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AbstractÐIn conventional video-on-demand systems, video data are stored in a video server for delivery to multiple receivers over a

communications network. The video server's hardware limits the maximum storage capacity as well as the maximum number of video

sessions that can concurrently be delivered. Clearly, these limits will eventually be exceeded by the growing need for better video

quality and larger user population. This paper studies a parallel video server architecture that exploits server parallelism to achieve

incremental scalability. First, unlike data partition and replication, the architecture employs data striping at the server level to achieve

fine-grain load balancing across multiple servers. Second, a client-pull service model is employed to eliminate the need for interserver

synchronization. Third, an admission-scheduling algorithm is proposed to further control the instantaneous load at each server so that

linear scalability can be achieved. This paper analyzes the performance of the architecture by deriving bounds for server service delay,

client buffer requirement, prefetch delay, and scheduling delay. These performance metrics and design tradeoffs are further evaluated

using numerical examples. Our results show that the proposed parallel video server architecture can be linearly scaled up to more

concurrent users simply by adding more servers and redistributing the video data among the servers.

Index TermsÐParallel video server, striping, performance analysis, admission scheduling, scalable, client pull.
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1 INTRODUCTION

IN a video-on-demand (VoD) system, digitized and

compressed video streams are stored in a video server

for delivery to receivers over a communications network.

While VoD systems are already commercially available

today, they are usually designed around the single-server

architecture where a single machine serves as the video

server. The video server can range from a standard PC for

small-scale systems [1], [2] to massively-parallel super-

computers with thousands of processors for large-scale

systems [3], [4].
Due to the lack of economy of scale, the price/

performance ratio tends to increase rapidly for high-end

servers. This makes the single-server approach expensive

for large-scale applications. Moreover, the capacity of a

single server is still ultimately limited and, hence,

replication is often needed to build systems with sufficient

capacity [5], [6].
This motivates us to investigate the design of VoD

systems using parallel-server architectures. Server-level

parallelism enables one to break through the limit of a

single server by aggregating the capacity and bandwidth of

multiple servers. Moreover, this parallel-server architecture

allows us to incrementally scale up the system capacity by

adding (rather than replacing) servers to the system and

then redistributing (rather than replicating) the video data

among the servers.

The contributions of this paper are:

a. We propose a system design based on parallel-server
architecture to build incrementally scalable VoD
systems.

b. We study the use of a client-pull service model
which completely avoided the need for interserver
synchronization.

c. We study the instantaneous load imbalance problem
arising from the parallel architecture and propose a
staggering-based admission scheduler that enables
the system to be linearly scalable.

d. We derive a performance model for the parallel
video server to obtain various performance metrics
such as server service delay, client buffer require-
ment, and admission scheduling delay.

e. We evaluate the performance of the proposed
architecture using numerical results and confirm
that the architecture is indeed linearly scalable.

The rest of the paper is organized as follows: Section 2
presents the system architecture, Section 3 addresses the
load imbalance issue and presents the admission scheduler,
Section 4 analyzes the server's worst-case service delay,
Section 5 addresses the video playback continuity problem,
Section 6 presents numerical results for various perfor-
mance metrics, Section 7 discusses some related works and
compares them with our study, and Section 8 concludes the
paper and discusses some future works.

2 SYSTEM ARCHITECTURE

A parallel video server is composed of multiple indepen-
dent servers connected to the client hosts by an inter-
connection network as shown in Fig. 1. Each server has a
separate CPU, memory, disk storage, and network interface.
Ideally, each server should be configured so that all
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resources are fully utilized. For example, one would use a

disk array with enough disks to fully utilize the disk-

controller I/O capacity, install multiple network interfaces

to fully utilize the CPU, or even use multiple CPUs to fully

utilize the system bus if it is cost-effective. The server-level

parallelism would provide the path for capacities beyond

what can be achieved from a single server.
Unlike server replication or partition, a video title is not

stored in one of the server nodes nor replicated over

multiple server nodes. The video title is divided into fixed-

size blocks and distributed over all server nodes in the

system (Section 2.1). In this paper, we assume that the size

of a video title is much larger than the size of a video block

so that load imbalance due to uneven allocation between

servers can be ignored. This assumption is generally

applicable for movie applications where the size of a video

title is in the range of hundreds of megabytes while the size

of a video block is only in the range of tens to hundreds of

kilobytes. More investigation will be needed for applica-

tions where extremely short video objects are striped in

systems with a very large number of servers.
A client knowing the placement policy of the video

blocks will send requests to each server to retrieve the

required video blocks (Section 2.2). The servers upon

receiving client requests will retrieve and transmit the

requested data back to the client (Section 2.3). The client will

resequence video packets from multiple servers for decode

and playback. Note that this parallel-server architecture can

be extended to include data redundancies so that server-

level failure can be sustained (Section 2.4).
Let NS be the number of servers and NC be the number

of clients in the system. The ultimate goal of the proposed

parallel video server architecture is to achieve linear

scalability, i.e., invariant client-server ratio when more

servers are added to the system. Note that as storage

requirement stays the same regardless of the scale of the

system, the cost-per-client actually decreases when scaling

up the system.

2.1 Server Striping

Fig. 2 shows the organization of stripe units among servers
in the system. We divide storage space in each server into
fixed-size stripe units of Q bytes each. Stripe units under the
same column are stored at the same server. A row of stripe
units is called a stripe and together all stripe units compose
the entire storage. The stripe units are ordered in a round-
robin manner in which each unit in a stripe belongs to a
different server. In this way, the servers uniformly share
client loads irrespective of the skewness of the video titles.
Under this striping scheme, the placement policy can be
completely described by three parameters: 1) the address of
the server that stores the first video block, 2) the number
and address of all servers, and 3) the size of a stripe unit.
The client can obtain these parameters easily by consulting
a database or other application-dependent methods.

2.2 Service Model

The server-push service model is common in single-server
based video server designs. Under this model, the server
schedules the periodic retrieval and transmission of video
data once a video session is started. This model allows one
to design schedulers to optimize disk and network
utilization. However, extending this server-push service
model for use in a parallel video server requires synchro-
nizing transmissions from multiple servers destined to the
same client, which is a nontrivial problem in its own right.

Unlike most studies, we consider the client-pull service
model in this paper where a client periodically sends
requests to the servers to retrieve blocks of video data. This
approach does not need explicit interserver synchronization
because each request is served at the server independently
of all other requests. We will show that this approach can be
linearly scalable even though the servers are completely
asynchronous.

2.3 Server Request Processing

At each of the server node, there are one request queue, one
shared queue, and M send queues organized as shown in
Fig. 3. Incoming requests are first stored into the request
queue. The disk retrieval process then serves requests in
batches by allocating free buffers and reading video blocks
from the disk into the buffer units. Requests within a batch
may be served out of order to optimize disk efficiency.
However, requests are grouped according to their arrival
time so that no request is starved of service. After retrieval,

1218 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 12, DECEMBER 2000
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these buffers are then pushed into the shared queue to wait

for transmission at the traffic smoother.
The traffic smoother is used to control the transmission

rate at the server to reduce outgoing traffic burstiness.

Specifically, a video block inside a send queue is packetized

into smaller packets of Y bytes each for transmission. The

nonempty send queues are served in a round-robin manner

with one packet transmitted from each send queue in a

service round. The number of send queues M are chosen

such that the transmission rate is high enough to sustain the

video playback rate but not too high to avoid network

congestion. For example, suppose the network throughput

is 20 Mbps and the video bit-rate is 1.2 Mbps. Then setting

M � 10 will result in a transmission rate of 2 Mbps, which is

higher than the video bit-rate but still substantially lower

than the maximum transmission rate that can cause net-

work congestion (e.g., the client may be connected via a

4 Mbps link). Interested readers are referred to [7] for more

details.
Unlike traditional round-robin scheduling scheme that

needs one send queue per client, this algorithm needs only

a fixed number of send queues irrespective of the number of

servers and clients. This unique property prevents the

server complexity from going up when scaling up the

system for more servers and clients.

2.4 Fault Tolerance

Similar to disk arrays, the striping of video data over

multiple servers also presents reliability problem. Specifi-

cally, the entire system will become inoperable if one or more

servers in the system fail. Worse still, the larger the system

(i.e., more servers), the less reliable it becomes. Fortunately,

one can extend ideas from the disk-array context, i.e.,

Redundant Array of Inexpensive Disks (RAID) [8], to the

server level to achieve server-level fault tolerance [9].

Specifically, we can introduce redundant data blocks

among the servers as shown in Fig. 4. These redundant data

blocks are computed from the other data blocks using

simple XOR operations (or more sophisticated encoding for

higher levels of redundancies). In case a server fails, the

client can then recover the unavailable video blocks using

the redundant blocks and the remaining data blocks as

shown in Fig. 5. A preliminary study [9] has shown that this

recovery could be done in real-time using software running

under conventional desktop computers. With additional

buffering at the client, video playback continuity can be

maintained despite server failure and the user will not even

know that a failure has occurred. Interested readers are

referred to [9] for details on the redundant striping policy,

the redundant transmission policy, and the failure-detection

protocols, as well as experimental results.

3 ADMISSION SCHEDULING

Server striping ensures that loads from each and every

client will be evenly shared across all servers on the

average. However, if we allow clients to start video sessions

at arbitrary times, the system may encounter instantaneous

load imbalance if many clients happen to start video

sessions synchronously. In the worst case, all clients will

send requests to the same server at the same time, possibly

temporary overloading that server.
To prevent instantaneous load imbalance, we can

explicitly schedule the start times for new video sessions

to avoid synchrony. To achieve this, we introduce an

admission scheduler to control when a client can start a new

video session. This admission scheduler is a software

process running on a computer host connected to the same

network as the clients. We present the scheduling algorithm

used in this admission scheduler in the next section.

LEE AND WONG: PERFORMANCE ANALYSIS OF A PULL-BASED PARALLEL VIDEO SERVER 1219

Fig. 3. Request processing at each individual server.

Fig. 4. Striping with redundancies for server-level fault tolerance.



3.1 Start-Time Staggering

We propose a staggering scheme with period length Tround
and Nslot slots as shown in Fig. 6a for the admission
scheduler. The period length is determined according to the
number of servers in the system as well as the average
video playback rate (see Section 4.1). Each time slot has two
states: free or occupied. When a client wants to start a new
video session, it will first send a request to the scheduler.
Ignoring network and processing delays and, assuming the
request arrives at the scheduler at time t, the scheduler will
admit the new session if and only if the time slot

n � mod�t; Tround�=�Tround=Nslot�b c �1�

is free (Fig. 6b). After admitting the new session (by sending
response back to the client), the time slot will be marked as
occupied until the session terminates. Conversely, if the

requested time slot is occupied, the scheduler will wait

(effectively increasing t) until a free time slot is available

(Fig. 6c). In this way, the session start times will be

staggered in time and, hence, client synchrony reduced.

Note that a client only contacts the admission scheduler

once at the start and once at the end of a video session. In

between, the client sends requests directly to the server

nodes. We analyze the effect of this start-time staggering in

Section 4.

3.2 Scheduling Delay

The scheduler proposed in the previous section may incur

extra scheduling delay to the client. We define scheduling

delay as the time from the client requests a new video

session to the time the request is granted by the admission

scheduler. Assume that n out of the Nslot slots are occupied.

Then for a client requesting a new video session at an
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Fig. 5. Recovering unavailable data blocks by erasure correction.

Fig. 6. (a) The admission scheduler with period Tround and Nslot admission slots. (b) Immediately granting a new video session if the requested slot is

free. (c) Delaying a new video session until a free slot is available.



arbitrary time instance t, the probability of having a free slot
immediately is given by

V0 � Nslot ÿ n
Nslot

: �2�

Hence, P1 � �1ÿ V0� will be the probability of the
requested slot being occupied. Now, provided that the
requested slot is occupied, the probability that the next slot
is free is

V1 � Prfnext slot free jP1g � Nslot ÿ n
Nslot ÿ 1

: �3�

This is also the probability for a client having to wait one
time slot provided that the requested slot is already
occupied. It can be shown that the probability for a client
to wait k time slots provided that the first k slots are all
occupied is

Vk � Prf�k� 1�th slot free jPkg � Nslot ÿ n
Nslot ÿ k 1 � k � n:

�4�
To obtain Pk, we note that the probability that the

first slot is occupied is given by n=Nslot and the
probability that the second slot is also occupied is given
by �nÿ 1�=�Nslot ÿ 1�, and for the third one is
�nÿ 2�=�Nslot ÿ 2�, etc. Hence, the probability for the
first k slots all occupied is

Pk �
Ykÿ1

i�0

nÿ i
Nslot ÿ i
� �

1 � k � n: �5�

Hence, we can solve for the unconditional probability of a
client having to wait k time slots, denoted by Wk, from

Wk � Prf�k� 1�th slot free j PkgPk

� Nslot ÿ n
Nslot ÿ k
� �Ykÿ1

i�0

nÿ i
Nslot ÿ i
� �

1 � k � n: �6�

Therefore, given n and Nslot, the average and worst-case
scheduling delay can be found accordingly. We evaluate
this scheduling delay numerically in Section 6.3.

4 SERVICE DELAY

In this section, we derive the maximum service delay for the
video server to serve a data request sent by a client host.
Service delay is defined as the time the server receives the
request to the time a complete response (a video data block)
is transmitted. We need to know the maximum service
delay to determine the amount of client buffer needed to
guarantee video playback continuity in Section 5. We first
model the request generation process at the video clients in
the next section and then proceed to derive the maximum
delay incurred in the disk and network subsystems in
Sections 4.2 and 4.3, respectively.

4.1 The Request Generation Process

Many studies on VoD system assume that video data are
consumed periodically by the video decoder. While this is a
reasonable assumption for constant-bit-rate (CBR) video

streams, our experience on programming some off-the-shelf
hardware and software video decoders nevertheless reveals
that the decoder consumes fixed-size data blocks only quasi
periodically. This is especially significant in decoders
employing interframe compression algorithms like MPEG.
Moreover, video titles encoded using constant-quality
techniques will also generate variable-bit-rate video
streams. In the following, we present a model to account
for these variations.

We assume that a request is generated and sent to a

server whenever a video block is submitted to the video

decoder for playback. Let the average video data rate be RV

and the same for all clients. Since a data block contains

Q bytes of video data, the average decoding time for a video

block is given by

Tavg � Q

RV
: �7�

To quantify the randomness of video block decoding
time, we define a few notations below.

Definition 1.

a. Given a video stream with average rate RV , we define
Ti as the time the video decoder starts decoding the ith
video block. Without loss of generality, we assume
decoding starts from time zero, i.e., T0 � 0.

b. The decoding-time deviation of video block i is
defined as

TDV �i� � Ti ÿ iTavg: �8�
Decoding is late if TDV �i� > 0 and early if TDV �i� < 0.

c. The maximum lag in decoding is defined as

TL � maxfTDV �i� j 8i � 0g
� maxfTi ÿ iTavg j 8i � 0g: �9�

d. The maximum advance in decoding is defined as

TE � minfTDV �i� j 8i � 0g
� minfTi ÿ iTavg j 8i � 0g: �10�

e. The peak-to-peak decoding-time deviation is defined as

TDV � TL ÿ TE: �11�

Assuming the bounds TL and TE exist, we can prove the
following theorem regarding the length of the time between
the decoding of any two video blocks.

Theorem 1. The decoding time t between any two video blocks,
i and j (j > i), is bounded by

max �jÿ i�Tavg ÿ TDV
ÿ �

; 0
� 	 � t � �jÿ i�Tavg � TDVÿ �

: �12�

Proof. Please refer to the Appendix for the proof. tu

Since decoding time instances are also request-

generation time instances, the previous theorem also

bounds the interrequest generation time. Given this bound,

we can obtain a lower-bound on the time it takes for a
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server to receive k requests from n clients generating

requests independently.

Theorem 2. Assume n clients generating requests independently
and each client sends requests to the NS servers in the system
in a round-robin manner; then the minimum time for a server
to receive k video data requests is given by

T min
Request�k; n� � max

�
k

n

�
ÿ 1

� �
NSTavg ÿ TDV ; 0

� �
: �13�

Proof. Please refer to the Appendix for the proof. tu

From (13), we can see that T min
Request�k; n� decreases for

larger values of n. In particular, a server may receive
k �k � n� requests simultaneously in a time instant (i.e.,
T min
Request�k; n� � 0� if multiple clients happen to be syn-

chronized. As discussed in Section 3, we can avoid this
kind of client synchrony by staggering the start times of
each video session. Setting Tround � NSTavg, we can derive
a bound similar to Theorem 2 for the case with admission
scheduling in place.

Theorem 3. If the admission scheduler as described in Section 3
is used with parameters Tround � NSTavg and there are
n clients, then the minimum time for a server to receive k
video data requests is given by

Tmin
Request�k; n� �

max bk=ncNSTavgÿTDV ;0f g; mod�k; n� � 1

max w�Nslotÿn��kÿ2� �NSTavgNslot
ÿTDV ;0

n o
otherwise;

(
�14�

where w � �kn�ÿ 1.

Proof. Please refer to the Appendix for the proof. tu

Knowing the pattern for request arrivals, we are ready to
derive the delay bound at the disk subsystem in the next
section.

4.2 Delay in the Disk Subsystem

Many disk scheduling algorithms [10] have been proposed
for delay-sensitive applications. Rather than limiting our
results to a specific algorithm, we consider a more general
disk model with only two assumptions:

Assumption 1. We assume the minimum time to read a block of
Q bytes from the disk, denoted by T min

read , is known.

Assumption 2. We assume the maximum time to read k blocks of
Q bytes from the disk, denoted by T max

read �k�, is known and the
function is nondecreasing with respect to k.

The constant T min
read can be calculated from the maximum

transfer rate of the disk subsystem plus any processing

delay at the disk controller, etc. The function T max
read �k� may

be derived according to the disk-scheduling algorithm.

Note that the disk subsystem is not limited to a single disk

but can contain any number of disks (e.g., a disk array).
To derive the maximum delay an arriving request can

experience, we first need to know in the worst-case how

many requests can coexist (servicing and queueing) in the

disk subsystem simultaneously. Based on Assumption 2, we

can make the following definition:

Definition 2. Define NDisk�t� as the minimum number of

requests served by the disk subsystem in a time interval t

during a busy period. We can calculate it from T max
read �k�:

NDisk�t� � maxfk j T max
read �k� < t; 8k � 0g: �15�

Based on (14), we can define a similar function for

maximum number of requests generated:

Definition 3. Define NRequest�t; n� as the maximum number of

requests generated in a time interval t by n video clients. We

can derive it from (14):

NRequest�t; n� � maxfk j Tmin
Request�k; n� < t; 8k � 0g: �16�

Using (15) and (16), we can obtain the maximum number of

requests inside the disk subsystem using the following

procedure:

Theorem 4. The maximum number of requests that can coexist in

the disk subsystem is given by

LD � max NRequest�t; n� ÿNDisk�t� j 8t
� 	

: �17�

Proof. Please refer to the Appendix for the proof. tu

The intuition behind Theorem 4 is that both the request

arrival process and the disk retrieval process have a long-

term average rate. In particular, if the system is not

overloaded, then

lim
t 7!1NRequest�t; n� < lim

t7!1NDisk�t�: �18�

However, for shorter time interval t, burstiness in the
processes can cause requests to arrive temporarily faster
than the disk subsystem can serve them, hence resulting in
request queueing. The procedure in Theorem 4 essentially
finds the worst case among these variations.

Equation (17) bounds the maximum number of requests

in the system during any busy period. Substituting LD into

Tmax
read�k�, we can obtain the maximum delay for any request

to complete service in the disk subsystem:

Dmax
disk � Tmax

read�LD�: �19�
Equation (19) bounds the worst-case delay to receive service
in the disk subsystem, including queueing time and service
time under requests generated by n video clients.

4.3 Delay in the Network Subsystem

In this section, we derive the maximum delay in the
network subsystem, including queueing delay at the shared
queue, and service time at the traffic smoother. First of all,
we derive an upper bound for the delay a request can
experience upon entering the shared queue.

Theorem 5. For a request that arrives at the shared queue to find

kÿ 1�k � 1� requests already in the system, the delay for this

newly arrived request to complete service at the traffic

smoother is bounded from above by

Tmax
tx �k� �

MQ
CS

if k �M
�k�M�QÿMY

CS
otherwise.

(
�20�
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Proof. Please refer to the Appendix for the proof. tu

Using similar techniques as in the previous section, we

can transform (20) into the time domain:

Definition 4. Define Ntx�t� as the minimum number of requests

serviced in a time interval of t during a busy period. We can

calculate it using (20):

Ntx�t� � maxfk j T max
tx �k� < t; 8k � 0g: �21�

Now consider the departure process at the disk sub-

system. Below, we derive a theorem bounding the max-

imum number of departed requests in a time interval t.

Theorem 6. Assume there are n video clients generating video

requests simultaneously and the maximum number of requests

in the disk subsystem is LD, then the maximum number of

requests departing from the disk subsystem in a time interval t

is

Nout�t; n� � min

�
t

T min
read

�
; LD �NRequest�t; n�

� �
: �22�

Proof. Please refer to the Appendix for the proof. tu

The departure process as described by (22) is just the

arrival process at the network subsystem. Therefore, we can

obtain the maximum number of requests in the network

subsystem at any time using (21) and (22).

Theorem 7. The maximum number of requests that can coexist in

the network subsystem is given by

LN � max Nout�t; n� ÿNtx�t� j 8tf g: �23�

Proof. The proof is similar to Theorem 4. tu

Equation (23) bounds the maximum number of requests

in the network subsystem at any time. Substituting LN into

(20), we can obtain the maximum delay for any request to

complete service in the network subsystem:

D net
max � T max

tx �LN�: �24�
Equation (24) bounds the worst-case delay to receive service

in the network subsystem, including queueing time and

service time.

4.4 Overall System Delay

The previous sections derive the worst-case delay at the

disk subsystem and network subsystem, respectively.

Depending on the hardware, operating system, and server

software implementation, a request may experience addi-

tional processing delays, denoted by D proc
max . Hence, the

worst-case overall service delay at the server is

Dmax � D proc
max �D disk

max �D net
max: �25�

This parameter is useful for the system designer to

dimension the amount of buffers required at the client for

video continuity, described in the next section.

5 CLIENT PLAYBACK CONTINUITY AND BUFFER

REQUIREMENT

Buffers are used at the client to absorb service delay and

variations in the request generation process. Let NB be the

number of blocks of buffers (each Q bytes) available at the

client host, managed as a circular buffer. Before playback

begins, the client prefetchs the first �NB ÿ 1� blocks with

video data. After playback starts, the client will generate

one request for every video block submitted to the video

decoder. Base on this buffer management model, in the next

section we derive the relationship between the service delay

Dmax and the client buffer size to guarantee video playback

continuity.

5.1 Buffering for Playback Continuity

When playback starts, the first video block is submitted to

the decoder at time T0 (c.f. Definition 1). Consider an

arbitrary video block i, the decoding time Ti is bounded by

iTavg � TE � Ti � iTavg � TL: �26�
Now consider the time instant, denoted by Fi, video

block i is received by the client. Since the first �NB ÿ 1�
video blocks are prefetched before playback starts, we have

Fi � T0; 8i < �NB ÿ 1�. Ignoring network delay, the filling

time for the remaining video blocks can be calculated from

the request-generation time and the maximum service delay

as follows:

Fi � maxfTiÿNB�1g �Dmax 8i � �NB ÿ 1�: �27�
From Theorem 1, we can simplify maxfTi ÿNB � 1g to

obtain

Fi � �iÿNB � 1�Tavg � TL �Dmax 8i � �NB ÿ 1�: �28�
To ensure playback continuity, the latest filling time of a

video block must be smaller than the earliest decoding time:

Fi � Ti 8i: �29�
Substituting (26) and (28) into (29), we can then obtain the

relation between Dmax and NB:

�iÿNB � 1�Tavg � TL �Dmax � iTavg � TE: �30�
Noting that TDV � TL ÿ TE , we can rearrange (30) to obtain

NB � Dmax � TDV
Tavg

� 1: �31�

This formula allows us to calculate the amount of client

buffers needed to ensure playback continuity once the other

parameters (Dmax; TDV ; and Tavg) are known.

5.2 Prefetch Delay

As the first �NB ÿ 1� video buffers must be prefetched

before playback starts, an additional prefetch delay is

incurred. This delay is needed whenever the client buffer

must be cleared and then reprefetched, such as seeking

within the video stream. Other interactive controls like

pause/resume, slow, and frame stepping are not affected.

We assume that prefetch requests are generated periodically
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with an interval of Tavg. Then the maximum time to
complete the prefetch process can be calculated from

DPrefetch � �NB ÿ 2�Tavg �Dmax: �32�
The prefetch delay is an important design parameter as it

directly affects the responsiveness of the system. By
rearranging (32), we can calculate the maximum allowed
buffer size for a given maximum tolerable prefetch delay.

6 PERFORMANCE EVALUATION

In this section, we present numerical results computed
using the performance model in Section 4 and 5 to evaluate
various performance metrics. For the general disk model in
Section 4.2, we need specific definitions for Assumption 1
and 2 in order to compute numerical results. For simplicity,
we assume a single-disk with Circular-SCAN [10] disk

scheduling. The disk model and the definitions for the two

assumptions are defined in Appendix A.7. The disk

parameters and other system parameters are listed in

Table 1. Interested readers are referred to [11], [12], [13],

[14] for more sophisticated disk models and disk-scheduling

algorithms.

6.1 Service Delay versus Number of Concurrent
Clients

Fig. 7 shows the service delay versus number of concurrent

clients for an eight-server system. Note that the discrete

jumps in the graph are due to the round-based scheduling

being used in the disk subsystem. As requests may be

served out-of-order within a round, the worst-case delay

will jump according to how many service rounds are

required to serve a given number of requests.
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Note that without the admission scheduler, the service

delay increases with the number of concurrent clients at a

much higher rate. This is a direct result of the client

synchrony problem described and modeled in Section 4.1.

Conversely, the maximum service delay stays relatively low

if the admission scheduler is employed. This shows that by

staggering the request-generation times, the admission

scheduler can effectively avoid client synchrony.
On the other hand, it may appear that the system is

lightly loaded as each video session requires only 150KB/s

while the disk has a raw throughput of 3.35MB/s (Table 1).

However, the effective disk throughput can never approach

the raw throughput in practice due to seek-time overhead,

rotational latency, etc. For example, using C-SCAN with a

round size of 10. The disk in Table 1 (Seagate ST12400N)

can theoretically sustain at most 12 video sessions (c.f.

Appendix A.7). Indeed, Theorem 4 diverges (i.e.,

Dmax !1) for more than 96 clients, indicating a maximum

client-server ratio of 96/8=12.

6.2 Service Delay versus Number of Servers

Fig. 8 shows the service delay versus number of servers in
the system with a client-server ratio of 10. Note that without
the admission scheduler, the service delay increases linearly
with the number of servers. Conversely, the service delay
remains constant regardless of the number of servers as
long as the client-server ratio is also constant. This strongly
suggests that the system can be scaled up linearly if the
admission scheduler is employed. We will study this
scalability issue in Section 6.5.

6.3 Average Scheduling Delay versus System
Utilization

The price to pay for using the admission scheduler is extra
scheduling delay at the start of a new video session. For a
given system utilization �n=Nslot� where n is the number of
concurrent video sessions, the average scheduling delay can
be calculated from (6). Assuming a client-server ratio of
RCS � 10, we plot the average scheduling delay for various
number of servers in Fig. 9. While the worst-case scheduling
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delay (precisely RCSNS ÿ 1 time slots) increases for more
servers, the average scheduling delay is significantly

smaller for system utilization as high as 0.9 (e.g., less than

10 time slots for eight servers at 0.9 utilization, versus the
worst-case of 79 time slots). Hence, by limiting the

maximum system utilization (such as 0.9), we can reduce
the scheduling delay to reasonable ranges.

6.4 System Response Time versus Number of
Servers

The previous sections have shown that while the admission
scheduler can reduce the service delay, it also introduces

extra scheduling delay during admission. Therefore, we

need to compare the overall system response time, defined
as the maximum prefetch delay plus the scheduling delay,

to better evaluate the effect of the admission scheduler on

the responsiveness of the system. Fig. 10 plots the system
response time versus number of servers for system
utilization (i.e., n=Nslot) of 0.6 and 0.9, respectively. The
results show that even with the addition of extra scheduling
delay, the total system response time is still smaller when
admission scheduling is employed.

6.5 Scalability Under Delay Constraint

To evaluate the scalability of the parallel video server
studied in this paper, we set a limit on the maximum
service delay and compute the maximum number of
concurrent clients that can be served. By constraining the
service delay, we effectively fixed the client buffer require-
ment (Section 5.1) and the resulting prefetch delay (Section
5.2) incurred. The results are summarized in Fig. 11 for
system size ranging from one to 1,024 servers. Note that
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without the admission scheduler, the aggregate capacity
levels off for more than eight servers due to the client
synchrony problem. Conversely, the system is linearly
scalable if the proposed admission scheduler is employed.
Note that the two curves for maximum service delays of
1.5 seconds and three seconds (with admission scheduling)
overlap. This is because the service delay has discrete jumps
as shown in Fig. 7 and in this case, exceeds three seconds in
the next jump. Hence, the system capacity stays the same
even though the service delay limit is relaxed from
1.5 seconds to three seconds.

6.6 Sensitivity to Decoding-Time Deviation

The decoding time deviations TE and TL in Table 1 are
measured experimentally using an off-the-shelf hardware
MPEG-1 decoder over many video streams. To evaluate the
sensitivity of the system to this variable, we plot the
maximum service delay versus a normalized peak-to-peak
decoding time deviation in Fig. 12 for eight servers and
80 clients. The normalization is obtained from dividing the
deviation TDV by the average decoding time Tavg. Surpris-
ingly, the curve for no admission scheduler remains
invariant to increases in TDV . For the case with admission
scheduling, the delay increases slightly for very large
deviations. For example, the delay is increased only by
33.8 percent for a TDV equivalent to 200 percent the value of
Tavg. This shows that the system is not sensitive to decoding-
time deviations.

7 RELATED WORKS

The principle of using parallel devices to achieve scalability
has been studied in various contexts. For example,
parallelism has been proposed for disk arrays [15], tape
arrays [16], [17], and even network transmissions [18].
In particular, the use of parallel disk systems have
been studied extensively in VoD systems literatures

[11], [12], [13], [14]. Recently, there is an increasing interest

in exploiting server-level parallelism for designing scalable
VoD systems. For example, studies have been conducted

by1 Biersack et al. [19], [20], Bolosky et al. [21], Buddhikot,
and Parulkar [22], Freedman and DeWitt [23], Ghandehar-
izadeh and Ramos [24], Lee and Wong [7], [9], Lougher et

al. [25], Reddy [26], Tewari et al. [27], and Wu and Shu [28].
A comprehensive study of architectural alternatives and the
approaches employed by existing systems can be found in

[29]. Below, we highlight and compare the key differences
between the mentioned studies and the architecture studied
in this paper.

The pioneering study by Ghandeharizadeh and Ramos

[11], [24] considered the retrieval of multimedia data from a
parallel multimedia information system. They proposed

striping multimedia data over multiple disks located in
storage nodes connected by a high-speed network. Their
study focused on disk I/O bottleneck and stripping policy

designed to support multimedia data objects with different
playback bit-rates. Their striping algorithm also requires the
scheduling of arriving requests to prevent disk load

imbalance. This paper differs from their studies in two
major ways: (a) our study incorporated issues in network
transmission, bottleneck in CPU processing, and synchro-

nization among servers, which are not considered in [11],
[24]; and (b) we develop our admission scheduler for client-
pull service model rather than server-push service model.

The studies by Reddy [26], Tewari et al. [27], and Wu
et al. [28] are based on architectures where one or more
intermediate delivery nodes are used to merge video data

from multiple servers for delivery to clients. Conversely, in
our architecture, a video client retrieves video data directly
from multiple servers without passing through an inter-

mediate node. Our approach eliminates the extra hardware
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needed to run the intermediate delivery nodes, which
themselves could become a bottleneck of the system.

Additionally, the architecture studied in this paper
employs the client-pull service model rather than the
common server-push service model as employed in [19],
[21], [22], [26], [27], [28]. This model eliminates the need for
interserver synchronization, which is required for the
server-push service model. Biersack et al. [20] have studied
the problem for server-push designs and proposed algo-
rithms to compensate network delay differences and clock
drifts. Other researchers like Buddhikot et al. [22] solve the
problem by using closely-coupled parallel servers having
hardware-synchronized clocks instead of loosely-coupled
servers running independently of each other. The study by
Bolosky et al. [21] employs a separate controller to
synchronize the clocks in the servers so that transmissions
from the push-based servers are properly coordinated. The
controller is linked up with the servers by a separate
network to minimize network latency and to avoid
interference from video traffic. On the contrary, no such
clock-synchronization is required for the client-pull service
model. Another study by Rao et al. [30] presented
qualitative as well as quantitative (through simulation)
comparisons between the two service models. However,
their study is for single-server systems only and, hence, did
not address the instantaneous load imbalance problem
tackled in this paper.

Another difference is in performance analysis. The work
by Biersack et al. [19], [20] focuses on synchronization issues
while those by Buddhikot et al. [22] and Wu et al. [28] focus
on data placement, scheduling, and playout control. Our
study focuses on the performance of the system in relation
to various system parameters. We study the scalability of
the system under the constraint that video continuity is
guaranteed. Base on a few assumptions, we modeled the
system performance using worst-case analysis and com-
puted numerical results for performance evaluation. In [27],
Tewari et al. have also studied system performance and
scalability. They apply queueing analysis and model the
system using results from M/D/1 queue. However, their
analysis does not consider the video clients and focuses on
the back-end storage nodes and the delivery nodes only.
They did not consider admission scheduling and assumed
Poisson request arrivals.

Finally, our proposal on the use of an admission
scheduler to control instantaneous load imbalance in the
pull-based parallel video server is also new. Our results
showed that the admission scheduler is crucial to achieving
linear scalability in a pull-based parallel video server.

8 CONCLUSION

In this paper, we have analyzed and evaluated the
performance of a pull-based parallel video server architec-
ture. The architecture employs striping at the server level
for perfect load sharing across multiple autonomous
servers. A client-pull service model is employed to control
the delivery of video data from multiple servers to a client
in the absence of interserver synchronization. Our study on
the aggregate request-generation process of multiple clients
reveals that client synchrony could lead to instantaneous

server overload. To solve this problem, we proposed and

analyzed a staggering-based admission scheduler. By

modeling the server's service delay and the client buffer

requirement, we showed (via numerical results) that with

the admission scheduler employed, the parallel video

server architecture can be scaled up linearly simply by

adding more servers and redistributing the data among

them.
There are still many areas in parallel video server design

that warrant more investigations. For example, we have

ignored network and processing delay in our analysis.

While network delay in a LAN environment is insignificant

compared to the service delay, the case in WAN environ-

ment may be significant. Secondly, some early studies [9],

[21] have demonstrated that a parallel video server is not

only scalable, but can also be made fault tolerant by

introducing data redundancy among the servers. More

studies are needed to characterize the performance of a

parallel video server under server failures.

APPENDIX

A.1 Proof of Theorem 1

Lower bound:

Tj ÿ Ti � jTavg � TDV �j�
ÿ �ÿ iTavg � TDV �i�

ÿ �
� �jÿ i�Tavg � TE ÿ TL
� �jÿ i�Tavg ÿ TDV :

�A:1�

The proof for upper bound is similar. tu
A.2 Proof of Theorem 2

We denote the jth request generated by client i by ri;j and let

Ti;j be the time the request is generated. As a client

distributes requests among NS servers in a round-robin

manner, two requests sending to the same server will be

separated by �NS ÿ 1� other requests. Hence, the minimum

time for a server to receive m requests from an arbitrary

client, denoted by T min
Single�m�, can be calculated from (c.f.

Theorem 1):

T min
Single�m� � �mÿ 1�NSTavg ÿ TDV : �A:2�

The above equation is applicable to any one of the n clients

generating requests simultaneously. Therefore, if a server

can receive a maximum of m requests from any one client in

a time interval t, then this also implies that the server can

receive a maximum of m requests from each one of the

i clients. Hence, we can determine the minimum time for a

server to receive k requests from (A.2) as follows:

T min
Request�k; n� � T min

Single

�
k

n

�� �
�

�
k

n

�
ÿ 1

� �
NSTavg ÿ TDV :

�A:3�

Obviously, the minimum time must be greater than or equal

to zero and the result follows. tu
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A.3 Proof of Theorem 3

As a client sending requests to NS servers in a round-robin
manner, a server will receive requests from the client with
an average interval of NSTavg. Let Ti;j be the time for a
server to receive the jth request from client i. Then we prove
the two cases separately below.

Case 1 (mod�k; n� � 1:). In this case, the first and the last
requests come from the same client (see Fig. 13a and 13b).
Let the first request arrives at time Ti;j. Then the last request
arrives at time Ti;w, where w � bk=nc. Hence, we can
determine the minimum time interval from Theorem 1
directly

Ti;j�w ÿ Ti;j � wNSTavg ÿ TDV
� bk=ncNSTavg ÿ TDV :

�A:4�

Case 2. (mod�k; n� 6� 1:). In this case, the first and the last
requests do not come from the same client (see Fig. 13c and
13d). Let the first request arrive at time Ti;j and the last
request arrive at time Tx;y. Since there are in total k requests
and n clients, each client should have generated at least
w � dk=ne ÿ 1 requests. On average, the time between Ti;j
and Ti;j�wÿ1 will be wNSTavg. For the remaining z � �kÿ wn�
r e q u e s t s , t h e m i n i m u m t i m e s p a n i s j u s t
��zÿ 1ÿ 1��NSTavg=Nslot��. We subtract one from �zÿ 1� to
cater for differences in start times of different clients. Hence,
the total time interval is

T � wNSTavg � �kÿ wnÿ 2��NSTavg=Nslot�: �A:5�

From Theorem 1, the lower bound is

T min
Request�k; n� � wNSTavg � �kÿ wnÿ 2��NSTavg=Nslot� ÿ TDV

� wNslot � kÿ wnÿ 2� �NSTavg
Nslot

ÿ TDV

� w�Nslot ÿ n� � kÿ 2� �NSTavg
Nslot

ÿ TDV :
�A:6�

Together with the fact that T min
Request�k; n� must be zero or

larger and the results follow. tu

A.4 Proof of Theorem 4

We prove this theorem by contradiction. Consider an

arbitrary busy period in the disk subsystem. Let ti, �i > 0�
be the arrival time of the ith request of the busy period.

Assume that the queue length, as observed by the ith

arriving request, be �Lÿ 1�, where L > LD. Then from the

start of the busy period to time ti exactly i requests will have

arrived. Since there are L requests (including request i) left

in the system at time ti, �iÿ L� requests must have

completed service. From (15), we know that �iÿ L�
� NDisk�ti ÿ t1�. On the other hand, from (16), we know

that i � NRequest�ti ÿ t1; n�. Combining, we then have

�iÿ L� � NDisk�ti ÿ t1�
L � iÿNDisk�ti ÿ t1�
� NRequest�ti ÿ t1; n� ÿNDisk�ti ÿ t1�
� LD;

�A:7�
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which contradicts with the L > LD assumption and the

result follows. tu
A.5 Proof of Theorem 5

Let ta be the time instance request i enters the shared queue,

tb be the time instance it enters one of the send queue. Then

we consider two cases below.

Case 1 (k �M:). In this case, request i directly enters into

one of the send queues without queueing delay, i.e., ta � tb.
In the worst case, the set of requests fj j i < j � �i�M ÿ
k�g will arrive at the same time instance ta. Thereby filling

up all free send queues at the traffic smoother. Therefore,

the maximum service time for request i is

T max
tx �k� �MQ

CS
: �A:8�

Case 2 (k > M:). In this case, request i will experience

queueing delay at the shared queue, i.e., tb > ta. We first

consider the queueing time �tb ÿ ta�. Let ci�t� be the amount

of data of request i that have not been transmitted at time t.

Then at the time request i enters into the shared queue, the

total amount of data in the network subsystem is given by

U�ta� �
Xi

x�iÿk�1

cx�ta�: �A:9�

Similarly, at the time request i enters one of the send

queues, the total amount of data in the traffic smoother can

be obtained from

V �tb� �
Xi

y�iÿM�1

cy�tb�: �A:10�

Therefore, the amount of data transmitted by the traffic

smoother during request i's queueing time is just the

difference of (A.9) and (A.10):

U�ta� ÿ V �tb� �
Xi

x�iÿk�1

cx�ta� ÿ
Xi

y�iÿM�1

cy�tb�: �A:11�

For the traffic smoother, the time needed to deliver these

data can be calculated from

tb ÿ ta � U�ta� ÿ V �tb�
CS

� 1

CS

Xi
x�iÿk�1

cx�ta� ÿ
Xi

y�iÿM�1

cy�tb�
 !

� 1

CS

Xi
x�iÿk�1

Qÿ
Xi

y�iÿM�1

cy�tb�
 !

since cx�ta� � Q

� 1

CS

Xi
x�iÿk�1

Qÿ
Xi

y�iÿM�1

Y

 !
since cy�tb� � Y

� kQÿMY

CS
:

�A:12�
After the queueing delay, request i will enter one of the

send queues for transmission. The maximum service time is

the same as that in Case 1. Therefore, the maximum total

time delay is just the sum of (A.8) and (A.12):

T max
tx �k� � kQÿMY

CS
�MQ

CS
�A:13�

and the result follows. tu
A.6 Proof of Theorem 6

First, the minimum time between two departing requests

from the disk subsystem is bounded by T min
read . Hence, the

minimum interdeparture time is simply T min
read .

From Theorem 5, we know that there are at most

LD requests in the disk subsystem. In the worst-case, the

disk can service requests at the peak rate as long as there is

requests in the disk subsystem. Since NRequest�t; n� is the

maximum number of request that can arrive at the disk

subsystem in a time interval t, the disk will run out of

requests to service if t > �LD �NRequest�t; n��T min
read . This

proves the first part of Theorem 6. The second part follows

from the observation that at any later time t, the maximum

possible number of requests serviced by the disk subsystem

is just the total number of requests arrived during this time

intervalÐNRequest�t; n�, plus the LD requests already in the

system. tu
A.7 Disk Model

We assume the disk has Ntrack tracks and the disk seek

function is given by [31]

Tseek�n� � �n� �
���
n
p � : �A:14�

The constants �; �; and  can be determined from the

track-to-tack seek time, average seek time, and full-stroke

seek time of the disk drive. Let Rdisk be the raw disk transfer

rate, then the minimum time to read a block of Q bytes from

the disk is (c.f. Assumption 1):

T min
read � Tseek�0� �

Q

Rdisk
: �A:15�

Let Tlatency be the maximum rotational latency, then the time

to seek n tracks and read a block of Q bytes is

Tread�n� � �n� �
���
n
p �  � Tlatency � Q

Rdisk
: �A:16�

It can be shown that the worst-case round time for

C-SCAN to service k requests is given by

Tcscan�k� � �k� 1� �
Ntrack

k� 1
� �

������������
Ntrack

k� 1

r
� 

 !

� k Tlatency � Q

Rdisk

� �
;

�A:17�

where the k requests are evenly distributed across the disk

surface. As the C-SCAN scheduling algorithm may service

requests out of order in a round, we can only guarantee that

a request will be completed at the end of a service round.

Assume that the disk will serve at most Nround requests in a

round, then the maximum time to read k requests off the

disk with C-SCAN is given by (c.f. Assumption 2):
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T max
read �k� �

�
k

Nround

�
Tcsc an�Nround�: �A:18�

Note that with C-SCAN, it is possible to obtain a
theoretical upper bound for the number of concurrent
video sessions that can be supported using the traditional
server-push architecture. For example, assuming one video
block of Q bytes is retrieved for each video stream in a
service round, then the worst-case length of a service round
must be shorter than the average playback duration for a
video block of Q bytes. Hence, the upper bound can be
determined by finding the maximum k such that
TCSCAN�k� � Tavg. For the Seagate ST12400N hard disk used
in Section 6, up to 12 concurrent video sessions can be
supported using C-SCAN. tu
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