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Abstract—We analyze a class of suboptimal policies for
regulating the state of a switched linear system to zero while
minimizing a quadratic cost. Our novel results provide upper
and lower bounds on the performance of instances of this class
with respect to the optimal policy and other policies of interest.
We present a numerical example illustrating the applicability
of the results to event-triggered control.

I. INTRODUCTION
We consider the following switched linear system (SLS)

xk+1 = Aσkxk +Bσkuk, k ∈ N0, (1)

where xk ∈ Rn is the state, uk ∈ Rnu is the control input,
and σk ∈ {1, . . . ,m} is the switching input at discrete time
k ∈ N0 := {0, 1, 2, . . .}. Our goal is to design a policy for
the control and the switching input which regulates the state
to zero while minimizing a quadratic infinite-horizon cost.
The control of SLSs arises in various applications such

as mixing of fluids [1], HIV treatment [2], DC power
conversion [3], event-triggered control [4], multi-agent sys-
tems [5], real-time control task scheduling [6], and damping
of vibrating structures [7]. Model (1) captures many of
these applications and can be used as an approximation to
study several others by linearization and discretization of
related non-linear and continuous-time models. The problem
of minimizing a quadratic cost parallels the well-known LQR
problem [8], which is one of the tools per excellence for
regulating/stabilizing (1) in the special case m = 1, where
only the control input is to be designed.
However, obtaining an optimal policy for the control and

the switching inputs when m > 1 is in general computa-
tionally intractable [9] and thus one must settle for subop-
timal policies. The work [3] proposes a suboptimal strategy
resulting from an iterative relaxed dynamic programming
algorithm; a relaxation parameter, specifying an acceptable
loss of performance with respect to the optimal strategy,
allows to trade performance cost and computational complex-
ity. The work [9] proposes a related value function iterative
method, formally establishing that a stabilizing stationary
policy can be found after enough iterations; [9] also provides
a bound on the cost of such policy with respect to the optimal
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policy. Nevertheless, for a given relaxation parameter, the
computational complexity of the resulting policy can still be
large. A different approach is proposed in [4], [10]; assuming
the knowledge of a stabilizing base policy, a low complexity
policy is derived based on rollout ideas [8, Ch. 6]. Yet, [4],
[10] provide no performance guarantees with respect to the
optimal policy. For related work see also [11].
In this paper we analyze a class of linear quadratic

regulators parameterized by a set of positive semidefinite
matrices, which define a piecewise quadratic function Ĵ
approximating the optimal cost. This class of control policies
is broad enough to capture the policies in [3], [9] and in [4],
[10]. Our aim is to provide low complexity policies with
(preferably tight) performance guarantees. To this effect, our
novel results provide upper and lower bounds on the cost
difference between Ĵ and the cost of the proposed policy.
Choosing Ĵ as the cost of a given base policy we recover
the policies in [4], [10]. We can then use our novel results
to assert the gain obtained by a rollout policy over a base
policy. On the other hand choosing Ĵ as a lower bound on
the optimal cost, we can estimate the distance of the resulting
policy from the optimal.
We illustrate the applicability of the results presented

in this paper by considering a switched system arising
from an event-triggered control setup proposed in [4]. For
this example, we conclude that the bounds provided are
reasonably close to the true values obtained by simulation.
The remainder of the paper is organized as follows.

Section II presents the proposed class of linear quadratic
regulators and Section III provides two general results for
analyzing the performance of these regulators. We discuss
the implications of these results when Ĵ is a special upper
and lower bound on the optimal cost in Sections IV and V,
respectively. Section VI presents a numerical example and
Section VII provides concluding remarks.

II. A CLASS OF LINEAR QUADRATIC REGULATORS

Consider the following quadratic cost
∞∑

k=0

g(xk, uk,σk), (2)

where
g(x, u, i) :=

[
xᵀ uᵀ]

[
Qi Si

Sᵀ
i Ri

] [
x
u

]

is assumed to be positive semi-definite for every i ∈ M :=
{1, . . . ,m}. We are interested in finding a policy µ, con-
sisting of a function from the state to the control and the
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switching inputs, such that (2) is minimized when

(uk,σk) = µ(xk). (3)

Finding an optimal µ leads in general to a combinatorial
problem and thus is computationally intractable [9].
Here, we consider a class of suboptimal policies param-

eterized by a set T of nT positive semi-definite matrices.
Given T we define

Ĵ(x) = min
T∈T

xᵀTx, (4)

and

J̄µ(x) := min
u∈Rnu ,i∈M

g(x, u, i) + Ĵ(Aix+Biu). (5)

For each state x ∈ Rn, µ(x) is defined based on one of the
(possibly many) control and switching inputs that achieve
the minimum in (5), and is characterized as follows. For a
square matrix T ∈ Rn, and i ∈ M, let

Gi(T ) := −(Bᵀ
i TBi +Ri)

†(Bᵀ
i TAi + Sᵀ

i ),

where the symbol † denotes the pseudo-inverse, and

Fi(T ) := Aᵀ
i TAi +Qi −Gi(T )

ᵀ(Bᵀ
i TBi +Ri)Gi(T ).

Moreover, for nP := mnT and P := {1, . . . , nP }, let

{Pj |j ∈ P}, {Kj|j ∈ P}, (6)

be indexations of the sets

{Fi(T )|T ∈ T , i ∈ M}, {Gi(T )|T ∈ T , i ∈ M},

respectively. Each value j ∈ P corresponds to a unique T ∈
T and to a unique i = π(j) ∈ M, where

π : P → M (7)

is a map characterizing the latter correspondence. Then the
minimum in (5) is achieved by (u, i) = µ(x), for

µ(x) = (ū(x), σ̄(x)), (8)

where
σ̄(x) = π(ι(x)), ū(x) = Kι(x)x, (9)

and
ι(x) = min argmin

j∈P
xᵀPjx. (10)

Note that in (10) we have arbitrated that the smallest index
is selected if for a given x ∈ Rn the minimum of xᵀPjx is
achieved by more than one index j ∈ P . Note also that (9) is
in general a choice among the control inputs that achieve the
minimum in (5). One such case of interest is when B i = 0
for every i ∈ M, i.e., only a policy for the switching input
is to be designed.
The function Ĵ can be interpreted as an approximation to

the optimal cost (2) and the associated policy µ is then an
approximate dynamic programming policy [8, Ch. 6]. Several
examples will be given below (see Sections IV, V).

III. GENERAL RESULTS FOR PERFORMANCE ANALYSIS
Let Jµ(x0) denote the cost (2) of policy µ when (3), (8)

is applied to (1) initialized at x0. Our first result relates
this cost to Ĵ(x0) through the function J̄µ(x). Note that
J̄µ(x) = xᵀPι(x)x. We assume that µ is stabilizing, i.e.,
‖xk‖ → 0 as k → ∞ when (3), (8) is applied to (1) and
discuss this assumption for specific choices of Ĵ in the sequel
(see Sections IV, V).
Theorem 1: Let {xk}k≥0 denote the solution to (1) for an

initial state x0 and for a stabilizing µ taking the form (3), (8).
Then

Jµ(x0) = Ĵ(x0) +
∞∑

k=0

(J̄µ(xk)− Ĵ(xk)).

!
We can interpret each term in the summation as a gain if

J̄µ(xk)− Ĵ(xk) ≤ 0, (11)

or as a loss if
J̄µ(xk)− Ĵ(xk) ≥ 0 (12)

and computing these gains and losses along the trajectories of
the SLS controlled by µ provides the cost difference between
the estimate Ĵ and the true cost Jµ of policy µ. We will
present in the sequel policies which guarantee that either (11)
or (12) holds for every xk , which result from making Ĵ either
an upper or a lower bound on the optimal cost, respectively.
The next result provides upper and lower bounds on the

cost difference between Jµ(x0) and Ĵ(x0), exploiting the
piecewise quadratic form of these functions. Let

Φj := Aπ(j) +Bπ(j)Kj , j ∈ P .

Theorem 2: Suppose that µ is stabilizing. If there exist
a matrix U and a non-negative scalar λ < 1 such that, for
every x ∈ Rn,

min
i∈P

xᵀPix ≤ min
T∈T

xᵀTx+ xᵀUx, (13)

and, for every x ∈ Rn,

xᵀΦᵀ
ι(x)UΦι(x)x ≤ λxᵀUx, (14)

then
Jµ(x0) ≤ Ĵ(x0) +

1

1− λ
xᵀ
0Ux0. (15)

Moreover, if there exist a matrixW and a non-negative scalar
γ < 1 such that, for every x ∈ Rn,

min
i∈P

xᵀPix ≥ min
T∈T

xᵀTx+ xᵀWx, (16)

and, for every x ∈ Rn,

xᵀΦᵀ
ι(x)WΦι(x)x ≥ γxᵀWx, (17)

then
Jµ(x0) ≥ Ĵ(x0) +

1

1− γ
xᵀ
0Wx0. (18)

!
This result has several consequences when Ĵ is a lower or

an upper bound on the optimal cost. We discuss this next,
also providing a numerical method in terms of LMIs to obtain
the bounds (15), (18) for these special cases.
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IV. ROLLOUT
We present a simple rollout policy in Section IV-A and

in Section IV-B we discuss variants referred to as lifted
policies. We show how our results can be used to analyze
the performance of these policies in Sections IV-C and IV-D.

A. One-step policy improvement and stability
Suppose that we know a stabilizing policy characterized by

a fixed sequence of schedules b = (b0, b1, . . . ), i.e., σk = bk,
k ∈ N0, independent of the state, and a linear feedback
control input policy uk = Kkxk, k ∈ N0. Note that once
b is fixed the optimal control policy (associated with b) is a
natural policy taking this linear feedback form (see [8]). For
concreteness, here we consider such optimal control policy,
although we could consider more general linear feedback
policies. We refer to this policy as the base policy and note
that in many problem of interest for SLSs there exist natural
choices of base policies, e.g., in event-triggered control, a
natural base policy is optimal periodic control [4]; in mixing
of fluids, periodic mixing [1]; in protocol design for wireless
control, Round-Robin protocols [10], etc.
The cost (2) when this base policy is taken for (1) is a

positive semi-definite quadratic function xᵀ
0Pbx0 (cf. [8]).

We then pick (4) as

Ĵ(x0) = min
b∈B

xᵀ
0Pbx0, (19)

where B denotes a set of sequences each characterizing
a base policy. We can see (19) as a special base policy
consisting of the minimum of base policies [8] and the
associated policy (8) can then be seen as a rollout policy
using a one-step policy improvement [8]. In this case one
can conclude that

J̄µ(x0) = min
c∈C

xᵀ
0Pcx0,

where
C := {(i, b)|i ∈ M, b ∈ B} (20)

is determined by the choice of B. The set B is assumed to
be such that

B ⊆ C. (21)

For example, if m = 2, B = {(1, 2, 1, 2, 1, . . . )} does not
satisfy (21) but B = {(2, 1, 2, 1, 2, . . . ), (1, 2, 1, 2, 1, . . . )}
does. Note that this guarantees that (11) holds, i.e., at each
iteration there is always a cost improvement over the base
policy, and from this one can show that the cost (2) of the
rollout policy Jµ(x0) is less that the corresponding base
policy [8, Ch. 6].
From this observation we conclude that the cost of the

rollout policy is bounded, which implies that the rollout
policy is stabilizing under mild conditions (see [10], [8]).
One such condition is to assume that the running cost g is
(strictly) positive definite, since in this case if the cost is
bounded the state must converge to zero as time approaches
infinity. A similar reasoning can be used to establish stability
for the variants of this policy which we consider next.

B. Lifted policies
We pick h ∈ N≥2 and write (1) as

x$+1 = Aσ!
x$ +Bσ!

u$, & ∈ N0, (22)

where x$ = x$h, u$ = [uᵀ
$h . . . uᵀ

($+1)h−1]
ᵀ, and σk ∈

Mh := {1, . . . ,mh}, is such that each σk = i ∈ Mh

corresponds to a unique (σ0, . . . ,σh−1) ∈ Mh := M ×
· · · × M. Note that (22) is the lifted system of (1) over h
time steps. Moreover, (2) can be written as

∞∑

$=0

g(x$, u$,σ$) (23)

for a quadratic function positive semi-definite g. The expres-
sions for Ai, Bi, i ∈ Mh, and g are omitted for brevity. We
define a policy for this lifted system as in (8)-(10), i.e.,

µ(x) = (u(x), i(x)) (24)

where for x ∈ Rn, u(x) ∈ Rnuh, i(x) ∈ Mh are control and
switching input values attaining the minimum of g(x, u, i)+
Ĵ(Aix + Biu) and Ĵ is given by a general (4), which for
rollout policies takes the form (19). We then define the lifted
policy for the original system (1) by applying the following
control and schedules for k ∈ {&h, . . . , (&+ 1)h− 1}

(uk,σk) = (vk−$h, sk−$h) (25)

where
(v, is) = µ(xh$), (26)

and s is the element inMh corresponding to is ∈ Mh. Note
that (26) is only computed at times k = &h. Then, to analyze
a lifted policy for (1), one can apply the results of Section III
considering (22) driven by (24), and the cost (23).

C. Lower-bounding the gain
We now show how to use the first part of Theorem 1

to lower-bound the performance improvement of the rollout
policy over the corresponding base policy. This is clearly
interesting in the applications mentioned before (event-
triggered control, mixing of fluids, etc) as it gives a guaran-
teed cost gain over the base policies.
We start by considering one-step policy improvement

policies. Since Assumption (21) guarantees that (11) holds
we can assume in (13) that U = −U for some positive
semi-definite U . We then rewrite conditions (13) and (14) as
requiring that for every x ∈ Rn

min
i∈P

xᵀPix ≤ min
T∈T

xᵀTx− xᵀUx, (27)

and
xᵀΦᵀ

ι(x)UΦι(x)x ≥ λxᵀUx, (28)

respectively, where

{Pi|i ∈ P} = {Pc|c ∈ C}, T = {Pb|b ∈ B}, (29)

and the cost gain of a rollout policy (8) over the cost (2) of
the base policy (19) in (15) is then given by

1

1− λ
xᵀ
0Ux0. (30)
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Note that (28) is always met for λ = 0 as U ≥ 0, in which
case (15) is a known bound to compare base and rollout
policies, see [8, p. 338]. Condition (28) imposes that the
gain (11) at time k + 1 must be always at least λ times the
gain at time k for every time k and state xk. This is only
possible if the gain yᵀUy, y = Φι(x)x is never zero for any
state x, which typically amounts to requiring U > 0 in (27).
In turn, if (27) is achieved with U > 0 then there exists
a strictly positive gain for every non-zero state x, which is
in general too much to expect from the single-step rollout
policy. In fact, this would imply that for every non-zero x
the choice in (10) for (29), would correspond to a sequence
in C not contained in B.
On the other hand, if we consider lifted policies the set C,

described by (20) with M replaced by the much larger set
Mh, will generally become sufficiently rich as h increases
so that this latter condition can be met. For example if
m = 2 and B = {b} then C = {(1, b), (2, b)} for a
one-step improvement policy, but for a lifted policy with
h = 2 we have C = {(1, 1, b), (2, 1, b), (1, 2, b), (2, 2, b)}.
By considering lifted policies we mean that we analyze
conditions (27), (28) for the lifted switched system (22)-(24),
i.e., the matrices Pi, Φi should be replaced by P i ∈ P and

Φj := Aπ(j) +Bπ(j)Kj , j ∈ P ,

where P , Kj , and π are defined as in (6), (7), for (22), (23).
We will use this reference to lifted policies several times
below with this meaning.
Note that there is a trade-off in maximizing the gain (30)

by augmenting h for lifted policies. In fact, augmenting h
leads to larger U , in the sense that U > γI for larger γ,
but reduces the largest λ that satisfies (28) since x$ = x$h

will converge to zero faster for larger h. Moreover, since
condition (28) is not easy to test, we will need to test it for
every i (see (33) below, or the relaxed version (34)) creating
many more constraints (exponentially in h) upon testing (28).
To mitigate the latter issue, we propose two methods. The

first is to prune the set P since there may exist redundant
matrices in this set that never correspond to the minimum
in (10), but still impose a constraint while testing (28)
using (33) or (34) below. A matrix Pj ∈ P can be pruned if
the ellipsoid {x|xᵀPjx ≤ 1} is covered by the ellipsoids
corresponding to the other elements in P . A sufficient
condition to prune Pj (cf. [9], [3]) is the existence of non-
negative scalars α$, & ∈ P , adding up to one, such that

∑

$∈P\{j}

α$P$ ≤ Pj (31)

Inspired by [9], one can add εI , for a small ε > 0, to the
right-hand side of (31), leading to more pruned matrices
in P , at the expense of less gain guarantees. The second
method, which we shall follow in the numerical example,
is to compute &(κ) = argminj∈Px

(κ)ᵀPjx(κ) for a represen-
tative set of x(κ) and consider only the switching sequence
associated with P$(κ) . Such representative set can be chosen
randomly or by simulating the trajectory of (1) driven by
the rollout policy for given initial conditions. Note that to

guarantee stability of the rollout policy using the arguments
mentioned before one should make sure that (21) still holds
after pruning by either method.
1) Numerical method to maximize the gain: Using a

similar reasoning to the one that lead to (31), we conclude
that a sufficient condition to test (27) is to assert the existence
of non-negative αi, i ∈ P , adding up to one, such that

∑

i∈P
αiPi ≤ T − U, for all T ∈ T . (32)

Requiring
Φᵀ

i UΦi ≥ λU, (33)

for every i ∈ P is sufficient to guarantee (28). However, we
can use a relaxation (S-Procedure) to obtain a less restrictive
sufficient condition for (28). In fact, one can see that (28) is
met if there exist non-negative βji such that

Φᵀ
i UΦi +

∑

j∈P
βji(Pi − Pj) ≥ λU, for all i ∈ P . (34)

Then to maximize (30) for a particular x0 we can pick a
dense grid of points λ in the interval [0, 1) and for each λ
solve the LMI problem:

Problem 1 max xᵀ
0Ux0

s.t. U > 0, (32), (33).

On the other hand if we are interested in maximizing a lower
bound on the gains obtained for every initial condition we
can consider:
Problem 2 max ξ

s.t. U > ξI, ξ > 0, (32), (33).

The maximum lower bound on the gain is then obtained
by plotting (30) as a function of λ, where U results from
the solutions to these LMI problems. If these LMI problems
are unfeasible even for λ = 0 then condition (32) is
not satisfied meaning that U cannot be picked as (strictly)
positive definite.

D. Upper-bounding the gain
The second part of Theorem 2 can be used to assert how

far is the base policy from a corresponding rollout policy;
e.g. in the context of ETC [4] it is useful to guarantee that a
periodic control strategy performs already well enough with
respect to a rollout (even-triggered) policy.
In this case we can assume in (16) that W = −W for a

positive semi-definite matrix W , and rewrite (16) and (17)
as requiring that for every x ∈ Rn,

min
i∈P

xᵀPix ≥ min
T∈T

xᵀTx− xᵀWx, (35)

and
xᵀΦᵀ

ι(x)WΦι(x)x ≤ γxᵀWx. (36)

We are interested in minimizing the upper bound on the cost
difference between the rollout and base policies

1

1− γ
xᵀ
0Wx0. (37)
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Here (36) imposes the most stringent condition, as there
may not be a constant γ < 1 satisfying (36) whereas (35)
is always met for sufficiently large W . Note, however, that
for lifted policies we can pick h large enough to reduce γ
satisfying (36) and achieve γ < 1, although this in general
leads to largerW that satisfies the equivalent version of (35)
for the lifted problem. Hence, a trade-off is also present here.
In case T = {T }, i.e., T contains only one matrix, which

is the situation in many problems of interest, we can test (35)
with the following equivalent condition

Pi > T −W, for all i ∈ P .

Moreover one can use a similar relaxation as in (34) to
test (36). Numerical methods to minimize the loss func-
tion (37) can be derived using the same ideas as in Sec-
tion IV-C, involving a search over the parameter γ.
V. POLICIES RESULTING FROM LOWER BOUNDS ON THE

OPTIMAL COST

In many applications of SLSs a lower bound on the
optimal cost (2) is known. Prime examples are applications in
which (1), (2) result from the discretization of a continuous-
time model for which an optimal input is known, but cannot
be applied due to some constraints in the problem captured
by a switching variable. This is the case, e.g., in networked
control where the controller communicates with the process
via a resource constrained network. As a result the optimal
continuous-time control cannot be applied and a switching
policy must be designed to orchestrate transmissions, but
clearly the optimal continuous-time cost is a lower bound on
the cost achieved by any switching policy (cf. Section VI).
Here we consider that such a lower bound is a simple

quadratic function, xᵀTx, such that

xᵀTx ≤ J∗(x), for all x ∈ Rn,

where J∗(x) is the optimal cost (2) over the class of feedback
policies (3) for an initial state x ∈ Rn. From standard
arguments in dynamic programming [8] it follows that (12)
must hold for every state xk. Our framework would also
allow us to consider more general pointwise minimum of
quadratic functions, but we consider this special case for
simplicity.
In this section, we analyze (8) when Ĵ is given by such

quadratic lower bound. Contrarily to rollout policies, testing
the first premise of Theorem 2 that µ is stabilizing may be
challenging. We address this in Section V-A. In Section V-B
we use the first part of Theorem 2 to bound the distance
Jµ(x)− xᵀTx, which is also a bound to the distance of the
cost of µ from the optimal since

Jµ(x) − J∗(x) ≤ Jµ(x) − xᵀTx, for all x ∈ Rn.

A. Stability
A natural candidate for a Lyapunov function to test if

µ is stabilizing is xᵀTx, especially in the mentioned cases
where (1), (2) result from the discretization of a continuous-
time model. That is, if T is positive definite and if

xᵀΦᵀ
ι(x)TΦι(x)x− xᵀTx < 0 (38)

for every x ∈ Rn then µ is stabilizing. One can conclude
that a sufficient condition to test this is the existence of non-
negative βij such that

Φᵀ
i TΦi +

∑

j∈P
βij(Pj − Pi)− T < 0, forall i ∈ P .

Considering lifted policies defined as in Section IV-B, but
using the lower bound Ĵ(x) = xᵀTx as a cost estimate,
one can show that (38) holds for large enough h, provided
that the SLS is stabilizable, i.e., for every x0 there exist a
control and a switching input sequence that drives the state
asymptotically to zero.

B. Upper-bounding the loss
We can now assume that U is positive semi-definite

in (13)-(15) since, as argued before, (12) holds. Using a
similar reasoning to the one that lead to (31) we conclude
that (13) holds if there exist non-negative scalars α i, i ∈ P ,
adding up to one, such that

∑

i∈P
αiPi ≤ T + U. (39)

Moreover, (14) holds if there exist non-negative scalars β ji

such that

Φᵀ
i UΦi +

∑

j∈P
βji(Pj − Pi) ≤ λU, ∀i ∈ P . (40)

Then to minimize the cost loss 1
1−λx

ᵀ
0Ux0 of policy µ with

respect to xᵀ
0Tx0, for a particular initial condition x0, we

can solve:
Problem 3 min xᵀ

0Ux0

s.t. U > 0, (39), (40),

for each λ. This is also an upper bound on the loss of µ with
respect to the optimal policy. The tighter bound is obtained
by a line search over λ. If we are interested in bounding this
loss for every initial condition we can consider

Problem 4 min ξ

s.t. 0 < U < ξI, ξ > 0, (39), (40).

If these problems are unfeasible then stability is not guaran-
teed for the Lyapunov function candidate xᵀTx. As men-
tioned before by considering lifted policies this will be
the case, and one can also see that as h increases one
can pick smaller λ to satisfy (40). Yet, as h increases, U
satisfying (40) becomes larger, and thus there is a trade-off
in minimizing the loss.

VI. NUMERICAL EXAMPLE
Consider the following linear process resulting from the

linearization of the model of an inverted pendulum

d

dt

[
θ(t)
θ̇(t)

]
=

[
θ̇(t)

γmθ + Tm(t)

]
, (41)

where θ(t) is the displacement angle, θ̇(t) is the angular
velocity, and Tm(t) is the torque input at time t ∈ R≥0, and
γm is a positive constant. The actuators are connected to a
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controller collocated with the sensors via a communication
network. The controller can sample the state sensors, provid-
ing full state measurements periodically at times tk := kτ ,
k ∈ N0, for some sampling period τ > 0. However, to
save communication resources, the controller sends control
values to the actuators only at a subset of times tk, k ∈ N0,
determined by the switching input {σk|k ∈ N0}, with σk = 1
when a transmission occurs and σk = 2 otherwise. The
control objective is to minimize the following quadratic cost

∫ ∞

0
θ(t)2 + θ̇(t)2 + rcT

2
m(t)dt. (42)

Note that in the absence of a network the optimal control
input would be the solution to the well known LQR problem,
given by Tm(t) = KCxC(t), where xC(t) = [θ(t) θ̇(t)]ᵀ

leading to a cost xC(0)ᵀPCxC(0). For the numerical values
γm = 3 and rc = 0.1 this yields KC = [−7.3589 −4.9717]
and

PC =

[
2.1671 0.7359
0.7359 0.4972

]
.

At the actuators side, the control is set to zero if there is
no transmission at time tk and follows a linear state feedback
law with gain KC otherwise, i.e.,

Tm(t) =

{
0, if σk = 2,

KCxk, if σk = 1,
t ∈ [tk, ttk+1), (43)

where xk := xC(tk), k ∈ N0. Writing the equations
for xk we obtain a SLSs (1) with two modes m = 2
(transmit or not transmit) and Bi = 0, i ∈ {1, 2}. After
exactly discretizing (41), (42) for τ = 0.1 and taking into
account (43) we obtain

A0 =

[
1.0150 0.1005
0.3015 1.0150

]
, A1 =

[
0.9782 0.0756
−0.4381 0.5154

]
,

and

Q0 =

[
0.1040 0.0202
0.0202 0.1013

]
, Q1 =

[
0.6465 0.3553
0.3553 0.3065

]
.

We are interested in computing a policy for {σk|k ∈ N0}
that minimizes the quadratic cost subject to a transmission
rate constraint to save communication resources. Here we
consider that the controller can only transmit on average
at half of the rate it can measure the state, i.e., 1

2τ . To
achieve this we use a similar scheme to [4] considering a
lifted policy (in the sense of Section IV-B) that incorporates
this constraint. We pick h = 6 and note that there are 20
scheduling options in {1, 2}6 that satisfy the transmission
constraint, e.g, (1, 2, 1, 2, 1, 2) and (2, 1, 1, 2, 2, 1).
We consider a policy obtained by considering the lower

bound xᵀ
0PCx0 as a cost estimate in (4), (8). The costs

obtained by simulation and by the bounds obtained by
solving Problem 3 are summarized in the next table for three
initial conditions

x(1)
0 =

[
1
0

]
, x(2)

0 =
1√
2

[
1
1

]
, x(3)

0 =
2√
13

[
1
− 3

2

]
.

We also show the values obtained by the optimal continuous-
time policy and a periodic switching policy for comparison.

Ini. Cond. Jµ Problem 3 xᵀ0PCx0 Periodic
x(1)
0 3.1836 3.2015 2.1671 3.6032

x(2)
0 3.0697 3.1822 2.0680 3.6618

x(3)
0 0.3625 0.3925 0.3317 0.3720

To obtain these values we restricted the options in
{1, 2}6 choosing a representative set of states and check-
ing which scheduling options correspond to the choice
in (24). With this method we restricted the scheduling
options to (1, 2, 1, 2, 1, 2), (2, 1, 1, 1, 2, 2), (1, 1, 1, 2, 2, 2),
(2, 1, 1, 2, 1, 2), (1, 1, 2, 1, 2, 2). Note that the guaranteed
bounds are reasonably tight to the values obtained by simu-
lation. Considering Problem 4, we obtain λ = 0.53 and

W =

[
0.5151 0.1617
0.1617 0.2552

]

which allows us to conclude that

Jρ(x0)≤xᵀ
0PCx0+

1

1− λ
xᵀ
0Wx0=xᵀ

0

[
3.2630 1.0799
1.0799 1.0401

]
x0.

VII. CONCLUDING REMARKS

In this paper we proposed and analyzed a class of sub-
optimal Linear Quadratic Regulators for SLSs. A numerical
example illustrated that the provided performance bounds
are reasonably tight to the performance of the suboptimal
regulators obtained via simulation.
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