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Abstract- A modified version of the multilevel coded modulation 
scheme of Imai & Hirakawa is presented and analyzed. In the 
transmitter, the outputs of the component codes are bit inter- 
leaved prior to mapping into 8-PSK channel signals. A multi- 
stage receiver is considered, in which the output amplitudes of 
the Gaussian channel are soft limited before entering the second 
and third stage decoders. Upper bounds and Gaussian approxi- 
mations for the bit error probability of every component code, 
which take into account errors in previously decoded stages, are 
presented. Aided by a comprehensive computer simulation, it zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis 
demonstrated in a specific example that the addition of the inter- 
leaver and soft limiter in the third stage improves its perfor- 

mance by 1.1 dB at a bit error probability of lo-’, and that the 
multilevel scheme improves on an Ungerboeck’s code with the 
same decoding complexity. The rate selection of the component 
codes is also considered and a simple selection rule, based on 
information theoretic arguments, is provided. 

I. INTRODUCTION 

Ungerboeck, in his pioneering work [l], showed that by 
combining channel coding and modulation into one entity by 
means of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa trellis code, it is possible to achieve a remarkable 
coding gain as compared to ;in uncoded modulation system 
with the sa “  spectral efficiency and data rate. The core of 
Ungerboeck’s scheme, which is, in fact, fundamental in :tlmost 
every coded modulation system, is the mapping by set parti- 
tioning in which the redundant signal set is partitioned into 
smaller subsets with increasing intra-set Euclidean distances. 
Independently, Imai & Hirakawa [2] proposed a coded modu- 
lation scheme based on a multilevel binruy code. In this 
method the channel signal set is successively binary parti- 
tioned, using the set partitioning rule, where the binary labels 
of the edges from one level of the partition chain to the next 
are encoded by independent binary codes. The multilevel 
scheme enables the usage of a suboptimal multistage decoder 
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as was originally proposed in [21 (see also [3-9]), which 
demonstrates performance/complexity advantages over the 
maximum likelihood decoder, since its overall complexity is 
proportional only to the decoding complexity sum of the com- 
ponent codes and not their product (see 13-91). 

The perform,mce of a multilevel scheme with a multistage 
decoder has been approximated mainly by the Asymptotic 
Coding Gain (ACG) as compared to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan appropriate uncoded 
modulation system, or by the effective coding gain which 
accounts also the error coefficients of the code [3-81. When 
block codes have been used as component codes, certain upper 
bounds on the error event probability have been also evaluated 
[lo, 111. However, as was pointed out in [71, it is not simple 
to extend these error event bounds to provide upper bounds on 
the decoded bit error probability because of the interaction 
between decoders in various stages. In fact, because of the 
side information passed ‘among subsequent stages, the coding 
channel of each stage is neither memoryless nor Gaussian. 
The main focus of the present paper is to present a rigorous 
analysis of the decoded bit error probability for a multilevel 
system which incorporates convolutional codes at each stage 
and a multistage decoder at the receiver end. 

The multilevel scheme, presented in the next section, is a 
modified version of [21. The modification is expressed in two 
aspects: 1) Addition of interleaver/deinterleaver pairs in the 
second and third stages, which prevents the appearance of 
error bursts in the decoded sequences of the component con- 
volutional codes. These interleavers also increase the diver- 
sity level of the system, a characteristic which appears to be 
advantageous in fading channels [12-141. 2) Soft limiting the 
output (amplitudes of the channel before entering the second 
and third shge decoders. These soft limiters resemble practi- 
cal receivers with restricted dynamic range, nnd also diminish 
the effect of incorrect side information passed among subse- 
quent stages, a fact which turns to be advantageous in decod- 
ing the third stage code. In this paper we specialize to binary 
convolutional codes and an 8-PSK signal set, but the genersil- 
ization to other codes or signal sets is straight forward. 

The error performance analysis of the proposed multistage 
decoder is presented in section 111. Upper bounds on the bit 
error probability which take into account the side information 
passed among subsequent stages, are derived for every compo- 
nent code. In addition, approximations for these bounds 
which use the assumption that the coding channel of each 
stage is Gaussian, ignoring, thus, the statistical dependence 
between the noise samples and the sequences of the previously 
decoded stages, are presented. Recently, a n  error performance 
analysis of a multistage decoder was reported in [S, 151. It 
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Fig. 1. (a) Transmitter block diagram. (b) Receiver block diagram. 

seems, however, that the aforementioned Gaussian assumption 
was used zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas the basis of the analysis. In section IV, an exam- 
ple along with results of a comprehensive computer simulation 
of different multistage decoders are presented. It is demon- 
strated that the addition of the interleaver and soft limiter in 
the third stage improves its performance by 1.1 dB at a bit 
error probability of lo-', and that the error performance of the 
proposed scheme improves on Ungerboeck's codes with the 
same decoding complexity. The issue of choosing the rates 
and constraint lengths of the component codes is addressed in 
section V, where a simple rule for selecting the rates, which is 
based on information theoretic arguments for the aggregate 
rate of multiuser systems, is provided. 

11. SYSTEM DESCRIPTION 
AND PRELIMINARIES 

The transmitter, described in Fig. I.a, is based on the 
scheme in [2]. A binary information sequence, I, is parti- 
tioned into three binary subsequences I,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl2 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA13,  where 
each subsequence is convolutionally encoded by an indepen- 
dent binary component code, denoted by C,  , i = 1,2,3. The 
rate of code Ci is R, = k , /n , ,  and its output code sequence is 
denoted by C,. The code sequences C, and C, are bit inter- 
leaved prior to mapping into channel signals. The rssociated 
bit interleavers IN2 and IN3 are assumed to be independent 
and ideal, that is their output sequences C'2 and C'3, respec- 
tively, are statistically independent of each other and consist of 
independent and identically distributed (iid) bits. 

S? = 0.586 
5" : 1, 

O O .  o o o  . O O  o o o  0 . 0  o o o  0 , o  O g O  

. I 1 1  0 1 1  1 0 1  0 0 1  1 1 0  0 1 0  1 0 0  000 c;c;c, 

Fig. 2. Set partitioning of a11 8-PSK signal set. 

Three bits, two from the bit interleavers' output 'and another 
from the code sequence C,, are mapped synchronously into 
one of 8-PSK channel signals. The 8-PSK signal set is 
denoted by s o  and given by 

A 
= { uk = 6 e x p ( j 2 ~ k / 8 )  , k = 0, 1,. . . , 7 } .  The mziptp- 

ping, illustrated in Fig. 2, follows the set p,utitioning rule of 
111 <and 121. The binary labels of the edges from one level of 
the partition chain to the next, denoted by C1, C; and C;, are 
components of the sequences Cl,  & and f&, respectively. 
The subscripts o, q and b of the subsets stand for octal, quater- 
nary and binary, respectively, and refer to the number of ele- 
ments in each subset, whereas the superscripts define the right- 
most coded bits conveyed by every channel signal in the sub- 
set. The squared Euclidean subset distance of So is 
6," = 0.586 E,. CI determines a QPSK signal set, for which 
the intra-set squared Euclidean distance is 6: = 2 E,. C1 and 

C; specify a BPSK signal set, for which the intra-set squared 
Euclidean distance is 6; = 4 E,. 

The channel considered in this paper is the discrete-time, 
memoryless Gaussian channel, where $ and 41 stand, respec- 
tively, for the input and the corresponding output sequences. 
Due to the independent convolutional codes and bit inter- 
leavers, the sequence $ consists of independent and identi- 
cally distributed channel signals. The noise samples are inde- 
pendent Gaussian complex random variables with zero mean 
'and vruiance N0/2 in each dimension. The overall rate, desig- 
nated by R,  is given by R = R ,  + R2 + R3 bitslchunnel signul. 
The signal to noise ratio (SNR) is E J N ,  and EJN,,, standing 
for the received energy per bit to noise ratio, equals EJNo R. 

The multistage decoder, described in Fig. l.b, is a modified 
version of the one proposed in [21. Each stage consists of a 
meuic computation unit and a Viterbi decoder, denoted by 
D,  , i = 1,2,3, which produces the estimated information 
sequence LL and code sequence ci. In addition, symbol dein- 
terleavers, denoted by IN;' and IN;', are introduced in stage 
2 and stzige 3, respectively. These symbol deinterleavers per- 
form the inverse operation of the corresponding bit inter- 
leavers in the transmitter. The estimated code sequence, e,, is 
passed again through the ideal bit interleaver, IN,, in order to 
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preserve synchronization with the appropriate received signal. 
The overall operation of the interleaver/deinterleaver pairs 
eliminate error bursts in the side information sequences passed 
runong subsequent sbiges. Since Viterbi decoder is sensitive 
to error bursts, the addition of the interleaver/deinterleaver 
pairs improves the error performance of the system at most zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
El,/No values. The delay buffers, E l  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE2,  store the 
received sequence, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, until decoding in previous stages is 
completed. Soft amplitude limiters with thresholds a <and p,  
respectively, are introduced in the second and third stages, 
where E, and la strtnd, respectively, for their output 
sequences. These soft limiters are devices with a unity gain 
up to a threshold, whence the output amplitude is clipped and 
the phase is left unchanged. They resemble practical systems 
with a restricted dynamic range and tnitigate, as well, the 
effect of incorrect side information in the second and third 
decoding stages. 

In each stiige, the side information determines the signal set 
upon which the metrics are calculated according to the set par- 
titioning structure (illustrated in Fig. 2). For the predeter- 
mined signal set, the suboptimal metric associated with the 
code bit '0' or '1' is minus of the corresponding squared 
Euclidean distance. For a rate k /n  component convolutional 
code, the sum of n consecutive metrics is calculated for every 
branch metric in the trellis diagram of the code. 

More specifically, the metric, evaluated in stage 1, is 
denoted by ml(Y ; Cl)  and defined by 

may take. 
We conclude this section by considering the decoding com- 

plexity per information bit of the system, which is the usual 
basis for compcmng different codes and coding schemes. Usu- 
ally the decoding complexity is related only to the number of 
states of the convolutional code. However, the computation of 
the branch metric may be a heavy task for low rate codes 
which are expected to be used in the first stage. Therefore, for 
the sake of a fair comparison, the decoding complexity is 
defined by the number of binary comparisons 'and binary met- 
ric additions required for decoding one bit of information. A 
straight forward calculation, which can be found in [9] and 
[ 121, reveals that the decoding complexity per information bit 
of a rate k /n  convolutional code with 2" states is give by 

(2" * (2k - 1) + 2" -- 2)lk. For implementation simplicity, high 
rate codes are often selected to be punctured convolutional 
codes, based on rate 1/2 convolutional codes [161. For these 
codes, the decoding complexity is almost the same as the 
decoding complexity of the original code 'and is given by 2'. 
The overall decoding complexity of the system, denoted by L ,  

is given by the weighted sum L = C ( R ,  L,)/R where R is the 

overall rate of the system and L,  is the decoding complexity of 
each stage. 

A trellis coded modulation scheme is a natural c,andidate for 
a comparison with the scheme in this paper. The decoding 
complexity per information bit of a trellis code, based on a 
rate (n  - l ) /n convolutional code with 2" states, is given by 

3 

,=I 

(2" (2n-l - l))/(n -. 1). 

where Y and X itre the received and possible transmitted ch"- 
ne1 signals, respectively, and CI = 0,1 is the code bit associ- 
ated with the subset S( ; l  (see Fig. 2). The metric evaluated in 
stage 2 and associated with the side information bit CI is 
denoted by mz(Y, : C@,)  and defined by 

m 2 ( ~ ,  : c ~ I C ~ )  = - min zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIY, -  XI^ , C,, C; = 0, I 
C'2 e, (2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAES,, 

where Y a  is the soft limiter output for which the amplitude is 

limited to be below a threshold a, and S ,  I 

(Ci, el = 0 , l )  is the BPSK subset, determined by Ci and 

(see Fig. 2). Similarly, the metric m3(Yg ; Cf3l&, e,) associ- 

ated with the side information bits 

C' it 

and e, is given by 

(3) 

where X is the transmitted channel signal determined by 

C3, Ci and e, (see Fig. 2), and Ya is the soft limiter output 

Note that for the case in which the side information is incor- 
rect, the meuics are calculated on a signal set which is rotated 
by 45" (for stage 2) and 45" or 90" or 135" (for stage 3) with 
respect to the true one and, therefore, ;we wrong. The soft lim- 
iters introduced in stages 2 and 3 diminish this effect by 
bounding the maximal possible value that each wrong metric 

m3(Ya ; eye,, e,) = - IYa - XI 2 

for which thc mnplitudc is: limited to be below a threshold p. 

111. ERROR PERFORMANCE 

The performance of a multilevel coded modulation system, 
which employs a multistage decoder, has been commonly 
approximated by the asymptotic coding gain as compared to 
an uncoded system with the same &ita rate and spectral effi- 
ciency [3, 4, 6, 7, 81, or by the effective coding gain, which 
incorporates the error coefficients of the components codes [6 
- 81. For coded 8-PSK specifically, denote by  HI, d H 2  and 
d ~ 3  the free Hamming distance of component codes C1, Cz 
and C3,  respectively. Then, the ACG, expressed in dB, as 
compared to an uncoded QPSK modulation system with the 
same energy is given by 

ACG = lO.log(min { 0.293 d H 1  , d H 2  , 2 d H 3  }) . (4) 

In this section we present rigorous upper bounds along with 
approximations for the average bit error probability of each 
component code, which account for errors in the side inform- 
tion passed among subsequent stages. Denote by Pl,l, P , 2  and 
Pb3 the average bit error probability of codes C ,  , C2 <and C3, 
respectively. Then, the average bit error probability of the 
overall system, denoted by P,, is given by 

The coding channel, namely the channel from encoder to 
decoder of each stage, is memoryless due to the independent 
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and ideal interleaver/deinterleaver pairs introduced in the 
transmitter and the receiver. This implies that the multivariate 
probability density functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf(ylX), f( l ' , lX,~l) and 

f ( l ' o l x , ~ ~ , ~ l )  associated with the first, second and third 
stages, respectively, cCm be factored into zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa product of scalar 
conditional probability density functions. Explicitly stated, for 
stage I, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ( r ~ x )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= J J f ( y j l x j ) ,  for stage 2, f(yaI~,cl) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

J 

Considering zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa general decoder, the estimated code sequence 
at its output reflects the statistical properties of the noise in the 
channel. In our case, since a stage decoder is employed, the 
estimated code sequences of previously decoded stages are 
passed as side information to subsequent stages. Conse- 
quently, these side information sequences, which carry some 
statistical knowledge about the noise in the channel, alter the 
statistical nature of the noise of the coding chunnel of each 
stage. For the second stage, for example, the event that the 
side information is correct, that is C1 = e,, implies that the 
noise in the channel was "small" at the vicinity of e,, whereas 
the event that the side information is wrong, namely zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC, # e,, 
implies that the noise was "large". As a result, the noise seen 
by the decoder in the second stage can not be treated for 
granted as being Gaussian. Taking advantage of the soft lim- 
iters, however, enables us to bypass this obstacle And to obtain 
rigorous upper bounds for the decoded average bit error proba- 
bility in the second 'and third stages. 

A first order approximation to the coding channels of the 
second and thlrd stages, which is also presented in the paper, 
is obtained by ignoring the statistical knowledge carried by the 
side information and considering the noise of the coding chan- 
nels as Gaussian, after all. The approximation, based on the 
above assumption, is referred to, throughout, as the Gaussian 
approximation. It seetns that the Gaussian assumption was 
also the basis for the error performance analysis in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[S, 151, 
where in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[SI, a so called "maximum likelihood" metric was 
employed, as  well, at the multistage decoder, 

In order to simplify notations, we consider only the coding 
channels in the following derivation. This means that the 
interleaver/deinterle~tver pairs are disregarded and the side 

information sequences are taken as cI and & (instead of &), 
while considering them zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas being comprised of iid bits. 

A.  Upper Bounds 
1)  Stugr 1 : The derivation of the upper bound on the aver- 

age bit error probability of the first stage follows the approach 
used in [7] for QAM signal sets. A similar approach can be 
found also in [9] and in [12] for a fading channel. Consider 
first the pairwise error probability P ( c l  -+ el) of choosing 
the code sequence el instead of the actually transmitted code 
sequence C,. Suppose that Cl is conveyed by the specific 
channel signal sequence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX. Due to the squared Euclidean dis- 
tance metric of (l), used in the first stage, the decision 
between Cl rind el can be viewed as a conventional 

maximum llkelihood decoding over a Gaussian channel, 
where X is the transmitted sequence and the possible decoded 
sequences are those sequences which may convey &. The 
decision region of each sequence is defined, in the usual mn- 
ner, as the set of points that are closest, in terms of the squared 
Euclidean distance, to that sequence. Clearly, the union of the 
decision regions of the channel signal sequences that are clos- 
est to X covers the entire space of channel signal sequences, 
except the decision region of X. Each 8-PSK channel signal 
has two neighbors equally close to it, that is, those signals that 
are 45 degrees apart. Therefore, if the Hamming &stance 
between C, and el is d,  there are 2d possible channel signal 
sequences closest to X with squared Euclidean distance 
0.586 E,  d .  Hence, applying the union bound, P ( C ,  + el) is 
upper bounded by 

where e(.) is the Gaussian integral function defined by 
00 

Q(6) = 1 /a exp(-t2 / 2)dt . 
6 

Note that the above derivation of the error probability of the 
first stage may be applied to any M-PSK signal set by just 
replacing the argument 0.586 E,  m the square root of (6) by 
the appropriate squared Euclide<m distance between nearest 
neighbor channel signals. 

Due to (6) ,  each error coefficient of the code CI is multi- 
plied by the factor 2d,  thus, increasing the effective error coef- 
ficients of the code. The appearance of this factor is explained 
by the fact that the code sequences Cz and C, are seen by the 
decoder in the first s&ge as uncoded sequences since it 
receives no help in decoding from the second and third stages 
(see [7-91). For low rate codes with large free Hamming &s- 
tance, which are expected to be used in the first stage, the fac- 
tor 2d may be significant and loosen the bound even at 
medium Eb/No. 

The bound in (6) depends only on the Hamming distance 
between the sequences GI and & and not on their specific 
structure. Therefore, it may be assumed, without loss of gen- 
erality, that the all-zero code sequence is transmitted, and it is 
possible to incorporate the conventional generating function 
approach (171. Thus, using the relation 
Q ( 4 G )  < e(@) exp(-y/2) (see [171) for bounding 
r(cl + GI) in (B), tne average bit error probability Phl 1s 

upper bounded for a rate R1 = kl/nl convolutional code C1 by 

(7) 
0.586' Esd,yl aTl(D, 1) 

0.586E, 
1=1,0=2 exp (--) -P( 4N" 1. ar 

 NO 
where d H 1  is the free Hamming distiice of code CI and 
TI (., .) is its generating function. 
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In order to calculate the error performance of the second 
and third stage decoders, the reliability of the side information 
has to be also evaluated. The average error probability of a 
reencoded symbol zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(as opposed to a decoded bit) belonging to 
the component code CI is denoted by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP,, and is upper 
bounded, as shown in Appendix B, by 

2) Stag(' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. The pairwise error probability P ( c 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ &) of 
choosing the code sequence c2 instead of the transmitted code 
sequence C, is given by 

P(C2 + C 2 )  = c P(CI)P(ClICI) 

P(Zm2(Y,, : C,,lG,> - m2(Y,, : c,$,,> 2 0lC1, e,> C2) 
(9) 

Cl,C_'l 

I 

where C ,  is the transmitted code sequence of component code 
C 1, 1 is the corresponding estimated code sequence passed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a s  side information, Y a j  is the soft limiter output signal and 
m2(* ; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 I .) is the metric defined in (2). Applying the Chernoff 
bounding technique, P ( c 2  + c2) is upper bounded by 

where "E" is the statistical expectation operation, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX is a possi- 
ble channel signal sequence conveying the code sequences C, 
and c2, and A 2 0  is the Chernoff bound parameter to be 
determined. Due to the symmetrical signal set and the fact 
that the codes are linear, it is assumed without loss of general- 
ity (see [9]) that the transmitted code sequences are 
C, = C2 = 0 'and the associated ch'annel signal sequence is 

= go. In addition, since X depends on cl through Cl,  the 
outer expecmion is independent of cI. Using the fact that the 
coding channel of stage 2 is memoryless due to the inter- 
leaver/deinterleaver pair introduced at this stage, <and dropping 
the time dependence j in the notation, the upper bound in (10) 
takes the form 

where d is the Hamming distance between C2 and c2. 
There are two cases to consider in evaluating the expecta- 

tion in (11). The first is the one in which the side information 
is wrong, Le., e, == 1 and CI = 0, and the second is the one in 
which the side information is correct, is . ,  e, = C, = 0. Each 
such event carries some statistical knowledge about the corre- 
sponding noise sample in the channel, and therefore the mem- 
oryless coding channel seen by the Viterbi decoder in st?ge 2 
(and also in stage 3) is not necessarily Gaussi,m any more. 
Consider first the expecmion for the case in which the side 
information is wrong. Since this expectation involves the 
unknown conditional probability density function 
f(Y,IuO, e, = l), we upper bound the metric difference by the 
maximal value it takes on. From definition (2) of the meuic 
used in the second stage, and by using simple geometrical 
arguments, it is easily seen that the maximal value of the met- 
ric difference is 2a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6, where a is the soft limiter threshold 
amplitude. Taking il = 1/2N0 (see Appendix A), the expecta- 
tion in the above case is upper bounded by 

E[exp { A [ m2(Y, ; 111) - m2(Y, ; Oll)]}lao, 2, = 1 1 

Consider next the case in which the side information is cor- 
rect. In order to get rid of the conditioning on e, in ( l l ) ,  we 
employ the upper bound 

on the conditional probability density function, where 
f(Y,lao) is easily derived, as shown in Appendix A, from the 
conditional probability density function f ( Y  lao) of the 
received signal before the soft limiter. Using the fact that the 
arguments of the expeckTtion in (1 1) are all positive and taking 
A = 1 / 2 N o  (see Appendix A), the expectzztion in (11) is 
bounded for the case of correct side information by 

(13) 

E(exp { a [ m2(Y, : 1 I 0) - mz(Y, : 0 I 011 1 luo, el = 0 

where QM(.;) is the Marcum Q-function defined by 

Q ( ~ I ,  6 2 )  = t exp ( - (t2 + 8;) / 2) Io(6, t )dt  , a is the soft 

limiter threshold amplitude, 'and J 2  is the integral given by 

m 

6 2  
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with Lo( . )  standing for the modified Bessel function of order 
zero. Inserting (12) and (13) into (ll), and using the notation 
P ( e ,  = llCl = 0) = PCI  where P,,, bounded in (8), is the 
average error probability of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa reencoded symbol belonging to 
code zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC, , the following upper bound results: 

+ 2J2 + P,, exp ( - ) = D,  . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.'"IA No 

Finally, applying the generating function approach [ 171, the 
average bit error probability Pi,z is upper bounded for a rate 
R2 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk2 f n2 convolutional code C2 by 

where T2(.;) is the generating function of code C2 and D2 is 
defined in (15). The average error probability of a reencoded 
symbol, denoted by Pc2, is upper bounded as shown in 
Appendix B by 

3) Stage 3: The error probability for the third stage is 
obtained following steps that are similar to those used in the 
derivation of the error probability for the second stage. There- 
fore, only one point of difference is emphasized, where a 
detailed derivation is given in [9]. The pairwise error proba- 
bility P ( g ,  4 c3) is given by an expression similar to (9). 
The side infonnation passed to stage 3 consists of the 
sequences & and el. Therefore, the probability 
P ( ~ I  , c21C1 , Cz) has to be evaluated. Since the coding chan- 
nels of the various stages are not independent from each other, 
due to the statistical knowledge conveyed by the side informa- 
tion, the above probability can not be factored into the product. 
P(e,lC,) P(e21C2). Instead, the upper bound 
~ ( e ,  , e21c, , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc,) 5 2min { P ( ~ ~ I C , ) ,  P ( ~ , I c ~ ) }  is 
employed [9]. Consequently, for the case of wrong side infor- 
mation, the exponent is multiplied by 
2(PC1 + P,, + min { Pcl + PC2}). The pairwise error proba- 
bility P ( c 3  + &) is, thus, bounded by 

where /3 is the soft limiter threshold amplitude, P,, and P,, 
are the average error probabilities of reencoded symbols 
belonging to codes C ,  and C,, respectively, and J 3  is the inte- 
gral given by 

The upper bound on Pb3 is obtained simply by replacing k2 
and D2 with k3 and D3, respectively, in (16). 

B.  Gaussiun Approximations 
In order to simplify the presentation of the Gaussian 

approximations, we consider a receiver without soft limiters in 
stages 2 and 3. Thus, the Viterbi decoders in these stages use 
conventional soft decisions. 

The painvise error probability P(C,  -+ C2) is shown in 
Appendix C to be approximated by 

where d is the Hamming distance between C2 and c2. The 
derivation of the Gaussian approximation for the third stage is 
similar to that of the second stage, therefore, the details are 
provided in [9], where only the concluding result concerning 
the pairwise error probability P(C,  -+ c3) is given here as 
follows: 

ml +mz+m3+m4=d 

~(Pcl)"2+"4 (1 - Pcl)m'+m3 (Pc2)m3tm4 (1 - Pc2)m1+m2 P(r  2 0) 

where 0 I ml,  m2, m3, m4 I d  , d is the Hamming distance 
between C3 and &, and r is a Gaussian random variable with 
mean -2E, [2ml + d ( m 2  - m4)] and variance 8 d E, No. 

The Gaussian approximation on the average bit error proba- 
bility is obtained in the usual manner [17] as 

I m  m 

(22) PI, 5 5 i a ( d , i ) P d  

where d H  is the free Hamming distance of either code C2 or 
code G3, a(d, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi) is the number of paths in the trellis diagram of 

k i=l d=d, 
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the convolutional code which diverge from the all-zero path 
for Hamming distance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd and carry i 1’s in their unmerged seg- 
ment, and Pd is the associated pairwise error probability given 
in either (20) or (21). The average probability of a reencoded 
symbol, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPc2, is approximated by the expression (B.l) in 
Appendix B. 

It is possible to obtain approximations which make use of a 
compact form of the generating function of the code [171 by 
upper bounding the painvise error probabilities in (20) ‘and 
(21) with the usage of the Chernoff bounding technique, or to 
upper bound the Q-function in (20) by <an exponential term. 
This subject, however, is omitted here for the sake of brevity. 

C. Discussion 
We conclude this section by examining the upper bounds 

and approximations obtained for the various stages. The mul- 
tistage decoder is sequential in nature and, therefore, the influ- 
ence of an untight bound at some stage propagates through the 
subsequent stages and may result in bounds which are even 
less tight. Since the code CI is expected to be powerful, Le., a 
code with a large free Hamming distance, its effective error 
coefficients would be significantly large (see the discussion 
following (6)). Consequently, the above propagation would 
begin, in many cases of interest, already at the first stage. 

The above problematic nature of the bounds holds in gen- 
eral. When the bounds in the second and third stzzges are con- 
sidered, other questions are raised. The bounding technique in 
these stages relies upon bounding the metric difference by the 
maximal value it t,?kes on when the side information is wrong. 
Although this bounding technique seems to be too pessimistic 
at first gkmce, the degradition of the bounds due to it would 
be small in many cases of interest, since the probability of a 
wrong side information bit is usually small. 

There are. however, two cases for which the degradation is 
expected to be significant; the cases for which the codes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC2 or 
C have free Hamming distance of either 1 (uncoded case) or 
2. The reasons for a possible significant degractztion in the 
above cases is demonstrated for the second stage. Consider 
the expression (9) of the pairwise error probability in the sec- 
ond stage. For the uncoded case and when the side informa- 
tion bit is wrong, upper bounding the metric difference by its 
maximal value, which is cle,wly greater than zero, results in 
the trivial bound of 1 for the pairwise error probability. For 
the second case in which the free Hamming distance of code 
C2 is 2, consider the event for which one bit of side informa- 
tion is wrong and the other is correct. Clearly, the sum of the 
metric differences associated with this event is at least zero, 
and the corresponding pairwise error probability is bounded 
by 1, as well. Consequently, the overall pairwise error proba- 
bility in these cases would be proportional to the error proba- 
bility P,, of the side information in the first stage, which, on 
its own right, does not necessarily exhibit the correct behavior 
of the bound in the second stage. Note that when the Chemoff 
bounding technique is used for bounding the pairwise error 
probability, the above situation clearly becomes worse. 

For the third stage, the degradation in the aforementioned 
cases would be even larger since there are more side informa- 
tion sequences which lead to the trivial bound, ‘and due to the 

factor of 2 of P,, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP,, in (18). Note that for the third 
stage, free Hamming distance of 2 already results in an ACG 
of 6.02 &, which is sufficient for all practical cases. 

Consider now the GaussiLm assumption. It seems that the 
this assumption is a good working assumption since there is 
only a slight degradation, if any, as compared to the receiver 
incorporating soft decisions, as is seen by simulation results 
for a specific example, presented in section IV. This is 
expected zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas the statistical dependence between a ceriain 
decoded decision and its aligned noise sample is small for 
powerful codes. Still, since a degradation is observed, at least 
for the second stzzge, the Gaussian approximations can not be 
considered as strict upper bounds, even if they appear to be so 
in various figures when compared to computer simulation 
results . 

IV. AN EXAMPLE AND SIMULATION RESULTS 

In this section we examine the bounds and approximations 
obtained in the previous section through an example accompa- 
nied by comprehensive computer simulations. The convolu- 
tional codes chosen as component codes are listed in Table I. 
For each code, we have indicated its rate (RL), number of 
sLtes, Hamming distance (dHL) ,  decoding complexity ( L J ,  
Asymptotic Coding Gain (ACG), and the suitable reference. 
The codes C2 and C3 are punctured convolutional codes, 
based on rate 112 convolutional codes. The overall rate of the 
system is R = RI  + Rz + R3 = 2 bits I channel signal, the ACG 
is 6.02 dB according to (4), and the overall decoding complex- 
ity per information bit of the multistage decoder is L = 20.92. 

Before presenting the bounds (and approximations, we 
describe the various computer simulations performed with the 
selected codes. We performed computer simulations for the 
system proposed in this paper and a system which represents 
the Gaussian assumption. For comp‘uison purposes, we also 
simulated a multilevel system without soft limiters, a system 
with no interleavers, and a system in which the side informa- 
tion is perfect. In all the simulations performed, the d m  
sequence was, with no loss of generality, the all-zero 
sequence, and the Viterbi decoders operated with practically 
infinite quantization and path length. 

The interleaver in the second stage was implemented as a 
block interleaver with 288 rows and 288 columns. This block 
interleaver has a depth of 14.4 constraint lengths with respect 
to code C ,  , and a span of 9.6 constraint lengths with respect to 
code C2. Thus, the interleaver can be considered for practical 
purposes as ideal. In the third smge, the interleaver was 
implemented as a pseudo random interleaver, where the 
sequence length interleaved each time was 2882 = 82944 bits 
long. It is not clear that this interleaver is long enough to be 
considered ideal, but by comparing the simulation results 
using this interleaver with those of the Gaussian assumption it 
is seen that the degradation, if any, is small. 

The system which represents the Gaussian assumption was 
implemented by simulating each shge independently of the 
others in order to eliminate the statistical dependence between 
the side information (and the noise in the coding ch‘mnel. Each 
bit in the iid side information sequences used in the second 
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12 IR df, 7 22 1181 

32 12 602 1161 

4 2 4 602 IIYI 

TABLE II 
Soft Limiters Threshold Parameters 

~ 0.4 I 

and third stages was obtained by flipping a coin with a proba- 
bility of success which was equal to the error probability of 
reencoded sytnbols simulated in the previously decoded stages 
of the multistage decoder, where the multistage decoder incor- 
porated soft decisions in every stage. 

We present now the bounds and Gaussian approximations 
along with the relevant simulation results. The upper bounds 
on the average bit error probability of each component code 
and the overall proposed system are shown in Fig. 3. The 
thresholds parameters, a and ,L?, listed in Table I1 were taken 
so as to optimize the bounds for every EbINo. The bound on 
PI,, was calculated by using 21 coefficients from the generat- 
ing function (see [l81), and the bound on Pl,2 was calculated 
by using 8 coefficients (see [161). For thefull generating 
function was evaluated. Also shown in Fig. 3 are the corre- 
sponding simulation results. The threshold parameters taken 
were a= 0.66fi  and p = 0.24fi. No attempt has been 
made to optimize these parameters to get the best possible 
sirnulation results. It is observed from the graphs that the 
bound on Phl is not tight enough even for a bit error probabil- 
ity of w5, and it becomes very loose for error probabilities 
larger than that. The above phenomenon is due to the large 
effective error coefficients of code C ,  , attributed to the factor 
2d in (6) (see section 111). In particular, since the free Ham- 
ming distance of the convolutional code used in the first stage 

is 18, the first error coefficient of code C1 is multiplied by 218 
which is a significant factor even for medium and large Eb/No 
values. Note that the bound for the first stage is based on Q- 
functions and the boundmg is mainly due to the union bound, 
which is the basis for most known bounds evaluated for con- 
volutional codes incorporating soft decisions. Note also that 
since the decoder is a sequential one, the fact that the bound 
for the error probability of the side information, P C l ,  is not 
tight enough causes a drastic threshold effect in the bounds for 
f h 2  and Pb3 already at an error probability of 5 . lo-'. 

In order to examine the tightness of the bound on Ph2, an 

3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI S 6 1 I ! 
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Fig. 3. Upper bounds (P(,,, Pa2, PI,3, PI,) and simulation results 

( P , , ,  P,,,, P B ~ ,  Pl,) for the multilevel system with iiiterleavers aid soft litn- 

iters, and an approximation for Pb2. 

approximation, which considers only correct side information 
sequences and uses soft decisions, is also presented in Fig. 3. 
The Chemoff bound-based average bit error probability for 
this approximation is obtained simply by taking PCI = 0 and 
a = 00 in (16). A comparison between the graphs of the exact 
bound and the above approximation reveals that they are in a 
good agreement especially for medium and large values of 
EblNO. Since for low values of EI,/No the side information 
becomes significant, it is concluded that the untightness of the 
bound is mainly due to the Chernoff bounding technique and 
the fact that the bound on Pci  is not adequately tight. The 
bound for Ph3 is very loose due to the fact that code C3 has a 
free Hamming distance of 2 (see the end of section 111 for a 
discussion), and the fact that the bounds on the side informa- 
tion from previously decoded stages, Pcl and Pc2, are not 
tight. As was pointed out in section 111, this causes the bound 
to be worse than either the bound for Pcl  or the bound for PC2. 

Taking a code C3 with a free Hamming distance greater than 2 
would result in a much better bound, but as can be seen by the 
simulation results, the error performance of the third stage is 
already significantly superior to the other two. Note that 
although the ACG of code C1 is 7.22 dB whereas the ACG of 
codes C2 and C3 is only 6.02 dB, their error performance at 
medium and large EbINo is better zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthan the en-or performance 
of code GI. This implies the important conclusion that the 
codes should not be selected on an equal ACG basis, but, 
instead, the first code should be the most powerful one since it 
is the less protected in terms of the intra-set squared Euclidean 
distance. 
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Fig. 4. Siiiiulatioii results zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(P,,, P,,, P,,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP l ) )  for the system with/w~tliout 
soft limiters and with interleavers. 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 .  
interleavers and without soft limiters. 

Simulation results (Pt,, , P,,, Pl,,, P 6 )  for the system with/without 

In order to examine the effect of the soft limiters we simu- 
lated also a coding system without the soft limiters. These 
simulation results along with those of the system with the soft 
limiters are depicted in Fig. 4. It is observed that the improve- 
ment due to the addition of the soft limiters is negligible in 
stage 2, whereas for stage 3 ,  there is an improvement for low 

I.[-7 I I , , I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 I I I T  $ ,  . . .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI . .  l . t  
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Fig. 6. Simulation results for the system without soft limiters and with inter- 

leaven (Pl,, , P,,, P /,,), for the Gaussian assui~iption (P,,, P,,), and for the 

system with perfect side information (Pi,,, P[,3). 

E J N 0  of up to 0.15 dB (for Eb/No = 4.75 dB). The above 
phenomenon is explained by observing the set partitioning 
structure (see Fig. 2) and noting that the metrics calculated in 
the second stage are less effected by an incorrect side informa- 
tion than those metrics calculated in the third stage. 

Another comparison, shown in Fig. 5 ,  is performed between 
the coded system with the interleavers and a system with no 
interleavers, where both systems have no soft limiters. It is 
observed that the addition of the interleaver in stage 2 reduces 
the error performance €or Eb/No  less than 5 dB and is advan- 
tageous only for Eb/No greater than 5 dB where the improve- 
ment itself is modest. On the other hand, the addition of the 
interleaver in the third stage improves the error performance 
significantly for almost any E2,/No. For example, an improve- 
ment of 1.05 dB is exemplified at error probability of 10". 
The perform,wce of the system without the interleavers is gov- 
erned by the first stage, since the occurrence of an error burst 
in this stage necessarily inflicts an error in the second and the 
third stages. It is worthwhile mentioning that a simulation 
performed for a system without interleavers but with soft lim- 
iters yields almost no difference as compared to the simulation 
results of the system without interleavers and soft limiters. 
This observation is also explained by the assertion that the 
occurrence of an error burst implies an error in a subsequent 
stage almost independently of the metrics being used. 

In the next two figures we examine the Gaussirtn assump- 
tion, its validity as a working assertion, and the resulted Gaus- 
sian approximations. In Fig. 6 we present simulation results 
of a system which resembles the Gaussian assumption along 
with simulation results of the system with no soft limiters. It is 
demonstrated that a difference in performance exists only in 
the second stage at low Eb/No and, in any case, this difference 
is no more than about 0.25 dB. The fact that the difference in 
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Fig. 7. Siinulation results zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(PI,, , P,,, P,,, Pb)  for the system with inter- 

leavers and without soft limiters, an upper bound foi Pill, aid Ciaussian 

approxiinations (Pl,z, Pb3, f'l,). 

the second stage is in favor of the Gaussian assumption is due 
to the elimination of the statistical dependence between the 
side information and the aligned noise samples in the system 
which represents the Gaussian assumption. On the other hand, 
the lack of difference in the third stage possibly occur since 
the error performance in this stage is dominated by the wrong 
metrics which results from a wrong side information (see Fig. 
2 and section III), where the effect of a change in the stzitistics 
of the noise samples is rather small. Note, however, that sincc 
a degradation is still observed, the Gaussian approximations 
which results from the Gaussian assumption can not be con- 
sidered as strict upper bounds, even if they appear to be so in 
the next figure. In fact, the reason that the approximations 
appear as bounds is mainly due the underlying union bound on 
which they are based. 

Another important issue is the conditions under which the 
side information sequences can esscntially be considered per- 
fect. To examine this, a system which incorporates only cor- 
rect side information sequences has been simulated and the 
results are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAalso depicted in Fig. 6. For the third stage, in order 
to assess the performance at low enor probabilities, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan upper 
bound is also shown. For stage 2, it is observed that the side 
infortnation may eventually be considered perfect at a bit error 
probability of low5, whereas for stage 3, there is still 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdB dif- 
ference at that error probability. Moreover, for stage 3 the side 
information can not be considered perfect even for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa bit error 
probability zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Note that for the system without inter- 
leavers the difference for stage 3 is 2.05 dF3 at an error proba- 
bility of lo-'. The results obtained so far put in question the 
validity of the ACG or even the effective coding gain, as dis- 
cussed at the beginning of section 111, as relevant parameters 
for approximating the performance of multilevel codes, since 
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Fig. 8. An overall average bit error probability for the multilevel system with 
interleavers and soft limiters (an upper bound and simulation), for the (;&us- 

s im assumption (an approximation), for a 16 states Ungerboeck code (an 

uppal- buund and simulation), and for an uncoded QPSK. 

they do not take into account the side information passed 
among subscquent stages. 

After showing that the Gaussian assumption is indeed a rea- 
sonable working asseition, we piesent in Fig. 7 the Gaussian 
approximations for the bit error probability of the second and 
third stages and the overall bystern (wilhuut svft limiters). The 
approximation for Pb3 was obtained here by taking only 4 
coefficients in (22) (instead of the full generating function). 
For comparison purposes, the associated simulation results of 
the systcm with interleavers, but without soft limiters, are also 
shown. It is observed that the Gaussian approximations pro- 
vide a good estimate of the error probability for medium and 
large Eb/No,  and that for low E d N ,  they suffer from the same 
problems as the rigorous bounds for Pb2 and Pb3.  It is inter- 
esting to observe that the largest difference between the bound 
on F'b2 (see Fig. 3) and its associated Gaussian appruxurialion 
is at most 0.7 dl3. At a bit error probability of lO-' it can be 
assumed that the side information, passed to the second stage, 
is perfect, as is seen f?om Fig. 6. Therefore, by comparing the 
bound on Pl,z and the approximation at this error probability, 
it is concluded that about 0.5 dB of the difference is due to the 
Chernoff bounding technique used for bounding P,Q. For the 
third stage, the Gaussian approximation, based on the Cher- 
noff bounding technique, was dso evaluated, and a difference 
of about 0.8 dB was observed from the approximation given in 
(21). Thus, the bounding technique used to bound zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP,, (eq. 
(18)) contributes another degradation of about 0.8-0.9 dB. 

We conclude this section by comparing the results obtained 
so far with an appropriate Ungerboeck code with 16 states, 
which has decoding complexity per infortnation bit of 24 and 
ACG of 4.13 dB [1]. An upper bound on the bit error probabil- 
ity of this code, Laken from [20], is shown in Fig. 8 along with 
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simulation results. Also shown are the upper bound and the 
simulation results for the proposed system, the Gaussian 
approxiination and the bit error probability of an uncoded 
QPSK. By coinparing the graphs, it is observed that for 
roughly the same decoding complexity the multilevel scheme 
considered in the example improves on the 16 states Unger- 
boeck code for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEh/No larger than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4.75 dB. Note, however, 
that due to the multistage decoder and the ridded inter- 
leaver/deinterleaver pairs, the decoding delay and memory 
storage required by the multilevel scheme are considerably 
larger. 

V. RATES SELECTION VIA INFORMATION 
THEORETIC ARGUMENTS 

One of the main design parmeters of a multilevel codd 
inodulation system, which ernploys a multistage decoder, is 
the selection of the component binary codes. We propose a 
simple rule for selecting the component codes' rates, which is 
based on inforination theoretic arguments for the aggregate 
rate of multiuser systems. Once the rates are determined, the 
problem of choosing the number of tnemory elements of each 
component convolutional code can be resolved using the 
upper bounds or approximations on the error probability of the 
various component codes, given in section 111. 

The multilevel scheme inodeled as a multiuser system is 
described in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9. C, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( i  = 1,2,3) is the binary input of ch'm- 
ne1 i, where the inputs :ire iid. Using a simple identity of aver- 
age mutual information functionals [21], dong with the fact 
that the channel signal X is uniquely mapped by CI ,  C2 and 
C3,  yield 

I (Y  ; X )  = I (Y ; c1, c2, C,) 
(23) 

= I (Y ; C,) + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI(Y ; C21CI) + I (Y  ; C31C2, C,) 

where I(. ; .) is the average mutual information functional and 
I ( .  ;. 1.) and I(. ; . I., .) are the conditional ones, all expressed in 
bits per channel signal. When using an ideal multistage 
decoder which employs, of course, a maximum likelihood 
meuic in each stage, I ( Y ; C , ) ,  I(Y;C21C,), and 
I (Y  ; C31C2, C , )  are the maximal theoretical component rates 
possible in each stage [221. When a m'wimum likelihood 
decoder is used instead of the multistage decoder, the maximal 
theoretical component rate for stage 1, stage 2, and stage 3 is 
given by I(Y ; CIIC2, C3), I(Y ; C21CI, C3), and 
I(Y ; C31Cz, Cl), respectively [221. The expressions for the 
component rates of the multistage decoder reflect its sequen- 
tial nature, whereas those for the maximum likelihood decoder 
exhibit the fact that decoding is performed simulmeously for 
all the shges, and, therefore, each stage "receives help" in 
decoding from the other stzzges. Clearly, the m'aximal compo- 
nent rates possible with the maximum likelihood decoder are 
1;irger than those possible with the multistage decoder. Never- 
theless, since I(Y , X) is still the maximal theoretical aggre- 
gate rate possible with a maximum likelihood decoder [22], 
expression (23) establishes the optimality of an ideal multi- 
shge decoder, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas far as the rate issue is concerned. It is worth- 
while mentioning that I (Y , X), being the average mutual 
information between the input 'and the output of the channel, is 

cI channel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

chartitel 3 
c3--1 1 

Y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 

GAUSSIAN 
NOISE (iid) 

Fig. 9. Multiuser system model of a inultilevel code 

o I z J 4 s 6 7 a 9 1 0  11 12 IJ 14 :s 
E. IN, 

Fig. 10. 

8-PSK coded modulatio~i system with a multistage decoder. 

Maximal coinpouent codes' rates versus E J N ,  for a mulhlevel 

dso the maximal theoretical rate of Ungerboeck-like schemes 

Based on the above discussion, the suggested rule for 
selecting the component codes' rates goes as follows: For an 
overall rate, R, evaluate EJNo for which I (Y;  X )  = R.  For this 
E,/No, determine the component codes' rates to be 

The relations I(Y : C,) 5 I ( Y :  C21C1) I I(Y : C31C2, C , )  are in 
agreement with the observation that the further we proceed in 
the partition chain the less powerful component codes are 
needed. Note that the discussion which preceded the sug- 
gested rule was quite general and independent of a specific 
channel or signal set. An application of the suggested rule in a 
Rayleigh fading channel, for example, can be found in [121. It 
is worthwhile mentioning chat another approach for selecting 
the memory of each component code, which is based on ran- 
dom coding bounds, has been proposed in [23]. For the 

[I]. 

Rl = I(Y ; C , )  , Rz = I (Y ; C21CI) and R3 = I(Y ; C3lC2, Cl). 
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8-PSK signal set, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI(Y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, C, ) ,  I (Y , C21CI), I (Y , C31C2, C,) ,  and 

In conclusion, we examine the specific example presented 
in the previous section. According to the proposed rule, for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan 
overall rate R = 2, the component codes’ rates are calculated E [ ~ ~ ~  { /z [m2(y, ; 1 I 0) - m2(y, ; (1 I 0)] } 
to be R ,  = 0.2, R2 = 0.813, and R3 = 0.987, which are rea- 
sonably close to the actual rates selected in the example. 

of Y,, respectively. Next, bounding the metric difference (see 

tion in (13) is bounded by 
1(Y , X) versns EJNo are depicted in Fig. 10. 191) and using the inequality zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAen’ax(a3b) < - ea + e’, the expecta- 

f ( r a ,  @la0) = < 

VI. CONCLUSIONS 

A inultilevel 8-PSIS coded modulation scheme, which 
employs bit interkavers and soft limiters in various stages of 
the transmitter and the multistage decoder, has been presented. 
Upper bounds and Gaussian approximations on the bit error 
probability, which take into account the side information 
passed among subsequent stages, have been derived for every 
cornponent code. For a specific example, it has been demon- 
strated that the addition of the interleavers and soft limiters 
improves the performance of the third stage by 1.1 dB. It has 
been shown also that the proposed multilevel scheme 
improves on Ungerboeck code with the sane decoding com- 
plexity at the expense of increasing decoding delay. The issue 
of the component codes’ rates has been also addressed, and a 
simple rule for selecting these rates, based on information the- 
oretic arguments, has been proposed. 

An addition of an interleaver/deinterleaver pair in the first 
stage will enable the usage of the coding system proposed in 
this paper in a bursty noise environment. The direct proportion 
between Hamming distances of the component codes and the 
squared Euclidean distance of the overall code, as expressed in 
(4), along with the inherent diversity provided by the inter- 
leaving approach, were found to be advantageous in a 
Rayleigh fading channel, as was reported in [ 121. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

f ( r ,  duo)  , O I r , < a  

j ’ f ( r ,  cpluO) dr , r,  = a (A.1) 
a 

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 r a > a  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i 

APPENDIX A 
DERIVATION OF (13) and (14) 

?L 
5 E exp { 2 ;1 K r ,  max { cos (4 - -) - cos (4) , 

2 

3n 

( 
cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4 - -) 2 - cos (4) I } la0 

5 2 E exp { 2 /z f i r ,  [ sin (4) - cos (@)I } la0 

where the factor 2 in the second inequality is due to the phase 
symmetry of the expectation. Making use of the probability 
density function given in (A.11, and after some straight for- 
ward calculations, the expectation (A.2) is then expressed in 
terms of the following integrals 

i 

{ 2 a &ra [ sin (4) - cos (411 } la0 (A.3) 

1 

NO 
Denoting A2 = 4E, (a2 + ( - - a)2) , the first integral in 

(A.3) can be further simplified to yield 

r2+ E ,  - exp ( -  - ) lo( rA) dr In order to perform the expectation in (13), the conditional 

Y ,  , of the second stage has to be evaluated. Given that the 
transmitted channel signal is ao, the conditional probability E ,  A2No 
density function of the received signal, Y ,  is given in polar 
coordinates by (see [24, pp. 1671) 

probability density function of the soft limiter output signal, 1: o NO 

= 2exp ( -  - + -) 
No 4 

a 
=2exp(-2/2E,(1-/ZNo)). [l - QM(A.\/N,/2,-----)] 

4x8 

where QM(. , . )  is the Marcum Q-function and the identity 
Q M ( S ,  0) = 1 has been used in the second equality. 

Since the Chernoff bound is valid for any ;1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0, we choose 
R = 1/2N0, which optimizes the expression 
2 exp ( - 2;1E,(1 - ANo )), that would have resulted as an 
upper bound replacing (A.4) if the side information has always 
been correct ‘and soft decision (a = -.) has been incorporated. 
This choice implies that A = e/ No , which upon 
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substitution in (A.4) yields 

r ( e d  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+22(Y,; 1l0>-m2(Yff  ;OlO)]}Iao 

APPENDIX C 
DERIVATION OF THE GAUSSIAN APPROXIMATION 

FOR THE SECOND STAGE 

The pairwise error probability P (C2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-+ c2) is given in (9). 
It is assumed, without loss of generality, that Cl = C2 = Q 'and 
X = go. We denote by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd the Hamming distance between C2 
and &. Since for CzJ = e2, the metric difference is zero, we 
assume without loss of generality that all sequences consid- 
ered in this appendix are of length d ,  where the sequence & is 
the &-one sequence. An upper bound on P(c2  + c2) is 
obtained by upper bounding the metric difference. For 
e,, = 0, the metric difference is bounded for every Y ,  by (see 

a 

m 
E 

2NU 
S 2 exp ( - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 ) . [ 1 - Q M ( d m ,  - )] 

+ ? j ~ e x p ( - ! % ) i " [ ~ ~ )  f f  NO dr* 

The desired derivation is concluded by letting the integral in 
(A.5) be designated by J2 .  

and for el = 1 the metric difference is bounded by In this Appendix, an upper bound on the average error prob- 
ability of a reencoded symbol, denoted by P,, is derived for 
convolutional codes. Let US denote by T ( D )  the tr'ansfer func- 

T ( D )  = a(d)D" where d H  is the free Hrmming distance 

m2(YJ,  111) - m2(y j  ,011) m,u { 2 ~ e [ y ; ( a ~  - al)] , 
tion of a rate k / n convolutional code, given by tC.2) 

00 2 ~ e [ ~ 5 ( a 7  - all ]  } . 
d=dH 

of the code, and u(d) is the number of paths in the trellis dia- 
gram of the convolutional code which diverge from the all- 
zeros path for Hamming distance d. In a similar way to the 
derivation of the bit error probability 1171, P, is upper 
bounded by the expected number of errors in the reencoded 
symbols caused by an incorrect path diverging at [any node in 
the trellis diagram, divided by the total number of reencoded 
symbols generated in that node. Since an incorrect path with 
Hamming distance d carries d reencoded symbols, and since n 
reencoded symbols are generated at any node, P ,  is upper 
bounded by 

where Pd is the associated pairwise error probability. 

using the trLmsfer function T(D) ,  P,  is bounded by 
Suppose that Pd may be upper bounded by P d  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI Z d ,  then 

For a side information sequence of length d,  we assume that 
there are m (0 5 m 2 d )  places for which the side information 
is wrong, namely e,, = 1, and (d - m) places for which it is 
correct, namely el, = 0. The pairwise error probability 

P(C2 3 c2) is bounded, then, by taking a union bound over 

all (:). 2d possible permutations for selecting (d  - m) ele- 

ments out of the terms 2Re(Y*(a2-ao)) and 
2Re(Y*(a6 -ao)) ,  and m elements out of the terms 
2Re(Y*(u3 - uI)) and 2Re(Y*(u7 - al)) .  Let us examine one 
such permutation for which out of m wrong side information 
bits, we select the bound 2Re(Y*(a3 - a l ) )  ml (0 5 ml I m) 
times and (m- ml) times the bound 2Re(Y*(a7 - ul ) ) .  For 
this permutation, using the Gaussian assumption and given 
that the transmitted channel signal is ao, the bound on the sum 
of the metric differences, denoted by u ,  is a Gaussian random 
variable with variance 0," = 2dN01a2 - aOl2 and mean 

using the fact that e(.) is an increasing function we obtain 

2 pU = - (d  - m ) l ~  - uol2 - ml(la3 - a01 - la1 - aoI2) . NOW, 

2 2 (d - m)lu2 - a01 + ml(la3 - uol - la1 - a01 

(C.3) 

For stage 1, the bound (8) on P,I is achieved by employing 

the bound [I71 Q ( 4 G )  I Q(@) exp(- ;) in (6), and tak- 

ing 2 = 2exp(-0.586Es / 4No). For sLige 2, the bound (17) 
on P is reached by taking 

P(u 2 0) = Q 

E a 
Z = 2 exp(- 2). [ 1 - Q(dm, - )] + 2 J 2  

2NO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdxz 
\ 1 

where the first inequality is due to the relation 
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results since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 < ml < m and 0 < m 2 d.  
The bound in (C.3) is independent of ml and is valid for 

any permutation which is comprised of (d - m) correct side 
information bits and m wrong ones. Since there is an over all 

number of (t 1. 2d such permutations, then by union bounding 

over at1 pertnutations and taking IQ - Q I ~ = ~ E ~ ,  P(C,  + 
is approximated by the expression given in (20). 
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