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We analyze a dynamic programming (DP)-based track before

detect (TBD) algorithm. By using extreme value theory we

obtain explicit expressions for various performance measures of

the algorithm such as probability of detection and false alarm.

Our analysis has two advantages. First the unrealistic Gaussian

and independence assumptions used in previous works are not

required. Second, the probability of detection and false alarm

curves obtained fit computer simulated performance results

significantly more accurately than previously proposed analyses

of the TBD algorithm.
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I. INTRODUCTION

In high noise and clutter, target tracking
techniques, such as the Kalman filter, probabilistic
data association (PDA) and multiple hypothesis testing
(MHT), declare detections at each measurement
time. The detections are then used to estimate the
target trajectory. A limitation of these methods
is that much of the information contained in the
measurements is discarded due to the application of
a detection threshold. This is akin to the information
loss when hard rather than soft decisions are made in
communication system receivers [1].
Track before detect (TBD) is a technique for

target detection and tracking that is useful when the
signal-to-noise ratio (SNR) is low. Unlike the above
approaches, in TBD detections are not declared at
each frame. Instead, a number of frames of data are
processed, after which the estimated target track is
returned when the detection is declared.
The literature on TBD is limited. In the early

1980s, unthresholded CCD images were used to
track satellites against background noise. In [2],
3-D matched filtering is applied to moving target
detection using optical images, while in [3] a recursive
moving-target indication algorithm is used. These
methods assume that the target velocity is known.
Their performance degrades in the presence of a
velocity mismatch or a target maneuver.
More recently, dynamic programming (DP)-based

TBD methods have been proposed in [4�—7] for
detecting and tracking targets in low SNR. Indeed [6]
is one of the first papers in the literature to analyze
the detection performance of a DP-based tracking
algorithm. The DP approach originally proposed in
[5] avoids problems with velocity mismatch and can
handle slowly maneuvering targets. The analysis in
[6] adequately describes the detection performance
of the DP algorithm in [5] but does not address the
tracking performance of the algorithm. In [4], the DP
algorithm of [5] is modified and extended to improve
efficiency, enhance performance in non-Gaussian
noise and allow velocity transitions.
This paper is based on the DP-based TBD

algorithm proposed in [7]. The DP algorithm in [7]
effectively integrates the measurements along possible
target trajectories, returning as possible targets
those trajectories for which the measurement sum
(merit function) exceeds a given threshold. The main
contribution of this work is to analyze the DP-based
TBD algorithm presented in [7]. By using extreme
value theory (EVT), we obtain explicit expressions for
the asymptotic false alarm probability PFA and track
detection probability PD. Our performance analysis
provides two major advantages as follows over the
heuristic analysis presented in [7].

1) The asymptotic expressions for the PFA and
PD obtained via EVT fit computer-simulated results
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significantly better (up to an order of magnitude) than
existing expressions in the TBD literature such as
those in [7].
2) In [7] (and [6]), to simplify the analysis it is

assumed that the merit functions at each time instant
in the DP algorithm are statistically independent
and have Gaussian densities. These assumptions are
unrealistic since the merit functions in a DP recursion
are usually dependent and non-Gaussian. The max
operator in the DP algorithm clearly means that the
densities are non-Gaussian. We show that by using
EVT neither the independence nor Gaussianity of the
merit function is required to derive expressions for PD
and PFA.

EVT is a subclass of weak convergence theory,
concerned with limiting distributions of extremal
events. The limiting distributions for sums of random
variables are characterized by the Central Limit
Theorem (CLT). In the same way, maxima of random
variables are characterized by EVT as one of three
possible invariant max-stable distributions. These are
the Weibull, Gumbel, and Frechet distributions [8].
EVT can be applied to approximate the tail of a
probability distribution. The curve is defined by two
parameters, location and scale, in the case of classical
EVT, or three parameters, location, scale and a shape
exponent, when applying generalized EVT (GEVT).
Although analytic expressions for the EVT and

GEVT curves can be calculated for certain known
distributions from which the maxima are sampled,
in most cases of interest the parameters must be
estimated numerically. While there is inherent error
in applying extremal analysis due to the need to
estimate curve parameters, this is compensated
for by the accuracy attainable with relatively little
computational effort. Here we estimate the parameters
of the extremal curves in two ways�–numerically
and by an approximate analytical procedure�–both
of which provide superior performance curves to
those achieved by the Gaussian approximation in [7].
The approximate analytical procedure we present
is based on viewing the TBD problem as a highly
interconnected stochastic network to which the DP
algorithm is applied. Extremal analysis of much
simpler network configurations is considered in [9].
The analytical expressions that we derive readily yield
accurate analytical performance bounds of the TBD
algorithm as a function of the target parameters and
can be used in developing �“rules of thumb�” in the
design of TBD systems.
Traditionally, EVT has been applied in areas of

science and econometrics to analyze both naturally
occurring rare event data, such as river floodings
and drought cycles [10], and extremal events in the
finance and insurance industries such as stock market
crashes [8]. Recently EVT has found application in
communications engineering, having been used in

bit error rate estimation for digital communication
systems [11], ATM buffer dimensioning [12],
interference parameter estimation [13], parameter
estimation in hidden Markov models [14], and some
radar system design problems [15].
The performance analysis of the TBD problem

we present here is both useful and necessary to
reduce the number of costly simulations required to
obtain accurate false alarm and detection probabilities
via a classical counting procedure. The threshold
level VT (see Section IIB) is an important factor in
system design, and theoretical curves are required
to determine appropriate values, without having to
resort to resimulation of the system. While false alarm
performance measures are analyzed in [15], their
radar systems are assumed to handle independent
identically distributed (IID) random variables, for
which the application of EVT is straightforward. The
dependencies introduced in the DP algorithm render a
fundamentally different problem here.
This paper is organized as follows. In Section II,

the TBD problem and DP solution are stated. This
is followed by an outline of relevant EVT results
in Section III. The evaluation of TBD system
performance via EVT and numerical parameter
estimation is then presented in Section IV, and for
completeness, a review of the Gaussian approximation
used in [7] follows in Section IIE. A comparison of
the EVT and Gaussian approximation performance
analysis techniques is carried out via numerical
simulations in Section V. Lastly, in Section VI, an
approximate analytical method for obtaining the
EVT curve parameters is demonstrated. This too
is compared with the Gaussian approximation via
numerical simulations.

II. TRACK BEFORE DETECT PROBLEM
FORMULATION AND ALGORITHM

A. Problem Formulation

We consider the same problem as in [7]. Consider
the problem of tracking a point target that moves with
constant velocity in the x-y plane. An extended region
surrounding the target is monitored by a sensor,
consisting of an L£L grid of square resolution cells
of side length ¢. At time k, the matrix of measured
intensities recorded by the sensor is Zk = fzk(i,j)g,
i,j 2 [1,L], where

zk(i,j) =
½
Ak +wk(i,j) target in cell (i,j)

wk(i,j) no target in (i,j)
:

(1)

Here Ak denotes the target amplitude which is
assumed to be a constant for simplicity, i.e., Ak = A.
The additive noise, wk(i,j)»N(0,¾2w), is assumed to
be IID.
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REMARK The above model is obtained by
discretization of the target dynamics. Since our aim is
to analyze the TBD algorithm, we only consider basic
linear dynamics as given in [7]. More sophisticated
versions of the algorithm are given in [6].

The sensor grid provides the necessary structure to
model the target motion by the discrete process

xk+1 = Fxk, k = 1, : : : ,K (2)

xk =

2
6664

xk

yk

uk

vk

3
7775 , F=

2
6664

1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

3
7775 (3)

where (xk,yk) 2 [(1,1),(L,L)] and (uk,vk) 2
[(¡M=2,¡M=2), (M=2,M=2)] are the discrete target
positions and velocities, respectively. T is the time
between successive sensor readings, termed frames.
For simplicity we assume that T = 1. M is a design
parameter, chosen to encompass the velocity range of
the target motion.
The TBD estimation objective is: Given the

measurement sequence of K frames, determine the
trajectories (state sequences) most likely to have
originated from the actual target. The DP algorithm
outlined in Section IIB is applied to solve the TBD
problem.

B. Track Before Detect Dynamic Programming
Algorithm

The TBD problem formulation (1)�—(3) enables
application of the following DP (modified Viterbi)
algorithm, as in [7].
Let Xk be the set of all possible discrete states of

the target at time k:

Xk = f[i,j,r,s]0g, i,j 2 [1,L], r,s 2 [¡M=2,M=2]:
(4)

1) Initialization: For all x1 = [i,r,j,s]
0 2X1,

I(x1) = z1(i,j) (5)

ª1(x1) = 0: (6)

2) Recursion: For 2· k ·K,
For all xk = [i,r,j,s] 2Xk,

I(xk) = maxxk¡1
[I(xk¡1)] + zk(i,j) (7)

ªk(xk) = argmaxxk¡1
[I(xk¡1)] (8)

where the maximization is performed over the xk¡1 for
which a transition to xk is possible (see below).
3) Termination: For threshold VT find,

f�ˆxKg= fxK : I(xK)>VTg: (9)

4) Backtracking: For all �ˆxK , for k =K ¡1, : : : ,1
�ˆxk =ªk+1(�ˆxk+1): (10)

Notation: At any stage k, there are n= L2M2

recursions being followed through in the algorithm.
We denote this set as x(1)k , : : : ,x

(n)
k , in no particular

order.

C. Valid Transitions

Let q 2 f1,4,9,16, : : :g denote a fixed squared
integer which defines the valid state transitions on the
x-y plane. We assume that for every state at time k,
there are q possible (valid) states at time k+1. From
state xk = [i,r,j,s]

0, the sets of possible states at time
k+1 for q= 4,9,16,25 are

q= 4 xk+1 2 f[i+ r¡ ±i,j+ s¡ ±j ,r¡ ±i,s¡ ±j] :

±i,±j =¡1,0g

q= 9 xk+1 2 f[i+ r¡ ±i,j+ s¡ ±j ,r¡ ±i,s¡ ±j] :

±i,±j =¡1,0,1g

q= 16 xk+1 2 f[i+ r¡ ±i,j+ s¡ ±j ,r¡ ±i,s¡ ±j] :

±i,±j =¡2,¡1,0,1g

q= 25 xk+1 2 f[i+ r¡ ±i,j+ s¡ ±j ,r¡ ±i,s¡ ±j] :

±i,±j =¡2,¡1,0,1,2g:

Fig. 1 depicts the valid state transitions, for each q
value, from the state xk = [3,2,2,3].
This definition of valid transition is more precise

than that given in [7]. Through the above definition,
q= 1 is of no use, due to the discretization inherent in
the algorithm. For example, if the signal was initially
at position (1:5,2:3), and moved with a velocity of
(1:2,0:8), q= 1 would lose the signal due to the
noninteger position and velocity. It is for this reason
that q= 4, : : : ,25 are considered.
The performance of the TBD algorithm is affected

by the choice of q. As seen via the numerical
simulations in Section V, q= 4 does not allow
enough target maneuverability, even for constant
velocity models. This stands to reason, for as Fig. 1
depicts, the valid transitions do not allow for a
decceleration (which can be present for a constant
velocity target due to the discretization), making this
choice of q little better than q= 1. In Section VI it is
demonstrated that satisfactory analytic extremal curves
approximations are obtained for larger q (increased
target maneuverability).

D. Performance Measures

In [7] the following two performance measures
are used for evaluating the performance of the TBD
algorithm. In Section IV, we use EVT to characterize
these two performance measures.
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Fig. 1. Examples of valid transitions. (a) q= 4. (b) q= 9. (c) q= 16. (d) q= 25.

1) Probability of false alarm PFA is defined as the
probability of detecting at least one false track. This
is equal to the probability of the maximum noise state
merit function exceeding the threshold VT. Hence

PFA = Pr
µ
max
xK
I(xK)>VT

¶
(11)

where xK 2 fnoise statesg.
2) Probability of target detection PD is defined as

the probability of the merit function I(xK) exceeding
the threshold VT for at least one state for which the
final (x,y) cell is within 2 cells of the actual target
cell, and the velocity cell is equal to the actual target
velocity cell. This is given by

PD = Pr
µ
max
xK
I(xK)>VT

¶
(12)

where xK 2 fstates within 2 cells of the target cell,
with correct velocity cellg. The limit of 2 cells has
been chosen to replicate the scenario in [7].

Approximate evaluation of (11)�—(12) is carried
out in [6, 7] by assuming that the merit functions
are independent and Gaussian distributed, a limited
approximation due to the dependency introduced
by the max operators in the DP algorithm (7). We
approach the analysis using EVT.

E. Review of Gaussian Approximation of PFA and PD

So as to compare the EVT approach of Section III
with the Gaussian approximation method of [7], in
this section we briefly review this latter method. The
approximate analysis of PFA and PD presented in [7] is
based on the following two assumptions.
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A1. The probability densities of the merit
functions are assumed Gaussian.
A2. The merit functions at each frame k are

assumed IID.

Under these assumptions, the performance
measures, derived using order statistics, are

PFA = 1¡©n
µ
VT¡¹K
¾K

¶
(13)

PD = 1¡©
µ
VT¡¹K
¾K

¶
©L

2M2¡1
µ
VT¡¹K
¾K

¶
(14)

where ©(x) is the Gaussian cumulative distribution
function, with corresponding probability density
function Á(x). The two sets of means and covariances,
f¹K ,¾Kg and f¹K ,¾Kg, are computed according to
the following recursions (for derivation details refer
to [7]).
1) Initialization: For p= q,q¡ 1, compute:

¹max(p) =
Z 1

¡1
pxÁ(x)©p¡1(x)dx

¾2max(p) +¹
2
max(p) =

Z 1

¡1
px2Á(x)©p¡1(x)dx

(15)

and initialize:

¹1 = 0, ¾21 = ¾
2
w, ¹1 = A, ¾21 = ¾

2
w:

2) Recursion: For k = 1, : : : ,K ¡ 1

¹k+1 = ¹k +¾k¹max(q) (16)

¾2k+1 = ¾
2
w+¾

2
k ¾

2
max(q) (17)

¹k+1 = A+©(¹k +¾k¹max(q¡ 1))+¹k©+ µÁ

(18)
¾2k+1 = ¾

2
w+©¾

2
k ¾

2
max(q¡ 1)

+¾k©+(¢©+ µÁ)(¢©¡ µÁ) (19)

where

¢= ¹k +¾k¹max(q¡ 1)¡¹k

µ =
q
¾2k ¾

2
max(q¡1)+¾k

Á= 1=
p
2¼ exp

µ
¡¢

2

2µ2

¶

©=
Z ¢=µ

¡1
1=
p
2¼ exp

µ
¡ x2

2¾2w

¶
dx

©= 1¡©:

Equations (15)�—(19) for obtaining PFA and
PD via Gaussian and independence assumptions
are complicated and involve expensive numerical
integration. This is compared with the straight-forward
EVT/GEVT parameter estimation methods presented
in the following two sections.

III. EXTREME VALUE THEORY

The occurrence of maxxK I(xK) functions in
(11)�—(12) suggests application of EVT. In this section
we review a key result in EVT called the Fisher
Tippett Theorem. We show in Section IV how this
result can be used to compute approximate values of
PFA and PD.

A. Fisher Tippett Theorem

In the first instance, suppose fy1, : : : ,yng is a
sequence of IID random variables with common
cumulative distribution function

F(x) = Pr(Yk · x), k = 1,2 : : : ,n:

Let Mn denote the maximum of the sequence, i.e.,

Mn =maxfy1, : : : ,yng:

Classical EVT is concerned with the asymptotic
distribution of Mn as n!1. If F(x) is known, clearly
the distribution function of Mn is given by

Pr(Mn · x) = Pr(y1 · x, : : : ,yn · x), x 2 R

= Fn(x):

According to EVT, the asymptotic distribution of Mn
must belong to one of three possible distributions
if it exists. The particular asymptotic distribution
can be determined from only limited knowledge
of the tail distribution of yk, thereby making the
knowledge of F(x) for all x unnecessary. In particular,
for a sequence of IID random variables, fyng, whose
probability density function has support (¡1,1), the
Fisher�—Tippett Theorem [8, p. 121] states that

Fn(an+ bnx)
n!1¡!¤(x) (20)

where ¤(x) denotes the Gumbel distribution

¤(x)
¢
=expf¡exp(¡x)g, x 2 R

and parameters bn > 0 and an 2 R are normalizing
scale and location constants, respectively. That is, the
normalized distribution of Mn converges in distribution
(weakly) to the Gumbel distribution.
The approximate distribution of the maxima Fn(x)

for sufficiently large finite n is derived from (20),

Fn(x) = expf¡exp[¡(x¡ an)=bn]g: (21)

GEVT generalizes the attraction to the extremal
distribution (20) by incorporating a shape parameter
º > 0,

Fn([aºn + cnx]
1=º)n!1¡! expf¡exp(¡x)g, x 2 R:

(22)

Equation (22) holds for all º providing (20) holds.
As sample size n approaches infinity, the sequence of
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distributions in (22) does not differ from the sequence
in (20), due to the disappearance of higher order terms
[16]. From (22), the approximate distribution of the
maxima (Mn), denoted as Fn(x), for sufficiently large
finite n is derived as

Fn(x) = expf¡exp[¡(xº ¡ aºn)=cn]g: (23)

It is clear from the recursion (7) that I(xK) cannot
have a Gaussian density�–hence Assumption A1
of Section IIE is clearly untrue. Moreover, the
sequence of merit functions at the last frame K,
I(x(1)K ), : : : ,I(x

(n)
K ) are actually correlated since two

states at frame K may have one of more possible
previous states in common.
Consider now applying the EVT Fisher Tippett

Theorem to the sequence I(x(1)K ), : : : ,I(x
(n)
K ). Because

the noise wk(i,j) in (1) is Gaussian, it is clear from
(7) that the merit functions I(x(i)K ) have probability
densities with support in (¡1,1). Thus with the
IID Assumption A2 of Section IIE, the Fisher
Tippett Theorem directly applies. In particular, the
Gaussianity Assumption A1 used in [7] is not required
at all.
EVT also allows the IID Assumption A2 to be

relaxed somewhat as follows. Suppose fy1, : : : ,yng is
a stationary dependent sequence of random variables.
EVT for dependent sequences [8, p. 211] states
that subject to certain weak distributional mixing
conditions (i.e., rapid decay in dependence between
successive elements) of fykg, it follows that (20)
holds. The weak distributional conditions required
are the conditions D(yn) and D

0(yn) detailed in [8,
p. 211]. Verifying these conditions for the sequence
fI(x(1)K ), : : : ,I(x

(n)
K )g is a difficult task. However,

heuristically these conditions seem plausible since
the dependency between merit function elements
I(x(i)K ) and I(x

(j)
K ) decreases for x

(i)
K and x(j)K spaced

further apart on the L2£M2 grid of states at frame K.
In Section V we show that the Gumbel distribution
yields a remarkably accurate fit to the empirical
distribution of the maximum of the sequence
fI(x(1)K ), : : : ,I(x

(n)
K )g. We also note that in [17] it

is proven that the maxima of dependent random
variables over a square grid, similar to the situation
arising here from the TBD problem, will be attracted
to one of the three extremal distributions.
For known underlying distributions, the

parameters an, bn, and/or cn and º of the GEVT
distribution (23) can be analytically evaluated.
Due to the unknown nature of the merit function
distribution in the TBD problem, these parameters
must be determined numerically by simulation,
or approximated analytically. We demonstrate in
Section V that the Gumbel limiting distributions
(20)�—(22) with parameters determined by simulation,
provide far superior distributions of PFA and PD

than does the approximate analysis based on a
Gaussian approximation (see Section IIE). The
GEVT and EVT parameter estimation methods are
outlined in Section IV. Section VI then demonstrates
the estimation of EVT curve parameters via an
approximate analytical method, shown also to provide
a far superior fit compared with the approximate
Gaussian approach of [7].

IV. EVALUATION OF PFA AND PD VIA EXTREME
VALUE THEORY

The false alarm probability (11) can be
reexpressed via the tail of the distribution function
Fn(x)

PFA = 1¡Pr
µ
max
xK
I(xK)· VT

¶

= 1¡Fn(VT), xK 2 fnoise statesg (24)

where there are of the order of n¼ L2£M2 noise
(nonsignal) states at the endpoint K.
In a similar vein, the detection probability is

PD = 1¡Pr
µ
max
xK
I(xK)· VT

¶

= 1¡Fn(VT), xK 2 fsignal statesg: (25)

For example if L= 5,M = 6, there are n= 25¤36
valid signal states, these being the set of cells within
2 cells of the true signal state.
In previous applications of EVT and GEVT, the

procedure for estimating the tails of the distributions
has been to collect C = nN samples, which are then
partitioned into N groups of n samples. The maximum
of each of the N groups is selected, producing the
sample set of maxima, X= [X1, : : : ,XN], from which
the parameters of the distributions (21) and (23) are
estimated. The choice of n and N has been subject to
much discussion, as n must be large enough to ensure
the equalities in (21) and (23) valid, while N must be
large enough to ensure the parameter estimates are
accurate [11, 15, 18].
For the analysis of the DP algorithm attempted

here, the size of the groups n is known when
calculating (24)�—(25). This leaves only N, the number
of simulation repetitions, to be chosen.
To evaluate (24) and (25), estimates of the

location, scale and (if using GEVT) shape parameters,
an, bn, and º, must be computed. A description of
the least squares (LS) and maximum likelihood (ML)
parameter estimation methods to compute the GEVT
parameters follows.
Least Squares Parameter Estimation: While the

GEVT distribution (22) will hold for all values of
º, providing the EVT distribution is applicable, the
accuracy of the approximate distribution (23) depends
on the chosen value of º. Therefore, the parameter
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estimation method proceeds by obtaining the optimal
º before estimation of an and cn occurs.
Rearranging (23) produces the linear relationship,

¡ ln(¡ ln(Fn(x))) =
xº ¡ aºn
cn

: (26)

The array, Y(º) = [ �˜Xº1 , : : : ,
�˜XºN] is constructed for the

ordered sequence of sample maxima �˜X and exponent
value º. For an array of equi-spaced points between 1
and N, U = [u1, : : : ,uN], evaluate the left-hand side of
(26). Denote the resulting array Z = [Z1, : : : ,ZN] where
Zi = ln(¡ ln(Fn(ui)). The correlation between Z and
Y(º),

f(º) =
PN

i=1(Yi(º)¡Yº)(Zi¡Z)hPN
i=1(Yi(º)¡Yº)2

PN
i=1(Zi¡Z)2

i1=2 (27)

will be maximized at some �ˆº. In (27), Z and Yº are
the array means.
With the optimal value �ˆº in hand, the parameters

an and cn can be estimated by application of least
squares (LS) fit to the linear relationship (26). The
LS objective is

minimize
µ
Z ¡ 1

cn
Y( �ˆº)¡ dn

cn
1
¶0µ

Z ¡ 1
cn
Y( �ˆº)¡ dn

cn
1
¶

(28)

where dn = a
�ˆº
n, and 1 is a vector of ones of length N.

Taking the partial derivatives of (28) with respect to
dn and cn, and solving for these parameters results in
estimates,

�ˆcLSn =
Y( �ˆº)0Y( �ˆº)¡NY2�ˆº
Z 0Y( �ˆº)¡NY �ˆºZ

(29)

�ˆdLSn = Y �ˆº ¡ �ˆc
LS
n Z: (30)

The LS EVT parameter estimates results from taking
�ˆº = 1 in (26)�—(30).
Maximum Likelihood Parameter Estimation: While

the LS parameter estimation method is constructed
to estimate the three parameters of the GEVT
distribution (23), we use the ML method to estimate
only the parameters of the EVT distribution (21), due
to inherent numerical instability in the ML method
when attempting to solve iteratively for the three
GEVT parameters. The numerical simulations of
Section V demonstrate that the performance of the
LS GEVT parameter estimator is high enough not to
require an alternative ML estimator.
The log likelihood function of X under EVT

distribution (21),

L(an,bn,X) =¡N lnbn¡
NX

i=1

Xi¡ an
bn

¡
NX

i=1

exp
½
¡Xi¡ an

bn

¾
(31)

is differentiated with respect to the EVT parameters bn
and an. The resulting partial derivatives are set to zero
and rearranged, producing the relations,

�ˆbn =X¡

PN
i=1Xi exp

(
¡Xi�ˆbn

)

PN
i=1 exp

(
¡Xi�ˆbn

) (32)

�ˆan =
�ˆbn ln

2
4 N
PN
i=1 exp

n
Xi
�ˆbn

o

3
5 : (33)

The equations (32)�—(33) can be iteratively solved
for optimal values �ˆaMLn and �ˆbMLn . Such an iterative
procedure is described in [19, p. 231�—2], where the lth
estimate �ˆb(l)n is computed by (32) and is then averaged
according to �ˆbl+1n = �ˆb(l)n +(

�ˆb(l¡1)n ¡ �ˆb(l)n )=3, prior to
computing the next value of �ˆan. In the numerical
simulations in Section V, initializing with �ˆb(1)n = 1
was found to be completely adequate and avoided
unnecessary computation introduced in the procedure
in [19].

V. NUMERICAL EXAMPLES

Computer simulations of the TBD problem are
carried out to demonstrate the superiority of the EVT
and GEVT analysis of Section IV as compared with
the approximate analysis in [7], which was briefly
described in Section IIE.
The simulated TBD scenario is as follows. The

measurement sensor has side length of L= 30 cells,
and the model considers M = 6 velocity cells, a total
number of L2£M2 = 32400 discrete states at each
time k. The initial target state is chosen randomly with
3:0· x1,y1 · 6:0 and 1:5· u1,v1 · 2:5. The signal
amplitude A is varied between sets of simulations, as
is the transition size parameter q. The noise is kept at
the constant level of ¾2w = 0:8. N = 1000 independent
simulation runs are performed for each parameter
set, and estimates of PFA and PD are obtained by 1) a
classical counting procedure, 2) the approximate
Gaussian analysis [7], and 3) EVT/GEVT analysis.
Fig. 2 shows the LS GEVT, EVT (ML and LS),

and Gaussian approximation curves plotted with the
curves based on the classical counting procedure
(henceforth called the �“simulated�” curves), for the
probability of false alarm. The simulations carried out
are for no signal present (A= 0), and hence a false
alarm is declared if the maximum end-state merit
function I(xK) exceeds the threshold. The GEVT
curves in Fig. 2 provide a remarkably accurate fit.
They are nearly indistinguishable from the simulated
curves. In comparison the Gaussian approximation
from [7] underestimates the PFA in Fig. 2, with an
inaccurate distributional shape across the range of
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Fig. 2. PFA curves for methods compared in Section V (¢ ¢ ¢ actual PFA, �–�–�– estimated curve). Within each plot, curves are
left-to-right q= f4,9,16,25g.

Fig. 3. PFA curves obtained by LS estimates of GEVT parameters, using reduced sample size N = 100. (¢ ¢ ¢ actual PFA,
�–�–�– GEVT-based estimate of PFA).

q values. Neither set of EVT curves (LS and ML)
in Fig. 2 is as accurate as the GEVT, but each is
significantly superior to the Gaussian approximation
curves.
To demonstrate the usefulness of the extremal

analysis, Fig. 3 presents the LS GEVT curves for PFA,
with parameter estimates taken from only N = 100
sample maxima, rather than N = 1000 as in the
previous plots. The accuracy of the GEVT curves is
still better than even that obtained by the EVT curves
in Fig. 2.
Figs. 4�—7 compare the simulated PD curves

with GEVT, EVT (ML and LS), and Gaussian

approximation curves for q= 1,4,9,16. The accuracy
of the GEVT Gumbel distributions across the entire
range of signal amplitudes is evident from these
figures. The EVT based plots are less accurate, but
still provide a good estimate of the distributional
shape, particularly at low signal amplitude A.
In comparison, the Gaussian approximation

analysis of [7] in these figures provide a close
distributional estimate only for large A (high SNR).
This is to be expected, given that in high SNR the
DP is redundant and the problem becomes one of
choosing a strong signal from a noisy region, the
tail performance of which is known to approach a Q
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Fig. 4. PD curves for methods compared in Section V and valid transition parameter, q= 4. (¢ ¢ ¢ actual PD, �–�–�– estimated curve).
Within each plot, curves are left-to-right A= f1:0,1:5,2:0,2:5,3:0g.

Fig. 5. PD curves for methods compared in Section V and valid transition parameter, q= 9. (¢ ¢ ¢ actual PD, �–�–�– estimated curve).
Within each plot, curves are left-to-right A= f1:0,1:5,2:0,2:5,3:0g.

function. Given that the TBD method is proposed as a
method to be used when SNR is low (see Section I),
the Gaussian approximation analysis is clearly not
sufficient, while EVT and GEVT analyses provide
results of high accuracy.
As with the probability of false alarm above, the

GEVT curves can be estimated using a fraction of
the sampled data, N = 100 rather than N = 1000. The
results for the four q values across the range of signal
amplitudes are plotted in Fig. 8. The curves remain

accurate, particularly at low levels of A, where the
Gaussian approximation in particular fails.

VI. ANALYTICAL DETERMINATION OF EXTREME
VALUE THEORY CURVE PARAMETERS

Thus far, we have demonstrated that by using
EVT, one can obtain performance curves that fit the
actual performance of the TBD algorithm extremely
accurately. In particular, we presented simulation
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Fig. 6. PD curves for methods compared in Section V and valid transition parameter, q= 16. (¢ ¢ ¢ actual PD, �–�–�– estimated curve).
Within each plot, curves are left-to-right A= f1:0,1:5,2:0,2:5,3:0g.

Fig. 7. PD curves for methods compared in Section V and valid transition parameter, q= 25. (¢ ¢ ¢ actual PD, �–�–�– estimated curve).
Within each plot, curves are left-to-right A= f1:0,1:5,2:0,2:5,3:0g.

based numerical methods to estimate the curve
parameters. In this section, by considering the TBD
problem to be analogous to the determination of a
dominating path in a stochastic network, we derive
approximate analytical expressions for the curve
parameters. These expressions readily yield accurate
analytical performance bounds (e.g. probability of
false alarm or probability of detection) of the TBD
algorithm as a function of the target parameters (target

aamplitude A, noise variance ¾2w, valid transition
horizon q).
We consider the analytical estimation of only the

EVT curve parameters, as the exponent in the GEVT
case (see (22)) renders the task too difficult.
Consider first the network view of the TBD

problem, briefly discussed in Section I. At each
time frame in the TBD algorithm, there are L2£M2

possible cells in which the target may reside. Thus the
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Fig. 8. PD curves obtained by LS estimates of GEVT parameters, using reduced sample size N = 100. (¢ ¢ ¢ actual PD,
�–�–�– GEVT-based estimate of PD). Within each plot, curves are left-to-right A= f1:0,1:5,2:0,2:5,3:0g.

target maps out a path as it traverses the K frames.
The task of the TBD algorithm is to determine which
of the paths in this highly connected, stochastic
network exceeds a given threshold value (and hence
is thought to have originated from the target).
The DP algorithm results in L2£M2 potential

target paths. On each branch (i.e., arc or frame,
k = 1, : : : ,K) is a measurement that is either N(0,¾2w)
or N(A,¾2w) according to the signal model (1).
As presented in [9], EVT can be applied to

stochastic networks using the concept of a dominating
path. A dominating path is one that dominates a
network. An example is given in [9] that Kleindorfer�’s
network, consisting of 20 nodes, 38 arcs and 51 paths,
has 3 paths that are 9 arcs long, longer than the other
paths. Therefore n= 3 paths are said to be dominating
paths.
If each dominating path has mean, ¹, and variance,

¾2, then the EVT parameters can be approximately
determined by the following relationships (refer to [9]
for details on derivation):

an = ¹+¾
·
(2logn)1=2¡ 1

2
(loglogn+ log4¼)

(2logn)1=2

¸

(34)

bn =
(2logn)1=2

¾
: (35)

This theory relies on the assumption that the
network paths are IID. Obviously this is not the
case in any nontrivial (nonparallel) network, as
certain branches are common to multiple paths. Thus
the above method assumes that the performance

degradation incurred by violating the IID assumption
is not too severe.
We proceed now to apply the concept of

dominating paths to the two performance measures
of interest in this work. The numerical data used to
test the method�’s accuracy arise from the simulations
presented in Section V.

A. False Alarm Probability

As the probability of false alarm curves are
determined via simulation with no signal present (A=
0) (see Section V), no path can be said to dominate
the network. Each path is K frames/branches long,
with a measurement on each branch that is N(0,¾2w).
It is a natural application of the method (34)�—(35)
above, therefore, to consider ¹= 0, ¾2 =K¾2w, and
n= L2M2. Most problematic with this is that it does
not take into account the parameter q. This can be
rectified by noting that in the Kth step of the DP
algorithm, sets of q measurements will be tracked
back to the same cell in the (K ¡1)th frame, due to
the max operation. Therefore an initial attempt with
n= (L2M2=q) as the number of dominating paths in
the network is justified. With these three parameters
chosen, an and bn can be determined from (34)�—(35),
fully determining the desired EVT curve.

EXAMPLE Consider the case where q= 16, L= 30,
M = 6. Fig. 9 shows the PFA curve obtained via
empirical estimation from simulations and the curve
using the above analytical method. The latter curve
has the correct shape, but a completely incorrect
shift.
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Fig. 9. PFA curve obtained via unshifted analytical EVT method
of Section VIA. (�–�–�– actual PFA, ¢ ¢ ¢ unshifted analytical

curve).

As the curve shape is correct, the parameters
¾ and n are good estimates of the true parameters
(see (35) above). The incorrect shift is explained by
the approximation made in assuming that there are
n= 32400=q IID paths in the network. Missing is
the upwards shift in the mean incurred at each stage
of the algorithm via the max operations (see
(31)�—(32) for a mathematical demonstration of this
shift).
Values for the shift in mean for each q are

obtained using a Gaussian approximation as follows.
At each time k = 2, : : : ,K, a max operation is applied
in the DP algorithm (see (8)). The recursion for
the shifting mean and variance obtained via the
Gaussianity approximation is given in (31)�—(32) in

Fig. 10. PFA curves via analytical EVT method (�–�–�– actual PFA, ¢ ¢ ¢ shifted analytical curve).

Section V, repeated here for clarity:

¹k = ¹k¡1 +¾k¡1¹max(q) (36)

¾2k = ¾
2
w+¾

2
k¡1¾

2
max(q) (37)

for k = 2, : : : ,K ¡ 1, with ¹1 = 0 and ¾21 = ¾2w. Here
we computed the recursion until frame K ¡1 not K,
as the Kth maximum operation is taken into account
in the choice, n= 32400=q. The recursion produces
shifts, defined as ¹shift(q) = ¹K¡1 for each q. The shift,
¹shift(q), is then incorporated into the analytic method
from determining the curve parameters, by setting
¹= ¹shift(q) in (34).
Fig. 10 shows the result of the analytic parameter

estimation that incorporates the shift in mean
due to the max operations. For q= 4, the shift
overcompensates for the max operations. The use of
q= 4 has already been discredited as being far too
restrictive on the input signal model (see Section IIC).
It is observed in these plots that as q increases, the
agreement between the analytic and simulated EVT
curves improves greatly.

B. Detection Probability

Determining the probability of detection curves
analytical method is a more difficult task (than the
probability of false alarm), owing to the fact that some
branches in the network are distributed according
to N(0,¾2w), while others are N(A,¾

2
w). The results

presented here do not provide a completely analytical
method for PD parameter estimation. What is shown,
however, is that the parameters can be estimated
through comparison to the simulated curves, which
sheds light onto the performance analysis task at hand.
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Fig. 11. PD curve comparison for q= 16, A= 3:0, between
analytical EVT method of Section VIB and standard Q curve. (¢ ¢ ¢

actual PD, �–�–�– estimated curve.)

Signal detection via the TBD algorithm can be
broken into two classes, those of detection in high
A (high SNR) and low A (low SNR). In the latter
category, the signal is more likely to be masked by
the noise. In the former category, should A be high
enough, the DP algorithm is rendered unnecessary, as
the task reduces to selecting a strong Gaussian signal
in white noise.
To demonstrate this fact, the case q= 16 and A=

3:0 (high SNR, given that ¾2w = 0:64) is considered.
Fig. 11 demonstrates that simply fitting a Q function
(erf function) with mean A¤K = 30 and variance
K ¤¾2w = 6:4, estimates the empirical curve extremely
well. The analytic EVT curves (discussed later)
fits quite well, but not to the same degree as the Q
function curves. Similar results were noticed for other
q values. Thus in high SNR, a single path dominates
the network, rendering EVT both unnecessary and
unwarranted.
In the low SNR region, the network is not

dominated by only a few paths. Two low signal
amplitudes, A= 1:5 and A= 1:0, were considered.
For the former case, it was found that n= 25 paths
dominate. Practically this means that each position
in the 25-position-cell region being searched for
exceedances of VT (see (12)) is liable to contain a
dominating path. This path may not hold the true
signal, but because of the low SNR the noise may
give the appearance of a signal existing there. For
the weaker A= 1:0, even more paths dominate the
network. Indeed, all 25£M2 = 25¤36 paths (region
including the velocity cells) are liable to contain
a dominating path. Together with ¾2 =K¾2w, this
consistently gave the true shape of the EVT curve.
The harder task is determining the mean, ¹, of the

dominating paths in the network. Table I displays the
mean value of ¹. It is not possible to formulate an

TABLE I
Mean Values, ¹, for Low SNR Signals

A= 1:0 A= 1:5

q= 9 (K ¡ 2)A+2A=25 (K ¡ 2)A+2A=25
q= 16 (K ¡ 1)A+A=2 (K ¡ 1)A+A=25
q= 25 KA+A=2 (K ¡ 1)A+A=2

expression to obtain these values without comparison
with the simulated curves. The q= 9 results are
explained by the fact that only (K ¡ 2) frames of the
dominating paths can be considered to be definitely
signal states, and in the last two frames, on average
only one of the cells contained a measurement that
looked like the signal. The q= 25, A= 1:0 value
for ¹ is harder to explain, as it is actually greater
than K £A! However, one can view this as the noise
completely dominating the paths, due to the flexibility
in q= 25 for the paths to wander widely to achieve
the highest merit function value.
Fig. 12 demonstrates the high level of accuracy

achieved semi-analytically using the parameter values
from Table I in the low SNR region of operation of
the TBD algorithm.

C. Summary of Analytical Evaluation of Extremal
Curve Parameters

Obtain probability of false alarm curve given the
number of valid state transitions q and the variance of
the sensor background noise ¾2w.

1) Set n= L2M2=q and ¾2 =K¾2w, where L is the
side length of the sensor, M the number of velocity
cells, and K the number of processed frames.
2) Determine shift in mean, ¹, by evaluating

(36)�—(37) for k = 2, : : : ,K ¡ 1.
3) Evaluate an and bn in (34)�—(35) using n,¾,¹.
4) The EVT curve is given by substitution of an

and bn into (21).

Obtain probability of detection curve given values
of the target intensity A, and q and ¾2w as above.

1) For A= 1:0, set n= 25. For A= 1:5, set n=
25¤M2.
2) Set ¾2 =K¾2w.
3) Determine shift in mean, ¹, by reference to

Table I.
4) Evaluate an and bn in (34)�—(35) using n,¾,¹.
5) The EVT curve is given by substitution of an

and bn into (21).

These semi-analytic results can be used in TBD
system design. With desired probabilities of detection
and false alarm specified, the appropriate values of
transition size parameter q can be found across the
range of SNR values the system is likely to operate
within via reference to the appropriate graphs. Other
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low SNR values to the ones considered here may
be taken into account via interpolation of the given
results.

VII. CONCLUSION

The analysis of the TBD problem has been
approached using EVT and GEVT, resulting in
significantly more accurate results than previous
approaches that were based on assumptions of
independence and Gaussianity [6, 7]. This novel
application of EVT/GEVT to DP algorithm
performance demonstrates the power of distributional
convergence theory, given that DP introduces
dependencies in the sequences of random variables
not commonly considered in the literature. Work is
continuing in the investigation of EVT applied to the
theoretical analysis of low SNR uses of DP (Viterbi)
algorithms.
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