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Performance Analysis for Channel-Weighted
Federated Learning in OMA Wireless Networks

Na Yan, Kezhi Wang, Cunhua Pan and Kok Keong Chai

Abstract—To alleviate the negative impact of noise on wire-
less federated learning (FL), we propose a channel-weighted
aggregation scheme of FL (CWA-FL), in which the parameter
server (PS) makes aggregation of the gradients according to
the channel conditions of devices. In the proposed scheme, the
gradients are transmitted to the PS in an uncoded way through
an orthogonal multiple access (OMA) channel, which can avoid
the synchronization issue among devices faced by over-the-air
FL. The convergence analysis of CWA-FL is conducted and
the theoretical results show that the scheme can converge with
the rate of O

(
1
T

)
. Simulation results show that the proposed

scheme performs better than the equal-weighted aggregation
scheme of FL (EWA-FL) and is more robust to noise.

Intex Terms - Federated learning, aggregation of gradients,
orthogonal multiple access, convergence analysis.

I. INTRODUCTION

Federated learning (FL) [1] has been proposed as a
distributed machine learning technique, where edge devices
collaboratively train a model using only locally available
data with the help of a parameter server (PS). In wireless
FL, each device trains model or computes gradient locally
and then sends the updated model or the gradient to the PS
through wireless channel for centralized aggregation.

To improve the performance of wireless FL, the authors in
[2] investigated the convergence of FL over a noisy downlink
and the case of noise in both uplink and downlink was stud-
ied in [3]. The analysis in [2, 3] demonstrated that the noise
in wireless communications makes the gradients received
at the PS less accurate, therefore, has a negative effect on
learning performance. To alleviate the impact of noise, the
authors in [4] proposed a robust FL method by formulating
the training problem as a parallel optimization. Other works
[5, 6] directly used the noisy gradients to perform global
updates instead of using strategies to remove the effect of
noise. All the above researches make aggregation by simply
averaging or using dataset size to weight each gradient or
model, which is the most basic aggregation way but has little
help on mitigating the negative impact of noise on gradients.
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Most of wireless FL studies [7–9] considered that the
gradients are transmitted with digital transmission. However,
for the low-cost, low-power devices, e.g., wireless IoT
sensors, analog transmission may be more suitable due to
the lack of analog-to-digital (A/D) function of these devices.
Additionally, the communication efficiency could be greatly
improved with analog transmission by avoiding quantization
and channel encoding/decoding, which is very attractive for
low-latency applications at the edge of wireless networks
[10]. On the other hand, some works [5, 10] have tried to
use analog transmission to achieve over-the-air aggregation
of gradients by exploiting the superposition property of a
wireless multiple access channel (MAC). However, over-
the-air computation (Aircomp) requires a stringent syn-
chronization among devices, which is quite challenging in
realistic scenarios. Furthermore, the effective signal-to-noise
ratio (SNR) of the system will be limited by the device
with the worst channel condition [11], which might not be
suitable for the power-limited edge networks. By contrast,
with orthogonal multiple access (OMA) channel, there are
no such limitations.

Against the above background, in this paper, we consider
the uncoded gradients are transmitted from devices to the PS
through an OMA channel, which can relieve the synchro-
nization requirement faced by over-the-air FL. Additionlly,
we propose a channel-weighted aggregation scheme of FL
(CWA-FL) where PS makes gradient aggregation according
to the channel conditions of devices to alleviate the bad
effect of the noise on learning performance. We theoretically
prove that the proposed scheme can converge with the rate
of O

(
1
T

)
. Simulation results show that the proposed scheme

performs better than the equal-weighted aggregation scheme
of FL (EWA-FL) and the performance superiority is more
significant in the case with larger power of noise and fewer
devices.

II. SYSTEM MODEL

We consider a wireless FL system as shown in Fig. 1,
where K edge devices, denoted by K = {1, 2, ...,K} are
connected to a PS for centralized aggregation through an
OMA channel. Suppose that each device holds the dataset
Dk of size Dk and we assume that D1 = · · ·Dk = · · ·DK

for simplicity. The goal of the learning is to minimize the
global loss function as shown in (1):

min
w

{
F (w) ,

1

K

∑K

k=1
Fk (w)

}
, (1)
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Fig. 1: The OMA wireless FL system.

wherew ∈ Rd denotes the model parameter to be optimized.
The local objective function Fk (w) is defined as follows,

Fk (w) ,
1

Dk

∑
(u,v)∈Dk

f (w; (u, v)), (2)

where f (·, ·) denotes the loss function corresponding to
specific learning model and (u, v) is one of the data samples.

III. CHANNEL-WEIGHTED AGGREGATION SCHEME OF FL
AND CONVERGENCE ANALYSIS

We propose the CWA-FL scheme to reduce the negative
impact of noise on FL in this section.

A. CWA-FL: channel-weighted aggregation scheme of FL

In this paper, we assume that the channel state information
(CSI) of the devices can be estimated on the PS. Then, the
detailed process of CWA-FL can be given as follows.

(a) At the beginning of each round t, PS broadcasts the
latest global parameter w̃t to the devices.

(b) Each device firstly sets wt
k = w̃t, and then selects a

batch of data samples to compute its gradient as follows,

∇Fk
(
wt
k, ξ

t
k

)
=

1

bk

∑
(u,v)∈ξtk

∇f
(
wt
k; (u, v)

)
, (3)

where ξtk is the batch of samples and bk is the size of ξtk.
(c) Then, devices send the gradients to the PS and the

input signal of device k is given by,

xtk = ptk∇Fk
(
wt
k, ξ

t
k

)
, (4)

where ptk is the power scaling factor and is required to satisfy
ptk =

√
Pk

‖∇Fk(wt
k,ξ

t
k)‖2

for the transmit power Pk constraint.

The received signal at the PS from device k is given by

ytk = htkx
t
k + n

t = htkp
t
k∇Fk

(
wt
k, ξ

t
k

)
+ nt, (5)

where htk ∈ R+ is the real channel gain coefficient we
assumed for simplicity [12], and nt ∈ Rd is the received
noise, following the distribution of N

(
0, σ2Id

)
.

(d) Upon receiving all the gradients, PS makes gradient
aggregation by,

∇̂F
(
w̃t
)
=

1

Ct

K∑
k=1

ytk =
K∑
k=1

ctk
Ct

(
∇Fk

(
wt
k, ξ

t
k

)
+
nt

ctk

)
,

(6)

where ctk = htkp
t
k denotes the channel conditions of device

k in round t and Ct =
∑K
k=1 c

t
k. Different from EWA-

FL where the PS simply averages the recovered gradients
by ∇̂F

′
(w̃t) = 1

K

∑K
k=1

(
∇Fk (wt

k, ξ
t
k) +

nt

ctk

)
, the CWA-

FL assigns smaller weight to the gradient from the device
with poor channel quality, to alleviate the distortion of the
aggregated gradient.

(e) Finally, PS performs global model update based on the
aggregated gradient as follows,

w̃t+1 = w̃t − ηt∇̂F
(
w̃t
)
, (7)

where ηt is the learning rate in round t.
We assume that the PS is a more capable node with

sufficient energy resources. Therefore, the broadcast of the
global parameter is error-free [6, 10] .

B. Convergence analysis of CWA-FL

We first show the notations and assumptions applied in
the following analysis.

1) Notations: Motivated by [13], we define two virtual se-
quences to denote the aggregated full gradient and stochastic
gradient respectively as follows,

ḡt =
∑K

k=1

ctk
Ct
∇Fk

(
wt
k

)
, gt =

∑K

k=1

ctk
Ct
∇Fk

(
wt
k, ξ

t
k

)
.

(8)
2) Assumptions: For analysis, we provide the following

assumptions on loss functions, defined in (2).

Assumption 1. For each k, Fk (·) is L-smooth, i.e., for all
ι′ and ι, one has,

Fk (ι
′)− Fk (ι) 6 (ι′ − ι)T∇Fk (ι) +

L

2
‖ι′ − ι‖22 . (9)

Assumption 2. For each k, Fk (·) is µ-strongly convex, i.e.,
for all ι′ and ι, one has,

Fk (ι
′)− Fk (ι) > (ι′ − ι)T∇Fk (ι) +

µ

2
‖ι′ − ι‖22 . (10)

Assumption 3. Assume that the stochastic gradient is an
unbiased estimate of the full gradient,

E [∇Fk (w, ξk)] = ∇Fk (w) . (11)

The variance of the local gradient for each k satisfies,

E
[
‖∇Fk (w, ξk)−∇Fk (w)‖22

]
6 δ2k, (12)

where ξk denotes the data chosen from Dk.

3) Convergence analysis: We give the following lemmas
based on the above definitions and assumptions.

Lemma 1. Assume that Assumption 1 holds and w∗ =

[w∗1 , · · · , w∗d], w∗k =
[
w∗k,1, · · · , w∗k,d

]
are the globally

optimal model and the locally optimal model of device k.
Then, for each device k, the upper bound of the gap between
Fk (w

∗) and Fk (w∗k) is given by,

Fk (w
∗)− Fk (w∗k) 6 τ, (13)

where τ = max
k

{
Ld
2

(
max
i

{∣∣∣w∗i − w∗k,i∣∣∣})2}.
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Proof. According to to Assumption 1, one has Fk (w∗) −

Fk (w
∗
k)

(a)

6 L
2 ‖w

∗ −w∗k‖
2
2 where (a) comes from the fact

that ∇Fk (w∗k) = 0. Then, applying ‖·‖2 6
√
d ‖·‖∞, one

completes the proof.

Lemma 2. Assume that Assumption 3 holds, then, the
variance of the aggregated gradient is bounded by,

E
(
‖gt − ḡt‖22

)
6
∑K
k=1

ctk
Ct δ

2
k. (14)

Proof. See Appendix A.

Lemma 3. Assume that Assumption 1 to Assumption 3 hold.
A constant κ and ηt satisfy 1

κ 6 ηt 6 1
L . One has,

E
[∥∥w̃t+1 −w∗

∥∥2
2

]
6 (1− µηt) ‖w̃t −w∗‖22 + (ηt)

2
Xt,

(15)
where Xt = d

(
Kσ
Ct

)2
+
∑K
k=1

ctk
Ct δ

2
k + 2κτ.

Proof. See Appendix B.

We define F ∗ as the training loss of the optimal model
and one can obtain the optimality gap based on the above
lemmas.

Theorem 1. Assume that Assumption 1 to Assumption 3 hold
and there is a constant κ satisfies 1

κ 6 ηt = 2
µt+2L . When

the training process terminates after T rounds and w̃T is
returned as the final solution, the bound of the optimality
gap can be given by,

E
[
F
(
w̃T
)]
− F ∗ 6 L

µT+2L

(
2χ
µ + L

∥∥w̃0 −w∗
∥∥2
2

)
,

(16)
where χ = max

t
{Xt} and Xt = d

(
Kσ
Ct

)2
+
∑K
k=1

ctk
Ct δ

2
k +

2κτ.

Proof. See Appendix C.

From (16), one can find that the optimality gap decreases
with T , and will go to zero when T approaches infinity,
which means that the proposed CWA-FL can converge with
the rate of O

(
1
T

)
.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of CWA-FL
by comparing it with the perfect aggregation scheme of FL
(PA-FL) without noise distortion and the EWA-FL.

We assume that the wireless channels from edge devices
to the PS follow Rayleigh fading in different communication
rounds. The transmit power budgets at each device are
assumed to be the same and are set as Pk = 30dBm
[11]. We evaluate the proposed scheme through training
Convolutional Neural Network (CNN) [14] on the popular
MNIST [15] dataset. The batch size is set as bk = 64 and we
choose 5 batches every round for computing the gradients.
We set the initial learning rate as η0 = 0.1 and it decreases
at a rate of 0.99 every round.

Fig. 2 plots the learning performance of different aggre-
gation schemes under different variances of noise. One can
find that the CWA-FL performs better than the EWA-FL in
all cases. The performance of CWA-FL is quite close to the
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(c) K = 10, σ2 = 0.06
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Fig. 2: Performance of different aggregation schemes under
different values of noise variance.

PA-FL even in the case with K = 10 while the EWA-FL
obtains a poor learning accuracy. Therefore, the proposed
scheme will consume fewer resources because it requires
less device participation. Particularly, in the case of a larger
variance of noise as shown in Fig. 2 (c)-(d), the performance
superiority of CWA-FL is more significant, which means
that the proposed scheme is more robust to noise. This is
because the CWA-FL can effectively reduce the distortion
of the aggregated gradient by assigning different weights to
the noisy gradients in the aggregation process.

V. CONCLUSION

In this paper, we considered that the gradients are trans-
mitted to the PS via OMA channel to avoid the synchro-
nization issue of Aircomp. We proposed a CWA-FL scheme
to alleviate the distortion of the aggregated gradient by
assigning smaller weight to the gradient of the device with
poor channel quality. We then proved that the proposed
scheme can converge with the rate of O

(
1
T

)
. Simulation

results have shown that the proposed scheme performs better
than EWA-FL and is more robust to the situation that the
number of devices is small and the power of noise is large.

APPENDIX A
PROOF OF LEMMA 2

Accroding to (8), the variance of the aggregated gradient
can be bounded by,

E
[∥∥gt − ḡt∥∥2

2

]
(a)

6
∑K

k=1

ctk
Ct

E
[∥∥∇Fk (w̃t, ξtk

)
−∇Fk

(
w̃t
)∥∥2

2

]
(b)

6
∑K

k=1

ctk
Ct
δ2k,

(17)

where (a) comes from Jensen’s Inequality and (b) is from
Assumption 3.
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APPENDIX B
PROOF OF LEMMA 3

The expression of
∥∥w̃t+1 −w∗

∥∥2
2

is shown as follows,∥∥w̃t+1 −w∗
∥∥ 2

2 =
∥∥∥w̃t − ηtgt − ηtKnt

Ct −w∗
∥∥∥ 2

2

=
∥∥∥w̃t − ηtḡt + ηtḡt − ηtgt − ηtKnt

Ct −w∗
∥∥∥ 2

2

=

∥∥∥∥w̃t − ηtḡt − ηtKnt

Ct
−w∗

∥∥∥∥ 2
2︸ ︷︷ ︸

A

+
(
ηt
)2 ∥∥gt − ḡt∥∥ 2

2︸ ︷︷ ︸
B

−2ηt
〈
w̃t − ηtḡt − ηtKnt

Ct
−w∗, gt − ḡt

〉
︸ ︷︷ ︸

C

.

(18)
It naturally follows from Assumption 3 that E [C] = 0. Then,
the expression of E [A] can be given by

E [A] = E[
∥∥w̃t −w∗ − ηtḡt

∥∥2
2︸ ︷︷ ︸

A1

] + E[
∥∥∥∥ηtKntCt

∥∥∥∥ 2
2︸ ︷︷ ︸

A2

]

−2
〈
w̃t −w∗ − ηtḡt,E

[
ηtKnt

Ct

]〉
︸ ︷︷ ︸

A3

,
(19)

where A3 = 0 because E [nt] = 0. The expression
of E [A1] can be given by E [A1] = ‖w̃t −w∗‖22 +(
ηt
)2 ∥∥ḡt∥∥2

2︸ ︷︷ ︸
A1−1

−2ηt
〈
w̃t −w∗, ḡt

〉︸ ︷︷ ︸
A1−2

. The bound of E [A1−1]

can be given by E [A1−1] = (ηt)
2
∥∥∥∑K

k=1
ctk
Ct∇Fk (wt

k)
∥∥∥ 2

2

(a)

6 (ηt)
2∑K

k=1
ctk
Ct ‖∇Fk (wt

k)‖
2

2
(b)

6 2L
(
ηt
)2∑K

k=1

ctk
Ct
(
Fk
(
wt
k

)
− Fk (w∗k)

)
︸ ︷︷ ︸

A1−1−1

, where (a)

comes from Jensen’s Inequality and (b) comes from As-
sumption 1 and the property of smooth function [16] as
‖∇Fk (wt

k)‖
2

2 6 2L (Fk (w
t
k)− Fk (w∗k)) . The bound of

E [A1−2] can be given by

E [A1−2] = −2ηt
〈
w̃t −w∗,

∑K
k=1

ctk
Ct∇Fk (wt

k)
〉

= −2ηt
∑K
k=1

ctk
Ct 〈wt

k −w∗,∇Fk (wt
k)〉

(a)

6 −2ηt
∑K
k=1

ctk
Ct

(
Fk (w

t
k)− Fk (w∗) +

µ
2 ‖w̃

t −w∗‖ 22
)

= −2ηt
∑K

k=1

ctk
Ct
(
Fk
(
wt
k

)
− Fk (w∗)

)
︸ ︷︷ ︸

A1−2−1

− µηt ‖w̃t −w∗‖22 ,

(20)
where (a) comes from Assumtion 2. Then, the bound of
E [A1−1−1] + E [A1−2−1] can be given by

E [A1−1−1] + E [A1−2−1]

= −2ηt (1− Lηt)
∑K
k=1

ctk
Ct (Fk (w

t
k)− Fk (w∗))

+2L (ηt)
2∑K

k=1
ctk
Ct (Fk (w

∗)− Fk (w∗k))
(a)

6 2Lτ (ηt)
2

−2ηt
(
1− Lηt

)∑K

k=1

ctk
Ct
(
Fk
(
wt
k

)
− Fk (w∗)

)
︸ ︷︷ ︸

A4

,

(21)

where (a) follows from Assumption 3. The bound of E [A4]
can be given by,

E [A4] = −2ηt (1− Lηt)
∑K
k=1

ctk
Ct (Fk (w

t
k)− Fk (w∗))

= −2ηt (1− Lηt)
[∑K

k=1
ctk
Ct (Fk (w

t
k)− Fk (w∗k))

+
∑K
k=1

ctk
Ct (Fk (w

∗
k)− Fk (w∗))

]
(a)

6 2ηt (1− Lηt)
∑K
k=1

ctk
Ct (Fk (w

∗)− Fk (w∗k))
(b)

6 2ηt (1− Lηt) τ,
(22)

where (a) comes from the fact that Fk (wt
k)− Fk (w∗k) > 0

and ηt 6 1
L . (b) is from Lemma 1.

E [A2] can finally be given by E [A2] =
∥∥∥ηtKnt

Ct

∥∥∥2
2
=

d
(
ηtKσ
Ct

)2
. By plugging E (A1), E (A2), E (A4) into

E (A) and applying 1
κ 6 ηt, we have E [A] 6

(1− µηt) ‖w̃t −w∗‖22 + 2 (ηt)
2
κτ + d

(
ηtKσ
Ct

)2
. From

Lemma 1, the bound of E [B] can be given as E [B] 6
(ηt)

2∑K
k=1

ctk
Ct δ

2
k.

By using the expression of E
[∥∥w̃t+1 −w∗

∥∥2
2

]
and plug-

ging E [A], E [B], E [C] into it, we obtain (15). Therefore,
the proof is completed.

APPENDIX C
PROOF OF THEOREM 1

Similar to [13], we define ∆t = E
[
‖w̃t −w∗‖22

]
. It thus

follows that ∆t+1 6 (1− µηt)∆t + (ηt)
2
Xt. Let χ =

max
t
{Xt} and ηt = α

t+β for some α > 1
µ and β > 1 so

that η0 6 min
{

1
µ ,

1
L

}
= 1

L . We will prove ∆t 6 λ
t+β

where λ = max
{

α2χ
αµ−1 , β∆

0
}

by induction as follows.
Firstly, the inequality naturally holds for t = 0 according

to the definition of λ.
Then, assume that the inequality holds for some t > 0, it

follows that,

∆t+1 6 (1− µηt)∆t + (ηt)
2
Xt 6

(
1− αµ

t+β

)
λ
t+β

+ α2Xt

(t+β)2
= t+β−1

(t+β)2
λ+

[
α2Xt

(t+ β)
2 −

αµ− 1

(t+ β)
2λ

]
︸ ︷︷ ︸

60

6 t+β−1
(t+β)2−1λ 6 λ

(t+1)+β .

(23)
Specifically, if we choose α = 2

µ and β = 2Lµ , then
ηt = 2

µt+2L . Then, we have

λ = max
{

α2χ
αµ−1 , β∆

0
}

6 α2χ
αµ−1 + β∆0 = 4χ

µ2 + 2L
µ

∥∥w̃0 −w∗
∥∥2
2
.

(24)

Finally, we complete the proof as E [F (w̃t)] − F ∗
(a)

6

L
2 ‖w̃

t −w∗‖22 = L
2

λ
t+β

(b)

6 L
µt+2L

(
2χ
µ + L

∥∥w̃0 −w∗
∥∥2
2

)
,

where (a) comes from the L-smoothness of F (·) and the
fact that ∇F (w∗) = 0, and (b) comes from (24).
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