify complex inefficiency situations, such as a receiver waiting for
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the wrong message. The former are usually described by pairs of enter and exit events, whereas
the latter are described by more complex compound events usually involving more than two events
covering multiple locations, a situation which can easily arise in a tree code.

a) b)

Figure 2. KOJAK EXPERT analysis of a 40-timestep PEPC test run using the asynchronous tree
walk algorithm of Fig. 2 showing breakdown in: a) execution time and b) MPI-call time.

Figure 2 shows a screen-dump of the result presentation component (CUBE) of the EXPERT
automatic event trace analyzer for a PEPC simulation of a sphere comprising 128000 charges. Using
the color scale shown on the bottom, the severity of performance problems found (left pane) and
their distribution over the program’s call tree (middle pane) and machine locations (right pane) is
displayed. The severity is expressed in percentage of execution time lost due to this problem. By
expanding or collapsing nodes in each of the three trees, the analysis can be performed on different
levels of granularity. We refer to [11] for a detailed description of KOJAK and EXPERT.

In this example the run took 43 minutes (2600 s) on aggregate (or 80 s per CPU): in the left-hand
column we see how this is divided up in ‘useful’ execution- (81%) and MPI- (19%) time. Clicking
on the Execution button we obtain the breakdown by routine in the 2nd column of Fig. 2a), where
we find values consistent with those given in Table 1. The MPI breakdown in Fig. 2b) reveals a large
imbalance, which is almost entirely due to nonlocal multipole fetches in the ‘exchange’ routine.

KOJAK also supports analysis of the difference between two measurements (e.g., using different
input data sets, executing on different processor numbers, or comparing diferent implementations
of the same code) by providing an utility that “subtracts” one CUBE result file from another one,
resulting in an CUBE file which contains the differences of the severity for each problem for each
call path on each loaction. This file can also be analyzed using the CUBE result browser.

This feature is exploited to compare the asynchronous tree-walk against the ‘frozen tree’ variation
described previously for the same test problem as before – Fig. 3. Negative numbers (aggregate
runtime seconds scaled according to bottom ruler) indicate an improvement over the asynchronous
algorithm; positive numbers a deterioration. For the execution time, we see that there are substantial
savings in the tree-building overhead (domains, build), which is what we expect by freezing the data
structure and rebuilding only every 10th timestep. More significantly, communication time is also
saved on the exchange part of the tree-walk, which is just what was intended. This is paid for by
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a) b)

Figure 3. Differential analysis of PEPC sphere simulations comparing the asynchronous tree walk
in Fig. 2 to the ‘freeze’ mode described in Sec. 2): a) execution breakdown; b) MPI breakdown.

the update routine, and, somewhat mysteriously, by increased barrier time – a side-effect which is
presently not fully understood.

Overall however, the ‘tree-freezing’ concept shows promising scalability improvements over the
asynchronous mode, as single-timestep benchmarks in Fig. 4 demonstrate. For large systems, the
standard algorithm performs well on both the Regatta and BlueGene/L systems, scaling up to 1024
CPUs on the latter.
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Figure 4. Timings on IBM-p690 cluster and BG/L for a) 128k and b) multi-million charge spheres.

4. Performance visualization using VISIT and XNBODY

Online visualization and steering (OVS) is normally used to track and adjust the dynamic devel-
opment of simulations where the outcome depends on a large set of parameters. Here we use the
OVS system developed at ZAM [13] to provide insight into the algorithmic behaviour of PEPC, and
in particular to investigate the load-balancing characteristics for a dynamically evolving problem.
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As noted before, this can be adjusted on the fly during the domain decomposition by appropriate
weighting of the particle key-list segments allocated to each CPU.

To illustrate this in action, we consider an example taken from Ref. [8], in which a thin ionized
wire comprising 1 million electrons and ions is irradiated by a high-intensity laser pulse. Physically,
what happens here is that the laser begins to strip electrons from the target surface, accelerating them
in all directions to form a rapidly expanding, negatively charged plume around the wire – Fig. 5(a–c).
Despite the initially uniform density distribution, the target’s geometry already poses problems for an
unbalanced parallel tree code, as illustrated in the middle sequence (d–f), in which the particles are
equally divided amoung the processors. The boxes represent local tree domains coloured according
to the total amount of work performed by each CPU in the force calculation, which here varies by as
much as 30%.

Figure 5. Visualization of dyanmic load balancing using VISIT and XNBODY toolkits. The top row
shows the particle positions at times t = 0, 50 and 100 during the formation of the laser-induced
charge cloud. The centre and bottom rows show tree domains, coloured according to the number of
force computations per CPU for equal numbers of particles (middle) and load-balanced (bottom).

In the final sequence (g–i), the simulation has been repeated with dynamic load balancing switched
on. In this case the imbalance is stays below 1% for most of the simulation. Towards the end
however, we see that the workload apparently becomes uneven again near the centre of the target.
Because of the expanding electron cloud, the system effectively becomes more clustered with time,
leaving a high concentration of particle keys near the centre. This eventually leads to undersampling
in the sort routine in this region, which in turn causes incorrect balancing — a feature which would
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be difficult to trace without the direct visual relationship between work load and spatial location
provided by this technique.

Summary

A new parallel tree code – PEPC – for rapid computation of long-range interactions has been
presented in which various implementations of the tree traversal routine have been compared and the
overall scaling of the code with up to 1024 processors of BlueGene/L demonstrated. Load balancing
issues have also been investigated with the help of visual techniques, enabling potential pitfalls in
the parallel sort routine to be properly addressed. As a result of these algorithmic improvements
we expect PEPC to scale well beyond a single BG/L rack in the near future, paving the way for
Coulomb/Newtonian gravity simulations with 108 − 109 particles.
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