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In this work, a neural controller for wind turbine pitch control is presented.,e controller is based on a radial basis function (RBF)
network with unsupervised learning algorithm. ,e RBF network uses the error between the output power and the rated power
and its derivative as inputs, while the integral of the error feeds the learning algorithm. A performance analysis of this neu-
rocontrol strategy is carried out, showing the influence of the RBF parameters, wind speed, learning parameters, and control
period, on the system response. ,e neurocontroller has been compared with a proportional-integral-derivative (PID) regulator
for the same small wind turbine, obtaining better results. Simulation results show how the learning algorithm allows the neural
network to adjust the proper control law to stabilize the output power around the rated power and reduce the mean squared error
(MSE) over time.

1. Introduction

Green directives in many countries promote the use of
renewable energies to improve the sustainability of world-
wide energy systems. Indeed, the number of terawatts
produced by clean energies is growing each year [1]. Among
clean energies, wind is the second most used natural re-
source after hydropower, due to its high efficiency. Although
a mature technology, there are still many engineering
challenges related to wind turbines (WTs) that must be
addressed [2].

Depending on the type of wind turbine, different control
actions can be applied, namely: the pitch angle of the blades
or rotor control, which is used as a brake to maintain the
rated power of the turbine once the wind surpasses certain
threshold; the yaw angle, which is used to change the attitude
of the nacelle to match the wind stream direction; and fi-
nally, the generator speed control that seeks to reach the
optimal rotor velocity when the wind is below the rated-
output speed.,eWTcontroller is in charge of managing all
of these mechanisms to optimize the efficiency of the system
while the safety must be guaranteed under all possible wind

conditions. ,is fact may be even more critical for floating
offshore wind turbines (FOWTs) as it has been proved that
the control system can affect the stability of the floating
device [3, 4].

,e pitch control of a wind turbine is a complex task
itself due to the highly nonlinear behaviour of these devices,
the coupling between the internal variables, and because
they are subjected to uncertain and varying parameters due
to external loads, mainly wind, and in the case of FOWT,
waves and currents also. ,ese reasons have led to explore
intelligent control techniques to tackle these challenges [5].
Among traditional control solutions, sliding mode control
has been recently applied with successful results, such as in
[6], where a PI-type sliding mode control (SMC) strategy for
permanent magnet synchronous generator- (PMSG-) based
wind energy conversion system (WECS) uncertainties is
presented. Nasiri et al. [7] proposed a supertwisting sliding
mode control for a gearless wind turbine by a permanent
magnet synchronous generator. A robust SMC approach is
also proposed in [8], where authors use the blade pitch as
control input, in order to regulate the rotor speed to a fixed
rated value. In [9], an adaptive robust integral SMC pitch
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angle controller and a projection type adaptation law are
synthesized to accurately track the desired pitch angle tra-
jectory, while it compensates model uncertainties and
disturbances.

Regarding intelligent control, fuzzy logic has been widely
applied to the wind turbine pitch control. For example, in
[10], pitch angle fuzzy control is proposed and compared to a
PI controller for real weather characteristics and load var-
iations. Rocha et al. [11] applied a fuzzy controller to a
variable speed wind turbine and compared the results with a
classical proportional controller in terms of system response
characteristics. Rubio et al. [12] presented a fuzzy logic-
based control system for the control of a wind turbine in-
stalled on a semisubmersible platform. But application of
neural networks to turbine pitch control is scarcer, maybe
due to the lack of real data to train the network [13].
However, Asghar and Liu [14] designed a neurofuzzy al-
gorithm for optimal rotor speed of a wind turbine. In [15],
artificial neural network-based reinforcement learning for
WTyaw control is presented. In [5], a passive reinforcement
learning algorithm solved by particle swarm optimization is
used to handle an adaptive neurofuzzy type-2 inference
system for controlling the pitch angle of a real wind turbine.
In [16], a robust H∞ observer-based fuzzy controller is
designed to control the turbine using the estimated wind
speed. Two artificial neural networks are used to accurately
model the aerodynamic curves. From a different point of
view, in [17], the authors proposed an information man-
agement system based onmixed integer linear programming
(MILP) for a wind power producer having an energy storage
system and participating in a day-ahead electricity market.

In this work, we have focused on the pitch control of a
small wind turbine. Based on the neural control strategy
proposed in [18], we have extended it to deal with the
dynamics of the pitch actuator. Besides, the derivative and
the integration of the power error have been added as inputs
to the learning algorithm. ,is way the error variation and
the past error values are considered and used to update the
weights of the neural network; this helps to accelerate the
learning process. ,e main contribution of this paper is
twofold. On the one hand, a radial basis network (RBF) wind
turbine pitch controller is designed and implemented. ,is
controller uses the output power to update the weights of the
neural network in an unsupervised way. On the other hand,
a detailed analysis has been carried out on how the con-
figuration of the neural network, the learning algorithm, and
the controller parameters affect the control performance and
the evolution of the error. Another advantage of the ap-
proach here presented is that, in contrast to traditional
controllers which have different control schemes for dif-
ferent wind speed regions, only one controller is used for all
operational regions of the wind turbine.

,e rest of the paper is organized as follows. Section 2
describes the model of the small wind turbine used. Section 3
explains the neural controller architecture and the unsu-
pervised learning strategy. ,e results for different neural
network configuration and learning parameters are analysed
and discussed in Section 4. ,e paper ends with the con-
clusions and future works.

2. Wind Turbine Model Description

,e model of a small 7 kW wind turbine is developed. ,e
ratio of the gear box is set to 1, so the rotor torque is the same
as the mechanical torque of the generator, Tm (Nm), given
by the following equation [19]:

Tm �
Cp(λ, θ)ρAv

3

2w
, (1)

where Cp is the power coefficient; ρ is the air density (kg/
m3); A is the area swept by the turbine blades (m2); v is wind
speed (m/s); and w is the angular rotor speed (rad/s). ,e
blade swept area can be approximated by A� πR2, where R is
the radius or blade length.

,e power coefficient is usually determined experi-
mentally for each turbine. ,ere are different expressions to
approximate Cp; in this case, it has been calculated as a
function of the tip speed ratio λ and the blade pitch angle θ
(rad):

λi(λ, θ) �
1

λ + c8
( ) − c9

θ3 + 1
( )[ ], (2)

Cp λi, θ( ) � c1 c2
λi
− c3θ − c4θ

c5 − c6[ ]e− c7/λi( ), (3)

where the values of the coefficients c1 to c9 depend on the
characteristics of the wind turbine. ,e pitch angle θ is
defined as the angle between the rotation plane and the blade
cross section chord, and the tip speed ratio is given by the
following equation:

λ � w · R
v
. (4)

From equation (3), it is possible to observe how Cp
decreases with the pitch angle. Indeed, when θ� 0 (rad), the
blades are pitched so the blade is all out and producing at its
full potential, but with θ � (π/2) (rad), the blades are out of
the wind.

,e pitch actuator is modelled as a second-order system.
,is assumption is widely used to model pitch systems in
wind turbines and other mechanical actuators [20]. In this
case, θref is the input of the pitch actuator and θ is its output:

θ(s)
θref(s)

� Kθ

Tθs
2 + s +Kθ

. (5)

,us far, the model is focused on the mechanical aspects
of the system. But dynamics of the generator combine the
mechanical and electrical domains. ,e relation between the
rotor angular speed w and the mechanical torque Tm in a
continuous current generator is given by the following
expressions [21]:

J
dw

dt
� Tm − Tem − Kfw, (6)

Tem � Kg ·Kϕ · Ia, (7)
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where Tem is the electromagnetic torque (Nm), J is the
rotational inertia (kg·m2), Kf is the friction coefficient
(N·m·s/rad),Kg is a dimensionless constant of the generator,
Kϕ is the magnetic flow coupling constant (V∙s/rad), and Ia
is the armature current (A).

,e armature current of the generator is then given by
the following equations:

La
dIa
dt

� Ea − V − RaIa, (8)

Ea � Kg ·Kϕ · w, (9)

where La is the armature inductance (H), Ea is the induced
electromotive force (V), V is the generator output voltage
(V), and Ra is the armature resistance (Ω). For simplicity, it
is commonly assumed that the load is purely resistive, given
by Ra. ,us, V � RLIa, and the output power (W) is
Pout � RLI2a.

By the combination of the previous equations (1)–(9),
the following expressions summarize the dynamics of the
wind turbine.

_Ia �
1

La
Kg ·Kϕ · w − Ra + RL( )Ia( ), (10)

λi �
1

λ + c8
( ) − c9

θ3 + 1
( )[ ]− 1, (11)

Cp λi, θ( ) � c1 c2
λi
− c3θ − c4θ

c5 − c6[ ]e− c7/λi( ), (12)

_w � 1

2 · J · w Cp λi, θ( ) · ρπR2 · v3( ) − 1

J
Kg ·Kϕ · Ia +Kfw( ),

(13)

€θ � 1

Tθ
Kθ θref − θ( ) − _θ[ ], (14)

Pout � RL · I
2
a. (15)

In this work, we have focused on controlling the output
power by means of the pitch angle, so the input control
variable is θref and the controlled output variable is Pout

(boldfaced in equations (10)–(15). ,e state variables are
Ia, w, θ, and

_θ.
,e wind turbine parameters used during the simula-

tions are shown in Table 1 [19].

3. Neural Pitch Control Strategy

3.1. Neural Controller Architecture. ,e architecture of the
proposed wind turbine neural controller is shown in Fig-
ure 1. ,e error Perr is the difference between the power
reference signal Pref (rated power) and the power output.
,e nominal power of this wind turbine is 7 kW. Power
error, Perr, and its derivative, _Perr, are saturated to maintain
their values within a suitable range; the saturated signals are

PerrS
and _PerrS

, respectively. ,ey are the inputs of the radial
basis neural network that is used to implement the con-
troller. ,e output of the neural network RBFo is biased for
(π/4) and goes through a saturation block to adapt it to the
range [0, (π/2)] (rad). ,e result of this process is the signal
θref that will be used as pitch reference of the wind turbine
control.

,e neural network must learn the control law
fc: R

2⟶ R, which will be able to stabilize the wind
turbine output power around its nominal value. ,is
function is not known beforehand. In other control schemes,
the weights of the RBF network are updated using supervised
learning.,at requires a known input/output dataset to train
the neural network. ,is way it generates the expected
output when it receives a similar input to the ones used for
the training. However, in our case, there are no labelled
output data to train the network.

If we knew the correct pitch control signal for each Perr

and _Perr, we would know the appropriate control law, and we
would not need a neural network to learn it. For this reason,
it is not possible to use supervised learning. ,at is why in
this approach the learning algorithm receives the error signal
Perr, its derivative, and its integral and combines them to
generate the new weights of the neural network.

,e equations of this neurocontrol strategy are the
following:

Perr ti( ) � Pref ti−1( ) − Pout ti−1( ), (16)

_Perr ti( ) � 1

Tc
Perr ti( ) − Perr ti − Tc( )( ), (17)

PerrS
ti( ) � MIN PerrMAX

,MAX PerrMIN
, Perr ti( )( )( ), (18)

_PerrS
ti( ) � MIN _PerrMAX

,MAX _PerrMIN
, _Perr ti( )( )( ), (19)

RBFo ti( ) � fRBF PerrS
ti( ), _PerrS

ti( ),W ti−1( )( ), (20)

W ti( ) � flearn PerrS
ti( ), _PerrS

ti( ),W ti−1( )( ), (21)

θref ti( ) � MIN
π

2
,MAX 0,

π

4
− RBFo ti( )( )( ), (22)

where Tc is the control period (s); the maximum and
minimum values of the variables, [PerrMIN

, PerrMAX
,

_PerrMIN
, _PerrMAX

] ∈R4, are the constants that will allow to
adjust the range of the controller, with the constraints
PerrMIN
<PerrMAX

and _PerrMIN
< _PerrMAX

; fRBF is the RBF func-
tion; and flearn denotes the function of the learning
algorithm.

,eMIN andMAX operators in equations (18), (19), and
(22) are applied to maintain the signal value within
boundary conditions. ,e expression MIN(v1,MAX
(v2, v3)) sets v1 as the upper boundary; v2 as the lower limit;
and v3 as the signal to be saturated.,eMAX operator holds
v3 beyond the lower bound.,e output of the MAX operator
is kept below the upper limit by the MIN operator.
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All the variables in equations (16)–(22) are updated each
Tc second; otherwise, their values remain constant.

3.2. Setting Up RBF. ,e aim of the RBF is to compute the
bidimensional function fc(Perr, _Perr)⟶ RBFo which im-
plements the control law that it is able to stabilize Pout

around Pref . As it is well known, any derivable continuous
function can be approximated by the sum of exponential
functions. In this work, we take advantage of this property to
approximate the control law by the RBF neural network. In
order to map the input space to the output space, we dis-
cretize the bidimensional input space of the neural network
(Perr, _Perr) applying a gridding. Figure 2 shows the ΔX×ΔY
grid. ,e centres of the neurons are initialized to the in-
tersection points of the grid lines. ,is will set the precision
of the error.

,e number of rows and columns, the horizontal and
vertical length of the cells, ΔX and ΔY, respectively, and the
number of neurons M are related by the following
expressions:

Nx �
1

ΔX PerrMAX
− PerrMIN

( ) + 1( ),
Ny �

1

ΔY
_PerrMAX

− _PerrMIN
( ) + 1( ),

M � Nx ·Ny.

(23)

where the number of horizontal lines isNx, i.e.,Nx − 1 rows,
and the number of vertical lines is Ny. In order to ensure

that a horizontal line and a vertical line intersects the point
(0, 0), Nx and Ny must be odd and bigger than 1.

Once ΔX and ΔY are determined, the centre of the
neurons is obtained by the following equation:

ci1 � iDIVNy( ) · ΔX + PerrMIN
∀i ∈N⋃ 0

∣∣∣∣i<M,
ci2 � iMODNy( ) · ΔY + _PerrMIN

∀i ∈N⋃ 0
∣∣∣∣i<M,

(24)
where (ci1, ci2) is the centre of the i neuron.

Table 1: Parameters of the wind turbine model.

Parameter Description Value (units)

La Inductance of the armature 13.5mH
Kg Constant of the generator 23.31
Kϕ Magnetic flow coupling constant 0.264V/rad/s
Ra Resistance of the armature 0.275Ω
RL Resistance of the load 8Ω
J Inertia 6.53Kg·m2

R Radio of the blade 3.2m
ρ Density of the air 1.223Kg/m3

Kf Friction coefficient 0.025N·m/rad/s
[c1, c2, c3] Cp constants [0.73, 151, 0.58]
[ c4, c5, c6] Cp constants [0.002, 2.14, 13.2, 18.4]
[ c7, c8, c9] Cp constants [18.4, − 0.02, − 0.003]
[Kθ, Tθ] Pitch actuator constants [0.15, 2]
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Figure 1: Architecture of the neural controller.
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Figure 2: Gridding of the input space of the RBF.

4 Complexity



,e output of the RBF neural network (20) is then given
by the following expressions (where the variable ti has been
omitted for sake of clarity):

fRBF PerrS
, _PerrS

,W( ) �∑M
i�1
Wi · e

− dist PerrS ,
_PerrS ,ci1,ci2( )/σi( )

,

(25)

dist PerrS
, _PerrS

, ci1, ci2( ) �
�����������������������
ci1 − PerrS( )2
P2
errMAX

+
ci2 − _PerrS
( )2

_P
2

errMAX

√√
,

(26)
where dist is a normalized distance measure,M is number of
neurons in the hidden layer,Wi is the weight of the i-neuron,
and σi is the width of the i-neuron activation function, which
is normally the same for all neurons.,ewidth of the neuron
is also related to the error accuracy.,e normalized distance
(29) is calculated by the 2-D Euclidean distance once each 1-
D distance has been normalized to the range [0, 1]. ,e
range of (ci1 − PerrS

) is [−PerrMAX
, PerrMAX

], so division by
PerrMAX

normalizes it to [−1, 1], whereas the range of (ci2 −
_PerrS

) is [− _PerrMAX
, _PerrMAX

], and thus division by _PerrMAX

normalizes it to [−1, 1]. ,is way the output range of (29) is
[0,

�
2

√
].

3.3. Unsupervised Learning Algorithm. ,e parameters to be
updated by a learning algorithm in an RBF neural network
are the centres of the RBF neurons, the σi parameters, and
the output weights. As explained before, the centres of the
neurons are equally distributed in all the input space. In
addition, in this work, as is common, it is assumed that the
entire input space is equally important when obtaining the
output of the network; therefore, the σi parameters are set in
advance to the same value for all the neurons. ,us, the
learning algorithm only has to update the weights.

As said before, many control schemes with RBF neural
networks use supervised learning to update the weights but
this is not the case. ,ere are no labelled output data to train
the network, so the neural network must learn a control law
previously unknown in an unsupervised way. ,is learning
procedure is as follows.

,e input space has been pseudodiscretized, placing the
RBF neurons at the centres of the grid. Given a network
input pair (Perr, _Perr), the neuron closest to this pair will
have the biggest contribution to the output value of the
mapping. Although it will not be the only neuron that in-
fluences the output, the contribution decreases with the
distance and increases with the width of the activation
function.

If the centres of the neurons are separated enough and
the width of the activation function is correctly selected, the
contribution of the surrounding neurons may be neglected
and all points in the input space are discretized to the centre
of its closest neuron.,erefore, by updating the weightWi of
the i-neuron, it is possible to adjust the output value of the
input pair (ci1, ci2), due to the fact that in these points the

value of the exponential function is 1. ,us, the closer the
input pair is to the centre of some neuron, the better is the
approximation of the RBF function fc. ,e learning algo-
rithm will be in charge of updating the weights of the
network based on the output power errors, adjusting the
mapping of the fc function. In the output layer of the neural
network, all the partial contributions of the neurons are
linearly combined to obtain the output value (28).

In order to illustrate this unsupervised learning pro-
cedure, Figure 3(a) shows an example of the initial surface
of the weights of the neural network with all set to 1.
Figure 3(b) shows the corresponding pitch control law at
the output of the (π/4) − bias before learning, and
Figure 4(a) presents the control surface after applying the
learning strategy, with the final values of the weights. ,e
pitch control law, before and after the learning, is shown
in Figures 3 and 4(b), respectively. It is possible to see, as
expected, that positive errors increase the weights,
bending upwards the surface and thus incrementing the
output value of the neural network. ,is means reducing
the pitch angle reference, θref , and enlarging the output
power.

In this work, we take as starting point the typical
supervised learning strategy of an RBF to reduce the error
at each iteration, given by equation (27), where T is the
expected output value and RBFo is the current output
value.

Wj ti( ) �Wj ti−1( ) + μ · T − RBFo( ) · e− dist in, cj( )/σj( )
∀j ∈N⋃ 0

∣∣∣∣j<M.
(27)

As T is not available, in order to make the power error
zero, the term (T − RBFo) is replaced by PerrS

. Equation (28)
details how the function flearn of equation (21) is then
calculated, that is, how the weights of the RBF neural net-
work are modified.

Wj ti( ) �Wj ti−1( ) + μ · KpL · PerrS
ti( ) +KdL · _PerrS

ti( )(
+ KiL · ∫Perr ti( )) · e− dist PerrS

ti( ), _PerrS
ti( ),cj1 ,cj2( )( )/σj( )

∀j ∈N⋃ 0
∣∣∣∣j<M,

(28)
where μ is the learning rate and [KpL, KdL, KiL] are positive
constants. As it may be observed, the exponential term is the
same as in equations (25) and (26).

,e following pseudocode details the unsupervised al-
gorithm which updates the weights of the RBF network
(Algorithm 1):

Here,M is the number of neurons,W is an array with the
weights,Nx is the number of neurons in the x-axis of the grid
input space, andNy is the number of neurons in the y-axis of
the grid input space. A learning threshold, minErr, is defined
so errors below that value are discarded. ,e centres of the
neurons are represented in the array cNet. ,e tuning pa-
rameters of the learning rate are mu, KP, KD, and KI; the
control sampling time is Tc, F is an array with the output of
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each exponential function of the RBF before the addition of
all the neurons (28), and Fold is an array that saves the
previous value of F.

,e model of the WT, MODEL(), receives as input the
pitch control reference. ,e function RBF() calculates (28),
where DIV() is the integer division, MOD() is the module
operator, ABS() is the absolute value operator, and MIN()
and MAX() are the minimum and maximum functions.
,erefore, the external parameters of the algorithm are
PerrMin, PerrMax, dotPerrMin, dotPerrMax, Nx, Ny, mu,
KP, KD, KI, and minErr.

At the beginning of the procedure, all variables are
initialized, and the centres of the RBF are calculated. ,en,
the simulation is run each Ts second. ,e controller is
updated each Tc second; therefore, Tc must be larger than Ts.
Each control sample time, Tc, the output of the RBF, RBFout,
and the WT pith reference, pitchCon, are obtained. If the
error is above the threshold, a combination of the error, its
derivative, and its integration is calculated (variable errM).
,en, the array with the increments of the weights, Winc, is

obtained from the previous F array, Fold, and the current
error measurement, errM.

4. Performance Analysis of the
Neurocontrol Strategy

A performance analysis of this unsupervised neurocontrol
strategy has been carried out under different network
configurations and varying some parameters of the learning
algorithm and of the pitch control law.,e software Matlab/
Simulink has been used. ,e duration of each simulation is
100 s. In order to reduce the discretization error, a variable
step size has been used for the simulation experiments, with
maximum step size set to 10ms. ,e control sample time Tc
has been fixed to 100ms.

,e neurocontroller performance is compared with a
PID regulator. In order to make a fair comparison, the PID
output has been scaled to adjust its range to [0, (π/2)] and it
has been also biased by (π/4).,e equation of the biased PID
controller is expressed as follows:
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θ � π
4
− π

4PerrMAX

KP · Perr +KD ·
d

dt
Perr +KI · ∫Perrdt[ ].

(29)
,e wind turbine nominal power is 7 kW, and thus the

reference Pref � 7000W. ,e tuning parameters [KP, KD, KI]
have been determined by trial and error, and their values are [1,
0.2, 0.9], respectively. ,e parameter minErr of the learning
algorithm is set to 15.

,e performance of the controllers has been evaluated
with theMSE, themean value, and the variance, calculated as

MSE �
����������������������
1

Tsim

∑
i

Pouti
− Pref( )2Tsi[ ]

√
,

Mean � 1

Tsim

∑
i

Pouti
· Tsi[ ],

Var � 1

Tsim

∑
i

Pouti
−Mean( )2Tsi[ ],

(30)

where Tsim is the simulation time and Tsi is the sampling time i
that is necessary due to the variable step size that has been used.

Figure 5(a) shows the output power when different
strategies are applied. ,e blue line represents the output
when the pitch is permanently set to zero, the red one
represents the output when pitch angle is set to feather
position (90°), the yellow line is the response with the PID,
the purple one is the response with the neural controller, and
finally the green line represents the rated power. Figure 5(b)
shows a zoom of the previous figure to see better the var-
iations of the signals. In this experiment, the wind is ran-
domly generated with a speed between 11.5 and 14m/s, the
RBF has 25 neurons in the hidden layer, σ is set to 0.1, the
maximum and minimum values of the parameters
[PerrMIN

, PerrMAX
, _PerrMIN

, _PerrMAX
] are set to [−1000, 1000, −400,

400], and learning rate μ is 0.0001∗ 1.5.
As shown in Figure 5, when the pitch is set to zero, the

output power is always bigger than the rated power because
the blades harness the maximum power of the wind. As
expected, when the pitch is fixed to feather, the opposite

% Initialization
Xmin⟵PerrMin
Xmax⟵PerrMax
Ymin⟵ dotPerrMin
Ymax⟵ dotPerrMax
IncX⟵ (Xmax−Xmin)/(Nx− 1)
IncY⟵ (Ymax−Ymin)/(Ny− 1)
M⟵Nx ∗ Ny
for i� 0 to M− 1

cNetX⟵ (i DIV Ny) ∗ IncX+XMin
cNetY⟵ (i MOD Ny) ∗ IncY+YMin
cNet (i)⟵ (cNetX, cNetY)
W (i)⟵ 1
Fold (i)⟵ 0

end for

F⟵ Fold
tconOld⟵ 0
pitchCon⟵ 0
% Execute algorithm
(errPow, derrPow, errPowSum)⟵MODEL (0)
for t� 0 to tEnd

if t≥ tconOld +Tc then

errPowSat⟵MIN (Xmax, MAX (Xmin, errPow))
derrPowSat�MIN (Ymax, MAX (Ymin, derrPow))
[RBFout, F]�RBF(cNet, W, errPowSat, derrPowSat)
Fold⟵ F
pitchCon⟵ (pi/4)−RBFout
if ABS (errPowSat)<minErr then

Winc⟵ 0
else

errM⟵ errPowSat ∗ KP+derrPowSat ∗ KD+ errPowSum ∗ KI
Winc⟵ Fold ∗ errM ∗ mu

end if

W⟵W+Winc
tconOld⟵ t

end if

(errPow, derrPow, errPowSum)⟵MODEL (pitchCon)
end for

ALGORITHM 1: Proposed learning algorithm.
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happens, as the surface which faces the wind is minimum.
Another interesting outcome is that the proposed neuro-
controller is not only able to stabilize the output power
around the nominal value, but its performance is better than
the PID, particularly up to 50 s, and it is less oscillatory.

As the output power depends on the wind, different
simulations were carried out varying the wind speed. ,e
configuration of the neural network and the learning al-
gorithm is the same as in the previous experiment. Figure 6
shows the influence of the wind speed regarding the mean
square power error (MSE). ,e red bar is the MSE with the
neural controller, and the blue one is the MSE with the PID.
As expected, the higher the wind, the larger the error. For all
the ranges of wind speed, the neurocontrol strategy has been
proved to be better than the PID.

Table 2 summarizes the detailed results of the simulation
experiments with different wind speeds between 12.2 and
12.8m/s. At a wind speed below 12.2m/s, the stabilized
output power is always lower than 7 kW, even with pitch
angle set to 0. With a wind speed over 12.8m/s, the steady
output power is always higher than 7 kW even when the
pitch is set to 90°. In all the cases, the error is smaller with the
neural controller than with the PID but for 12.5, 12.7, and
12.8m/s, the mean obtained with the PID is slightly smaller.

A sinusoidal wind signal has been also tested. ,e av-
erage wind speed is 12.5m/s with an amplitude of 0.6m/s
and a period of 50 s.,e result of the experiment is shown in
Figure 7. ,e output power is represented with the same
colour code as Figure 5. To show how the RBF learns,
Figure 7(a) shows the response for iterations from 1 to 175.
In Figure 7(b), the output power for different control
strategies described before when the system has already
learned is represented.

,e learning capability of the neurocontroller is shown
in Figure 8.,eMSE quickly converges in a few iterations. It

is also possible to observe an inflection point around iter-
ation 30. From this point on, the learning speed decreases.
Indeed, from them, the MSE hardly varies.

,e frequency of the sinusoidal wind speed signal also
influences the results. Figure 9 shows the results for different
periods (blue, PID; red, neurocontrol). ,e minimum MSE
is reached for the minimum period; from this value, the MSE
grows. At a period of 20 s, a local maximum for the neural
controller appears, and the same happens at 35 s for the PID.
From then on, the error decreases for both controllers. In all
the cases, the error is much smaller with the neurocontroller
than with the PID.

Table 3 summarizes the results obtained with this ex-
periment. In all cases, the MSE is much smaller with the
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Figure 5: Output power with different strategies (a) and output power zoom (b).

PID

RBF

12.3 12.5 12.6 12.812.712.412.2

Wind speed (m/s)

0

50

100

150

200

250

300

350

400

M
SE

Figure 6: Evolution of MSE with wind speed.

8 Complexity



neural controller. Moreover, it is possible to observe how the
response with the neural controller slightly improves when
the period is larger than 20 s: the MSE and the variance
decrease, and the mean value remains almost unchanged.
Meanwhile, for the PID, there are several local minimums
and maximums in the MSE and the variance. ,ese upward
and downward trends also appear in the MSE and the
variance evolution. Nevertheless, the influence of the wind
period is not so relevant.

4.1. Influence of the RBF. ,e influence of the configuration
of the RBF neural network in the performance of the
controller has also been evaluated. Different number of

neurons, values of the σ parameter, and several limits have
been tested. ,e wind turbine is subjected to a random wind
with mean speed between 11.5 and 14m/s; lambda is
0.0001 ∗ 1.5, σ is set to 0.1 in this experiment, the lower and

upper limits [PerrMIN
, PerrMAX

, _PerrMIN
, _PerrMAX

] are set to [−1000,
1000, −400, 400], and the number of neurons varies.

Figure 10 shows the influence of the number of neurons,
M, in the evolution of the MSE. ,e colour is associated to
the number of neurons (see the legends). All the curves of
this figure have a similar shape, and the main difference is
the slope before the inflection point. It is possible to see that
the more the neurons, the higher the slopes. In general, the
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Figure 7: Output power for learning iterations from 1 to 175 with sinusoidal wind speed (a). Output power for different control strategies
when the neural controller has learned (b).
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error decreases with the number of neurons until the
number is so large that the network does not learn. For
example, the MSE with 441 neurons is bigger than that with
121.

To evaluate the influence of the width σ of the activation
function, the configuration of the RBF network is set to the
previous values, with the number of neurons M= 9, 25, and
121 (Figure 11, from left to right). ,e σ parameter varies
from 0.05 to 0.75. In all the cases, the MSE tends to decrease
as σ increases. ,ere is a sharp drop in MSE during the first
iterations for values of σ greater than 0.25. ,e descent rate
also grows with the number of neurons.

Figure 12 shows another perspective of the influence of σ
in the error. It represents the MSE at iteration 200 for
different σ values and different number of neurons. In this
figure, it is also possible to see how the MSE decreases with σ
until this parameter is around 0.25, where it starts to grow.
,is inflexion point does not depend on the number of
neurons but the fall before that minimum does depend on
the number of neurons (the bigger the number of neurons,
the larger the descent rate).

,e performance of the neurocontroller can be also
adjusted by the modification of the saturation limits of the
input space. Different sets of values of
[PerrMIN

, PerrMAX
, _PerrMIN

, _PerrMAX
] have been tested, one varying

PerrMAX
and another changing _PerrMAX

. In both experiments,
the number of neurons M is set to 121, σ is 0.25, and 5
iterations are run. When PerrMAX

. is changed, the value of
_PerrMAX

is kept constant to 400, and when _PerrMAX
varies, the

limit PerrMAX
is fixed to 1000. ,e corresponding negative

boundaries have the same absolute value.
Table 4 shows the variation of MSE, the output power

mean, and its variance when PerrMAX
is modified from 100 to

1500. ,e MSE and the mean value decrease with PerrMAX
;

however, the variance grows.,is may be due to the fact that
bigger values of PerrMAX

mean bigger variations in the output
power and thus larger variance. ,e influence in the MSE is
explained since wider boundaries produce less saturated
values and more available information for the learning
process. But if the saturation is not reached, too high value of
PerrMAX

may be counterproductive because the spatial dis-
tribution of the neurons makes more neurons to be useless.

Table 5 summarizes the variation of the MSE, the output
power mean, and its variance when _PerrMAX

changes from 50
to 7050. Similar to Table 4, the MSE and the mean value are
reduced when _PerrMAX

increases until a local minimum is
reached. It may be also explained for the reduction of the
saturated values. However, in this case, the variance also
decreases with _PerrMAX

.

4.2. Influence of the Learning Parameters. Several experi-
ments have been carried out to show the influence of the
learning parameters μ, KpL,KdL, and KiL. ,e configuration
of the RBF network is M� 121, σ � 0.1, and
[PerrMIN

, PerrMAX
, _PerrMIN

, _PerrMAX
] � [−1000, 1000,−400, 400].

In the first experiment, 200 iterations have been simulated
and the tuple [KpL, KdL, KiL] is set to [ 1, 0.1, 0]. Figure 13
shows the results for different learning rate μ. Again, the
MSE decreases at each iteration. As expected, the descent
rate grows with the learning rate. ,ese results may also be
seen in Table 6 (at iteration 5).,e output power mean value
also decreases with the learning rate. However, the variance
grows, and larger values of μ produce bigger increments in
the weights of the neural network (28) and thus bigger
variations in the pitch reference and also greater changes in
the output power.

In the next experiment,KdL and KiL are set to 0 andKpL

is varied. ,e effect of varying KpL is the same than mod-
ifying μ due to the fact that both are constants that multiply
PerrS

(although the results are different because KdL � 0.1 in
the previous experiment). ,e results are shown in Table 7.

Table 2: MSE, output power mean, and variance for different wind speeds.

Wind speed (m/s)
RBF PID

MSE Mean Variance MSE Mean Variance

12.2 213.87 7.07e + 3 1.03e + 5 266.83 7.20e + 3 1.24e + 5

12.3 220.51 7.13e+ 3 1.14e+ 5 299.86 7.21e+ 3 1.51e+ 5
12.4 233.36 7.20e+ 3 1.19e+ 5 328.40 7.22e+ 03 1.80e+ 5
12.5 256.85 7.24e+ 3 1.36e+ 5 352.47 7.22e+ 03 2.07e+ 5
12.6 281.72 7.24e+ 3 1.47e+ 5 371.84 7.24e+ 03 2.35e+ 5
12.7 306.96 7.27e+ 3 1.69e+ 5 386.39 7.26e+ 3 2.62e+ 5
12.8 331.85 7.32e+ 3 1.89e+ 5 399.76 7.28e+ 3 2.92e+ 5
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Figure 10: Evolution of theMSE with different number of neurons.
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,e MSE and the output power mean value decrease with
KpL and the variance grows.

Now, KpL and KiL are set to 0 and KdL is varied. ,e
results are shown in Table 8. Initially, the MSE and the
output power mean decrease but from KdL � 5, these values
grow continuously. An increment of KdL makes the system
learn faster. Also, it reacts faster to changes so that MSE can
be reduced. However, a very high value amplifies the first
ramp that moves the pitch reference to 0. After this point, the
system takes a long time to learn as it would need a big
downward ramp to recover the initial weight values of the
neural network. ,is also explains why the variance de-
creases withKdL. After an initial ramp, the values are almost

stable producing only small variations in the weights and
thus a small variance.

Finally, KpL and KdL are set to 0 and KiL is varied to test
its influence. ,e results are shown in Table 9. Initially, the
MSE and the output power mean decrease with KiL until
KiL is equal to 0.1; from this value on, they grow continu-
ously. KiL helps the controller to learn how to reduce the
steady-state error, so the MSE decreases when KiL increases.
However, if this parameter is too high, the controller be-
comes sluggish and the MSE grows. ,e variance also in-
creases with KiL since it makes the controller slower, so
higher output values are reached. Keeping these high out-
puts longer generates a greater variance.
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Figure 11: Evolution of theMSE for different values of σ and number of neuronsM. (a) Influence of σ inMSE evolution,M� 9. (b) Influence
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4.3. Influence of theControl Period. Once the influence of the
neural network configuration and the learning algorithm
parameters has been analysed, the last experiment evaluates
how the control period affects the performance of the
neurocontroller. ,e number of neurons is set to 11, σ � 0.1,
[PerrMIN

, PerrMAX
,

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1 1

σ

280

290

300

310

320

330

340

M
S
E

9

25

49

121

441

Figure 12: Influence of σ in the MSE for different number of neurons.

Table 3: MSE, output power mean, and variance for different periods of sinusoidal wind speed.

Wind speed period
RBF PID

MSE Mean Variance MSE Mean Variance

1 393.89 7.43e + 3 1.58e + 5 413.33 7.29e + 3 3.22e + 5

11 402.22 7.40e+ 3 1.97e+ 5 440.87 7.28e+ 3 3.56e+ 5
21 411.05 7.39e+ 3 2.29e+ 5 470.15 7.29e+ 3 3.94e+ 5
31 406.35 7.40e+ 3 2.31e+ 5 485.30 7.29e+ 3 4.00e+ 5
41 403.14 7.40e+ 3 2.25e+ 5 475.56 7.31e+ 3 3.85e+ 5
51 402.16 7.40e+ 3 2.25e+ 5 473.75 7.30e+ 3 3.90e+ 5
61 401.05 7.41e+ 3 2.25e+ 5 485.64 7.33e+ 3 4.04e+ 5
71 401.21 7.42e+ 3 2.20e+ 5 480.16 7.32e+ 3 3.83e+ 5
81 401.04 7.41e+ 3 2.14e+ 5 478.86 7.32e+ 3 3.82e+ 5
91 398.40 7.41e+ 3 2.09e+ 5 477.56 7.31e+ 3 3.85e+ 5

Table 4: Variation of MSE, output power mean, and variance with
PerrMAX

.

PerrMAX

RBF

MSE Mean Variance

100 312.02 7.28e+ 3 1.60e+ 5
300 298.22 7.24e+ 3 1.67e+ 5
500 293.76 7.23e+ 3 1.71e+ 5
700 291.90 7.21e+ 3 1.74e+ 5
900 291.91 7.21e+ 3 1.76e+ 5
1100 292.71 7.20e+ 3 1.78e+ 5
1300 293.18 7.19e + 3 1.83e+ 5
1500 293.21 7.19e + 3 1.82e+ 5
PID 397.95 7.25e+ 3 2.78e+ 5
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Figure 13: Evolution of MSE for different learning parameters μ.
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_PerrMIN
, _PerrMAX

] � [−1000, 1000,−1000, 1000], and
[KpL, KdL, KiL] � [ 1, 0.1, 0]. Table 10 shows the results at
iteration 5 when the control period varies from 10 to 100ms.
If the control sample time is too small, the neural controller
reacts to the noisy component of the wind, and this increases
the MSE and the variance. On other hand, a very big control
period makes the system too slow and also increases the
MSE. ,erefore, an intermediate value would be the best
option. In any case, the performance of the neural controller
is much better than the PID response for all the control
periods tested.

5. Conclusions and Future Works

In this work, an intelligent wind turbine pitch control
strategy is presented, and the influence of the parameters of
the neurocontrol systems is analysed. ,e pitch controller is

Table 6: Variation of MSE, output power mean, and variance with
the learning rate μ.

Learning rate μ
RBF

MSE Mean Variance

0.0001 379.45 7.40e+ 3 1.26
0.001 324.60 7.28e+ 3 1.76
0.01 290.37 7.22e+ 3 1.72
0.1 289.27 7.23e + 3 1.68

1 290.41 7.23e+ 3 1.68

Table 7: Variation of MSE output power mean and variance with
KpL.

KpL

RBF

MSE Mean Variance

0.1 386.54 7.41e+ 3 1.23e+ 5
0.2 384.43 7.41e+ 3 1.23e+ 5
0.5 380.96 7.41e+ 3 1.25e+ 5
1 374.78 7.40e+ 3 1.30e+ 5
2 361.46 7.37e+ 3 1.40e+ 5
5 331.12 7.33e+ 3 1.69e+ 5
10 314.50 7.25e+ 3 1.80e+ 5
20 302.65 7.24e+ 3 1.75e+ 5
50 292.63 7.23e+ 3 1.70e+ 5
100 290.34 7.22e + 3 1.69e+ 5
200 289.34 7.23e+ 3 1.69e + 5

500 290.32 7.23e+ 3 1.70e+ 5
PID 397.95 7.25e+ 3 2.78e+ 5

Table 9: Variation of MSE, output power mean, and variance with
KiL.

KiL

RBF

MSE Mean Variance

0.001 387.91 7.42e+ 3 1.22e+ 5
0.002 388.70 7.42e+ 3 1.21e+ 5
0.005 386.95 7.41e+ 3 1.23e+ 5
0.01 381.03 7.40e+ 3 1.23e+ 5
0.02 373.85 7.39e+ 3 1.36e+ 5
0.05 357.37 7.32e+ 3 1.80e+ 5
0.1 356.62 7.25e + 3 2.17e + 5

0.2 368.96 7.23e+ 3 2.41e+ 5
0.5 388.23 7.20e+ 3 2.73e+ 5
1 408.56 7.19e+ 3 2.99e+ 5
2 435.42 7.18e+ 3 3.30e+ 5
5 462.72 7.17e+ 3 3.61e+ 5
PID 397.95 7.25e+ 3 2.78e+ 5

Table 5: Variation of MSE, output power mean, and variance with
_PerrMAX

.

_PerrMAX

RBF

MSE Mean Variance

50 301.34 7.23e+ 3 1.76e+ 5
150 299.82 7.22e+ 3 1.79e+ 5
250 297.11 7.21e+ 3 1.79e+ 5
350 293.56 7.21e+ 3 1.78e+ 5
450 293.23 7.21e+ 3 1.78e+ 5
550 290.34 7.21e+ 3 1.78e+ 5
1050 285.16 7.20e+ 3 1.71e+ 5
3050 280.55 7.20e+ 3 1.66e+ 5
5050 278.96 7.20e + 3 1.64e + 5

7050 279.11 7.20e+ 3 1.65e+ 5
PID 397.95 7.25e+ 3 2.78e+ 5

Table 8: Variation of MSE, output power mean, and variance with
KdL.

KdL

RBF

MSE Mean Variance

0.1 389.37 7.42e+ 3 1.21e+ 5
0.2 386.27 7.41e+ 3 1.23e+ 5
0.5 386.87 7.41e+ 3 1.21e+ 5
1 389.15 7.42e+ 3 1.19e+ 5
2 385.34 7.41e+ 3 1.20e+ 5
5 384.66 7.41e + 3 1.14e + 5

10 386.09 7.41e+ 3 1.09e+ 5
20 393.09 7.43e+ 3 1.05e+ 5
50 431.41 7.47e+ 3 0.93e+ 5
100 511.32 7.56e+ 3 0.60e+ 5
200 550.49 7.60e+ 3 0.54e+ 5
500 547.87 7.60e+ 3 0.56e+ 5
PID 397.95 7.25e+ 3 2.78e+ 5

Table 10: Variation of MSE, output power mean, and variance with
the control period.

Control
period (ms)

RBF PID

MSE Mean Variance MSE Mean Variance

10 292.86 7.20e+ 3 1.82e+ 5 401.24 7.26e+ 3 2.82e+ 5
20 288.39 7.20e+ 3 1.76e+ 5 401.21 7.26e+ 3 2.79e+ 5
30 285.66 7.20e+ 3 1.72e+ 5 401.40 7.26e+ 3 2.81e+ 5
40 284.63 7.20e+ 3 1.71e+ 5 398.58 7.26e+ 3 2.79e+ 5
50 284.28 7.20e+ 3 1.70e+ 5 402.38 7.26e+ 3 2.80e+ 5
60 282.29 7.20e+ 3 1.69e+ 5 402.12 7.26e+ 3 2.80e+ 5
70 285.12 7.19e+ 3 1.72e+ 5 400.91 7.26e + 3 2.80e+ 5
80 284.77 7.20e+ 3 1.71e+ 5 399.21 7.26e+ 3 2.80e+ 5
90 285.70 7.20e+ 3 1.72e+ 5 399.32 7.26e+ 3 2.79e+ 5
100 285.85 7.20e+ 3 1.72e+ 5 397.95 7.26e+ 3 2.78e + 5
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based on an RBF neural network that learns in an unsu-
pervised way. ,e control goal is to maintain the output
power around its rated value, obtaining the appropriate
pitch angle reference. ,e output power errors are intro-
duced both in the neurocontroller and in the learning
algorithm.

Extensive simulation tests have been carried out on a
7 kW wind turbine, varying different network configuration
parameters as well as the wind speed.,e performance of the
neurocontroller is compared with a tuned PID obtaining
better results in all the cases.

,ese experiments have led to draw some interesting
conclusions. Among them, we can highlight the small in-
fluence of the wind frequency. However, the learning rate
grows significantly with the number of neurons. ,ere exists
an optimum sigma value different for each number of
neurons, between 0.2 and 0.4. Another interesting result is
how the gains KpL and KdL as well as KiL accelerate the
learning, and, in general, low values of these tuning pa-
rameters improve the stability.,e control sample time has a
clear effect on the system response, making it slower or
faster.

In future, it would be desirable to test the proposal on a
real prototype of a wind turbine. In addition, it would be
interesting to apply this control strategy to a bigger turbine
and to see if this control action affects the stability of a
floating offshore wind turbine.
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