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Equations are derived for analyzing the performance of channel estimate based equalizers. The

performance is characterized in terms of the mean squared soft decision error (�s
2) of each equalizer.

This error is decomposed into two components. These are the minimum achievable error (�o
2) and

the excess error (��
2). The former is the soft decision error that would be realized by the equalizer

if the filter coefficient calculation were based upon perfect knowledge of the channel impulse

response and statistics of the interfering noise field. The latter is the additional soft decision error

that is realized due to errors in the estimates of these channel parameters. These expressions

accurately predict the equalizer errors observed in the processing of experimental data by a channel

estimate based decision feedback equalizer �DFE� and a passive time-reversal equalizer. Further

expressions are presented that allow equalizer performance to be predicted given the scattering

function of the acoustic channel. The analysis using these expressions yields insights into the

features of surface scattering that most significantly impact equalizer performance in shallow water

environments and motivates the implementation of a DFE that is robust with respect to channel

estimation errors. © 2005 Acoustical Society of America. �DOI: 10.1121/1.1907106�

PACS numbers: 43.60.Dh, 43.60.Mn, 43.30.Re �EJS� Pages: 263–278

I. INTRODUCTION

The use of adaptive coherent equalizers for high rate

underwater acoustic communications is increasingly com-

mon for a large number of applications. The ability to quan-

titatively relate the performance of different equalizers to

prevailing environmental conditions is important for a num-

ber of reasons. First, it allows the relative performance char-

acteristics of different techniques and configurations to be

compared and realistic system trade-offs made in the selec-

tion and demodulation of demodulation algorithms. Second,

it can highlight the factors limiting equalizer performance to

guide future research and development efforts. Finally, with

the field moving rapidly toward the development of under-

water acoustic communications networks using coherent

modulation and demodulation techniques, performance pre-

dictions as a function of environmental conditions and net-

work topology will be an important input to dynamic net-

work control algorithms.

The paper presents the development and interpretation

of quantitative expressions for the performance of three types

of channel estimate based adaptive coherent equalizers.

Channel estimate based equalizers are those that calculate

their filter weights based upon estimates of the time-varying

impulse response of the acoustic channel between the trans-

mitter and receiver and the statistics of the ambient noise

field. Figure 1 shows the basic structure of channel estimate

based equalizers. The three types of equalizers considered

here are the channel estimate based decision feedback equal-

izer �CE-DFE� �Stojanovic et al.1�, the linear MMSE equal-

izer �L-MMSE�, and the passive time-reversal equalizers �P-

TR� �Rouseff et al.,2 Flynn et al.3�. In Stojanovic et al.4

expressions were developed for the total error achieved by a

CE-DFE that either has perfect knowledge of the channel

impulse response or perfect knowledge of the second-order

statistics of the channel impulse response estimation errors.

The expressions developed here are new in that they

separately quantify the equalizer errors that are due to the

realization of the channel impulse response and the ambient

noise and the degradation in performance that is due to the

equalizer having imperfect estimates of the channel impulse

response. This leads to new insights into the factors that can

limit equalizer performance and the characteristics of equal-

izers that are robust with respect to channel estimation errors.

The expressions also allow the performance of the CE-DFE,

L-MMSE, and P-TR equalizers to be compared within a

common framework when each equalizer has the same infor-

mation regarding the channel impulse response and the sta-

tistics of the ambient noise field. This work is an expansion

of the work originally presented in Preisig.5 This work also

presents the results of the processing and analysis of field

data collected during the SPACE02 experiment. The

SPACE02 experiment was conducted 5 km South of Mar-

tha’s Vineyard, MA in the Fall of 2002. It focused on inves-

tigating the impact of surface processes on high frequency

acoustic propagation and communications in shallow water

environments.

The organization of this paper is as follows. Section II

outlines notation as well as the expressions for the modeled

channel impulse response and the equalizer filter coeffi-

cients. Similar expressions with varying notations for the fil-

ter coefficients of channel estimate based equalizers can be

found in Stojanovic et al.4 and standard communications

textbooks. Section III presents and discusses the derivationa�Electronic mail: jpreisig@whoi.edu
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of the expressions for the errors achieved by the channel

estimate based equalizers given an estimate of the channel

impulse response and the statistics of the ambient noise field

and channel estimation errors. Section IV describes the algo-

rithm �the exponentially weighted least-squares estimator�

used to estimate the channel impulse response and presents a

new expression predicting its performance. Section V de-

scribes the relevant characteristics of the SPACE02 experi-

ment during which the data analyzed here was collected.

Section VI presents and analyzes the results achieved

when processing communications signals from the SPACE02

experiment with CE-DFE and P-TR equalizers. Predictions

of equalizer performance using the expressions derived in

Secs. III and IV are shown to closely match the observed

performance of the equalizers. Two methods of performance

prediction are shown. The first method �Sec. VI A� uses es-

timates of the statistics of the channel estimation error cal-

culated directly from the processed signals. The results of

these predictions validate the expressions derived in Sec. III.

The second method �Sec. VI B� uses estimates of the statis-

tics of the channel fluctuations to predict the statistics of the

channel estimation errors as described in Sec. IV. These pre-

dicted statistics of the channel estimation errors are then used

to predict equalizer performance. It is this later approach that

must ultimately be fully developed to allow equalizer perfor-

mance to be rigorously related to environmental conditions.

Finally, the performance of CE-DFE and P-TR equalizers is

compared in Sec. VI C and a CE-DFE with improved robust-

ness with respect to channel estimation errors is presented in

Sec. VII. Section VIII presents conclusions of the paper.

Derivations of expressions presented in the body of the paper

and the method used to estimate channel scattering functions

are described in the appendices.

Throughout this paper, boldface uppercase letters denote

matrices, boldface lowercase letters denote vectors �all vec-

tors are assumed to be column vectors�, and lowercase letters

denote scalar quantities. The superscripts t, *, and h denote

transpose, complex conjugate, and Hermitian �complex con-

jugate transpose�, respectively. For any square matrix Q, the

notation QM denotes the conjugate symmetric part of Q. That

is,

QM �
Q�Qh

2
.

The symbols I and 0 denote the identity matrix and the ma-

trix or vector of all zeros, respectively. When necessary, the

size of the matrices or vectors will be explicitly denoted

�e.g., 0N�M for a matrix of all zeros with N rows and M

columns�. The caret denotes the estimate of the quantity un-

der the caret �e.g., g̃̂ denotes the estimate of g̃�.

II. CHANNEL AND EQUALIZER MODEL

All data processing, analysis, and modeling in this paper

is done with respect to a sampled baseband received signal.

�See Sec. V for a description of this baseband signal.� Thus

all discussion is with respect to discrete time signals and

processes. The acoustic channel is modeled as a time-

varying, discrete time system described by the complex base-

band time-varying impulse response. �See Proakis6 and Van

Trees7�. The received signal at time n is given by

u�n�� �
m��Na

Nc�1

g*�n ,m�d�n�m��v�n� , �1�

where g�n ,m� is the baseband complex time-varying im-

pulse response relating the input signal at time (n�m) to the

output signal at time n, d�n� is the complex baseband trans-

mitted data, and v�n� is complex baseband observation

noise. The quantities Na and Nc denote, respectively, the

number of acausal and causal taps in the impulse response.8

This equation can be put into the vector form of

u�n�� g̃h�n�d̃�n��v�n� . �2�

where

g̃�n���g�n ,Nc�1� , . . . ,g�n ,0� , . . . ,g�n ,�Na�� t,

and

d̃�n���d�n�Nc�1� , . . . ,d�n� , . . . ,d�n�Na�� t

are samples of the impulse response and transmitted data

symbols, respectively. In this section, the received signal is

assumed to be sampled at the transmit symbol rate. The ex-

tension of the analysis to fractionally spaced systems is con-

ceptually straightforward, but the notation is cumbersome.

The final results of the analysis are equally applicable to

symbol rate and fractionally spaced systems. Note that the

experimental data presented in this paper were fractionally

sampled at a rate of 2 samples/symbol �See Sec. V�.

The equalizers considered here �Fig. 1� each consist of a

linear, finite impulse response �FIR� feedforward filter that

filters the received signals and, in the case of the CE-DFE, a

FIR feedback filter that filters and feeds back estimates of the

transmitted data symbol. The output of the filter is the soft

FIG. 1. The structure of channel estimate based coherent equalizers. The

received signal, u�n� , is processed to generate estimates of the time-varying

impulse response of the channel between the transmitter and each receive

hydrophone. The impulse response estimates are used to compute the equal-

izer filter weights. These filter weights are used to implement the equalizer

and estimate the desired data symbol. Two different types of equalizers are

shown. The upper equalizer is a channel estimate based decision feedback

equalizer �CE-DFE� and the lower equalizer is a linear equalizer. The feed-

forward weights for both filters are denoted here as hff and the feedback

weights for the CE-DFE are denoted here as hfb . In this paper, two different

linear equalizers are considered. The first is the linear minimum mean

squared error �L-MMSE� equalizer. The filter weights for this equalizer are

denoted in the text as hlin . The second is the passive time-reversal �P-TR�

equalizer. The filter weights for this equalizer are denoted in the text as htr .
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decision estimate, d̂s�n� , of the transmitted data symbol,

d�n� . The estimate d̂s�n� is the input to a decision device

that generates the final estimate, d̂�n� , of the transmitted

data symbol.

For a linear equalizer �e.g., the L-MMSE and P-TR

equalizers� the soft decision estimate of the transmitted data

symbol, d̂s , is given by

d̂s�n��hh�n�u�n� , �3�

where h�n� is a vector of the feedforward filter coefficients

at time n and

u�n���u�n�Lc�1� , . . . ,u�n� , . . . ,u�n�La�� t. �4�

Here, Lc and La denote the number of causal and

acausal taps, respectively, of the feedforward filter. The no-

tation hlin and htr will be used to denote the filter coefficient

vectors for the L-MMSE and P-TR equalizers, respectively.

For the CE-DFE, d̂s is given by

d̂s�n��hff
h
�n�u�n��hfb

h
�n�d̂fb�n� . �5�

Here, hff and hfb are vectors of the coefficients of the

CE-DFE feedforward and feedback filters, respectively. For a

feedback filter of length L fb symbols, d̂�n� is a vector of

estimates of past transmitted data symbols given by

d̂f b�n��� d̂�n�L f b� , . . . , d̂�n�1�� t. The span of the feed-

back filter should be less than or equal to the causal delay

spread of the convolution of the channel impulse response

and the feedforward filter. Therefore, L fb�Lc�Nc�2.9

Combining Eqs. �2� and �4� yields

u�n��G�n�d�n��v�n� , �6�

where

d�n���d�n�Lc�Nc�2� , . . . ,d�n� , . . . ,d�n�La�Na�� t

and

v�n���v�n�Lc�1� , . . . ,v�n� , . . . ,v�n�La�� t.

G�n� is the channel impulse response matrix with the ith

row composed of g̃h�n�Lc�i� packed with leading and

trailing zeros to position it in the appropriate columns of the

matrix with respect to the elements of the vector d�n� .

The notation presented thus far has been specific to

single channel equalizers. Multichannel equalizers are ac-

commodated within this notation by stacking the feedfor-

ward filter coefficient vector for each channel into a single

larger vector, stacking the received signal vector, u, for each

channel into a single larger vector, and stacking the impulse

response matrix, G, for each channel into a single matrix

with the same number of columns as the original matrix but

a greater number of rows.

It is instructive to represent G using its column vectors

indexed in the following manner:

G�n���g�Nc�Lc�2 � , . . . ,g1 ,g0 ,g�1 , . . . ,g��Na�La�� , �7�

The dependence of the columns of G�n� on the time index n

will now be suppressed for notational convenience. Note that

the rows of G are composed of the appropriately positioned

versions of the impulse response vector g̃h. In this way, each

row of G relates a subset of the elements of the transmitted

data vector d�n� to the corresponding element of the re-

ceived signal vector u�n� . In contrast, the vector gi denoting

a particular column of G is a replica vector for the data

symbol d�n�i� in the received signal vector u�n� . That is, it

specifies the contribution of one transmitted data symbol

symbol d�n�i� to the entire received signal vector.

Partition the transmit data symbols in d�n� into three

groups: dfb�n���d�n�L fb� , . . . ,d�n�1�� t, d�n� , and do�n�

which is composed of the remaining elements of d�n� . Par-

tition the columns of G�n� into three similarly defined sets:

Gfb , g0 , and Go . Then Eq. �6� can be rewritten as

u�n��g0d�n��Gfbdfb�n���v�n��Godo�n� �. �8�

The first term is the portion of the received signal vector,

u�n� , that corresponds to the transmitted data symbol to be

estimated, d�n� . The second term is the portion of u�n� that

can be canceled by the output of the feedback filter in a

CE-DFE, and the terms in the parentheses represent an ef-

fective observation noise that the feedforward filter must try

to eliminate. Assuming that the data sequence is a zero-

mean, white sequence with a variance of one,10 the data se-

quence is independent of the channel impulse response and

v�n� , and that v�n� is a zero-mean sequence with covariance

R
v

that is independent of the channel impulse response, the

effective noise correlation matrix, Q, can be written as

Q�R
v
�GoGo

h . �9�

With the model and quantities so defined, a number of

approaches can be used to calculate the optimal filter coeffi-

cients. One such approach is given in Stojanovic et al.4 In

that paper, the effective noise correlation matrix, denoted

with the symbol R, includes the impact of channel estimation

errors. Therefore, the calculated filter coefficients and subse-

quent error analysis are valid for the case where the DFE has

accurate knowledge of both the noise statistics and the

second-order statistics of the channel estimation errors. For

the filter calculation and performance analysis presented

here, there is no assumption that the DFE knows the statistics

of the channel estimation errors.

The filter coefficients for the three equalizers are calcu-

lated using estimated quantities for R
v

, G, and therefore Q.

In the following expressions, these estimated quantities are

denoted by the caret �e.g., R̂
v
). The filter coefficient vectors

for the L-MMSE and CE-DFE equalizers are selected to

minimize the mean squared soft decision error (E� �d̂s�n�

�d�n��2�) assuming that the estimates of R
v

and G are ac-

curate and that the statistical assumptions stated in the para-

graph before Eq. �9� hold. The expressions for these filter

coefficient vectors are

hff�

Q̂�1ĝ0

1� ĝ0
hQ̂�1ĝ0

, hfb��Ĝfb
h hff , �10�

hlin�

�Q̂�ĜfbĜfb
h ��1ĝ0

1� ĝ0
h
�Q̂�ĜfbĜfb

h ��1ĝ0

. �11�

The P-TR equalizer is a normalized matched filter so its co-

efficients are given by
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htr�

ĝ0

ĝ0
hĝ0

. �12�

See Appendix A for a derivation of Eqs. �10�–�12�.

III. EQUALIZER PERFORMANCE PREDICTIONS

Here, equalizer performance is characterized in terms of

the variance of the soft decision error �s�( d̂s�n��d�n�).

This error will depend on both the estimate of the channel

impulse response as well as the error in this estimate. For the

analytical results presented here, it is assumed that correct

values of the transmitted signal are used to estimate the

channel impulse response and as the input to the feedback

filter of the CE-DFE. The experimental data were processed

in this same manner. That is, the equalizers were run in a

‘‘training mode.’’ The impact of the decay in the quality of

the channel estimate resulting from using incorrect signal

decisions in the estimation algorithm or the feedback of in-

correct signal decisions has not been treated here. Thus, the

observed and predicted values of the variance of the soft

decision error are lower bounds on what could actually be

achieved.

Let the true channel impulse response matrix be given

by

G�n��Ĝ�n��EG , �13�

where EG is the error in the estimate of the channel impulse

response matrix. Then for the CE-DFE, combining Eqs. �5�

and �8� results in

d̂s�n��hff
h
�n��g0d�n��Gfbdfb�n��v�n��Godo�n� �

�hfb
h

�n�d̂fb�n� .

Then, substituting in Eqs. �10� and �13�, the soft decision

estimate can be written as

d̂s�n��hff
h
�n�� ĝ0d�n��v�n��Ĝodo�n� ��hff

h
�n�

��Ĝfbdfb�n��Ĝfbd̂fb�n� ��hff
h
�n�EGd�n� .

Assuming that the past symbol decisions that are inputs to

the feedback filter are accurate, the second term equals zero

and this becomes

d̂s�n��hff
h
�n�� ĝ0d�n��v�n��Ĝodo�n� �

�hff
h
�n�EGd�n� . �14�

Subtracting d�n� from both sides of Eq. �14� yields the fol-

lowing expression for the soft decision error of a CE-DFE:

�s�n���hff
h
�n�� ĝ0d�n��v�n��Ĝodo�n� ��d�n� �

�hff
h
�n�EGd�n� . �15�

Similarly, the expression for the soft decision estimate for the

L-MMSE and P-TR equalizers can be written as

d̂s�n��hh�n�� ĝ0d�n��v�n��Ĝodo�n��Ĝfbdfb�n� �

�hh�n�EGd�n� , �16�

where h�n� is the appropriate filter coefficient vector (hlin�n�

or htr�n�). Subtracting d�n� from both sides of Eq. �16�

yields the following expression for the soft decision error of

the L-MMSE and P-TR equalizers:

�s�n���hh�n�� ĝ0d�n��v�n��Ĝodo�n��Ĝfbdfb�n� �

�d�n� ��hh�n�EGd�n� . �17�

Under the assumption that the estimate of the channel

impulse response is a minimum mean squared error estimate,

the error matrix EG is uncorrelated with the estimated chan-

nel impulse response matrix and the received signal and the

expectation of EG conditioned on Ĝ equals zero. Under these

conditions, the first and second terms in these expressions

are uncorrelated. The variance of the first term represents the

minimum achievable error �MAE� of the equalizer and is

denoted by �o
2. This is the error that will be achieved by the

equalizer given that it has perfect estimates of the channel

impulse response and the noise statistics. This error depends

on the static structure of the channel impulse response and

the statistics of the ambient noise but not on the dynamics of

the channel impulse response fluctuations. The variance of

the second term is the excess error and is denoted by ��
2.

This error is the additional soft decision error that is due to

errors in estimating the channel impulse response. The vari-

ance of the soft decision error is given by �s
2
��o

2
���

2.

The MAE can be calculated by substituting the appro-

priate expressions for the equalizer coefficients into the first

term in Eqs. �15� and �17� and calculating the variance of the

resulting term. For the three different equalizers, the variance

of the MAE is given by

�oDFE

2
�

1

1� ĝ0
hQ̂�1ĝ0

, �18�

�o lin

2
�

1

1� ĝ0
h
�Q̂�ĜfbĜfb

h ��1ĝ0

, �19�

�o tr

2
�

ĝ0
h
�Q̂�ĜfbĜfb

h �ĝ0

� ĝ0
hĝ0�2

. �20�

See Appendix A for a derivation of these expressions for the

variance of the MAE for each type of equalizer.

Comparing Eqs. �18�, �19�, and �20�, it can be shown

that

�oDFE

2 ��o lin

2 ��o tr

2 .

Furthermore, it can be shown that �oDFE

2 and �o lin

2 will always

decrease when the number of received signal channels or the

length of the feedforward of feedback filters is increased.

The reduction in MAE when comparing the MAE of the

L-MMSE equalizer to the P-TR equalizer is due to the

MMSE adaptation of the former equalizer while the reduc-

tion in MAE when comparing the CE-DFE to the L-MMSE

equalizer is due to the cancellation of the interference energy

associated with the ‘‘replica vectors’’ corresponding to the

columns of Gfb . For all three equalizers, the MAE can be

evaluated in terms of the quadratic product of the replica

vector associated with the data symbol being estimated, g0 ,
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and a matrix determined by the observation noise and the

outer product of a subset of the columns of G (Go for the

CE-DFE, Go and Gfb for the L-MMSE and P-TR equalizers�

that are the replica vectors of interfering data symbols. The

structure of the channel impulse response matrix impacts the

minimal achievable error through these replica vectors.

The variance of the excess error is the variance of the

second term in Eqs. �15� and �17�. For the three different

equalizers, this yields a common form of

��DFE

2
�hff

hREG
hff , �21�

�� lin

2
�hlin

h REG
hlin , �22�

�� tr

2
�htr

hREG
htr , �23�

where REG
�E�EGEG

h �Ĝ� . Thus the sensitivity of each equal-

izer to channel impulse response estimation errors is deter-

mined by the magnitude squared of the vector of the equal-

izer’s feedforward filter coefficients and the projection of

these coefficient vectors on the eigen-structure of REG
. In the

special case where REG
is a scalar times the identity matrix,

the sensitivity of each equalizer to channel estimation errors

is proportional to the magnitude squared of the feedforward

filter weight vector.

The soft decision error expressions derived in this sec-

tion and used in Sec. VI B assume that the statistics of the

channel and data estimation errors are conditioned upon the

channel estimate. Thus, the channel estimate is considered to

be a deterministic quantity and the actual channel realization

a stochastic quantity. This approach is taken for several rea-

sons. First, it yields results that offer better insight into the

functional dependence of equalizer performance on the de-

terministic channel structure and the rate of fluctuation of the

channel impulse response than do methods that condition the

statistics on the true channel state. Second, unconditional

statistics �i.e., conditioned on neither the channel impulse

response nor the estimate of the channel impulse response�

would not clearly highlight some aspects of the relationship

between important physical processes and the performance

of the algorithms considered here. An example of such a

relationship is the cyclic nature of the soft decision error and

the relationship of the time scale of the fluctuation to the

dominant surface wave period discussed in Sec. VI A. Third,

the expressions presented here can be used to aid in the op-

timal dynamic configuration of channel estimate based

equalizers given channel estimates and estimates of the chan-

nel dynamics. In this case, these conditional statistics would

be the appropriate ones to use. Finally, the experimental re-

sults presented here indicate that the resulting expressions

yield results that are relatively accurate to within the limits

of our ability to predict the correlation matrix REG
.

IV. CHANNEL ESTIMATION AND ERROR

The excess error exhibited by any channel estimate

based equalizer depends upon the quality of the channel es-

timate. For the analysis and results presented here, the chan-

nel estimation algorithm is the exponentially weighted least

squares algorithm. While this algorithm does not yield mini-

mum mean squared error estimates of the channel impulse

response and therefore results in a violation of the assump-

tion that the channel esimates and estimation error are uncor-

related, the analysis of experimental data in Sec. VI indicates

that the assumption is sufficiently valid for the prediction of

excess error.

With the exponentially weighted least squares algorithm,

the estimate of the channel impulse response is given by

ĝ̃�n��arg min
g̃

�
m�0

n

	n�m�u�m�� g̃hd̃�m��2, �24�

where 	 is a constant ‘‘forgetting factor’’ between zero and

one. Assume that the channel impulse response, g̃�n� , is a

zero-mean, wide-sense stationary random process with cor-

relation matrix Rg̃, g̃�m��E� g̃�n� g̃h�n�m�� . Then, the error

correlation matrix R� ,��1��E�( g̃̂�n�� g̃�n�1�)( g̃̂�n�� g̃�n

�1�)h� is given by

R� ,��1��

1

2

�

�



 �e� j�
�1�2

�1�	e� j��2
Sg̃, g̃�� �d�

�

�1�	 �

�1�	 �
�

v

2I, �25�

where

Sg ,g�� �� �
m���

�

Rg̃, g̃�m�e� j�m �26�

is the spectral correlation matrix for the time-varying chan-

nel impulse response vector g̃�n� . Here, the observation

noise correlation matrix R
v

is assumed to equal �
v

2I and the

data symbol variance is assumed equal to one as stated pre-

viously. The first term in Eq. �25� is the lag error resulting

from the time variation of the channel while the second term

is the error variance due to the observation noise. See Ap-

pendix B for a derivation of Eq. �25�. While experimental

data will show that the channel does not exhibit the behavior

of a stationary random process, this model is useful for pre-

dicting the algorithm dependence on channel behavior over

short time periods.

Note that the total mean squared channel estimation er-

ror equals the trace of the error correlation matrix. Thus, it is

the diagonal elements of this matrix that determine the total

mean squared estimation error, and through Eq. �25�, this

depends on the diagonal elements of the spectral correlation

matrix. These diagonal elements are the channel scattering

function �See Proakis6 and Van Trees7� defined as a function

of delay and Doppler. Figure 2 shows schematically the cal-

culation of the first term in Eq. �25� from the channel scat-

tering function.

The error correlation matrix REG
required for the calcu-

lation of ��
2 is related to the error correlation matrix R� ,��1�

defined in Eq. �25�. The matrix is reasonably approximated

by a Toeplitz matrix with each element of the ith diagonal of

REG
equal to the sum of the elements along the ith diagonal

of R� ,��1� . That is, the terms on the ith diagonal of REG

represent the sum of the correlations between the error in

estimating all pairs of taps of the channel impulse response
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separated by a delay of i samples. For wide-sense stationary,

uncorrelated scattering �WSSUS� channels, R� ,��1� is a di-

agonal matrix thus resulting in REG
equaling the trace of

R� ,��1� times the identity matrix. Therefore, evaluation of

Eqs. �21�–�23� for this case shows that the excess error for

each equalizer equals the trace of R� ,��1� times the magni-

tude squared of the feedforward filter coefficient vector for

each equalizer. Furthermore, for the case of the WSSUS

channel the matrix REG
can be completely determined from

the scattering function of the channel.

This result is independent of the distribution of the chan-

nel estimation error among the taps of the channel impulse

response vector. While these correlation matrices are not

conditioned upon the channel estimate �or equivalently, the

calculated feedforward filter weights� as required to properly

evaluate Eqs. �21�–�23�, they do lend insights into the chan-

nel and equalizer characteristics that impact robustness with

respect to channel estimation errors. Analysis of data in Sec.

VI indicates that in some cases the uncorrelated scattering

assumption is sufficiently valid to allow for accurate predic-

tion of the excess error and in other cases the full correlation

matrix REG
is needed.

V. THE SPACE02 EXPERIMENT

The experimental data presented in this paper were col-

lected during the Surface Processes and Acoustic Communi-

cations Experiment �SPACE02� that took place at the Air Sea

Interaction Tower of the Martha’s Vineyard Coastal Obser-

vatory in the Fall of 2002. A side view of the relevant portion

of the experiment and associated physical parameters are

shown in Fig. 3. A reference hydrophone was deployed at the

same depth as and approximately 1 m from the source trans-

ducer to monitor signal transmissions. The sound speed dur-

ing the experiment was estimated to be approximately 1485

m/s during the time that the data were collected. The signal

transmission and data acquisition systems were both driven

by a common sampling clock resulting in no clock drift be-

tween the two systems. This enabled reliable and precise

timing of signal transmissions and receptions. Thus, given

FIG. 2. Graphic representation of the use of a scattering function to predict

the lag error �i.e., the first term in Eq. �25�� that is achieved by an exponen-

tially weighted least-squares algorithm used in estimating the time-varying

channel impulse response. �a� An estimated scattering function of the chan-

nel encountered during the SPACE02 experiment. See Sec. V and Appendix

C for descriptions of the experiment and the method used to estimate the

scattering function, respectively. This panel is shown in log scale and the

range of the color scale is 16 dB. The delay axis is shifted so that a delay of

zero corresponds to the peak of the direct path arrival. For each delay tap of

the sampled impulse response �the vertical axis on the upper panel�, the lag

error associated with estimating that tap is a weighted integral across Dop-

pler of the scattering function evaluated at that delay. �b� The weighting

function for different values of the exponential weighting factor 	. The

bottom curve corresponds to the lowest value of 	 �	�0.9933� with succes-

sively higher curves corresponding to successively higher values of 	. The

top curve corresponds to a value of 	�0.999. For this figure, a least-squares

algorithm update rate of 11.16 kHz is assumed. Note that as 	 increases thus

increasing the ‘‘averaging interval’’ of the least-squares estimation algo-

rithm, the weighting which determines the contribution of energy at each

Doppler frequency to the estimation error increases. Thus, energy at low

Doppler frequencies that has an insignificant contribution to the estimation

error at low values of 	 can make a significant contribution to the estimation

error at the highest values of 	.

FIG. 3. Side view of the SPACE02 experiment. A source transducer was

mounted 6.25 m above the bottom on top of a rigid tripod. The transducer

was spherical and had an omni-directional beampattern. A receive hydro-

phone array was mounted on top of a rigid tripod that was 2 m tall. This

vertical, linear array consisted of eight hydrophones with variable spacing

and a total aperture of 2.1 m. Data presented in this paper were collected on

the center four hydrophones of the array. The spacing between these hydro-

phones �from bottom to top� was 6.4, 3.7, and 8.4 cm yielding a total

aperture of 18.5 cm. The lowermost of the hydrophones was 2.7 m above the

bottom. In all cases where results are shown from processing data from just

one hydrophone, the hydrophone used is the lowermost of the four. The

horizontal range from the transducer to the hydrophone array was 238 m.

The bottom was flat in the area of the experiment. The water depth was

approximately 16 m during the experiment.
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the fact that the source transducer and receive hydrophones

were deployed on rigid tripods, all fluctuations or drifts in

the received signal relative to the transmitted signal can be

attributed to environmental fluctuations.

The transmit and receive signals were sampled at a rate

of 44.6428 kHz. Transmit signals were generated with a cen-

ter frequency of 14 kHz, and were prefiltered to provide an

approximately flat system frequency response over a band-

width of approximately 12 kHz. The signals were transmitted

at 56 s intervals with approximately 53.2 s of continuous

transmission during each interval. The data presented here

are from transmissions of a binary phase shift keyed signal

modulated by continuous repetitions of a 4095 point maxi-

mum length shift register sequence �m-seq� �see Proakis6�.

The symbol rate of these data was 11160.7 symbols/s. The

received signals were modulated to baseband, low pass fil-

tered, and downsampled by a factor of 2 to yield a baseband

sample rate of 22.3214 kHz or 2 samples per symbol. This

baseband signal was the input to subsequent channel estima-

tion, scattering function estimation, and equalization algo-

rithms.

Data processed here were collected during two different

56 s transmission intervals. The data sets from these two

intervals will be referred to as data set 331 and data set 334.

The main difference between the two intervals is that signifi-

cant wave height during the interval corresponding to data

set 331 was 0.3 m �very calm conditions� while the signifi-

cant wave height during the interval corresponding to data

set 334 was 3.0 m �very rough conditions�. Channel impulse

response estimates made using these data are shown in Fig.

4.

VI. EQUALIZER PERFORMANCE ANALYSIS

The data from the SPACE02 experiment was processed

using CE-DFE and P-TR equalizers to compare observed

and predicted performance. As described previously, the

equalizers were run in ‘‘training’’ mode. That is, the channel

estimation algorithm was given perfect estimates of the

transmitted data with which to estimate the channel impulse

response. In addition, the data symbols fed back through the

feedback filter of the CE-DFE were the true data symbols

rather than the estimated data symbols. Note that in channel

estimate equalizers, the most up-to-date channel estimate

available for calculating filter weights would be the one that

could be estimated using data symbols that were demodu-

lated up to that time. This lag between the channel estimate

and the data symbols being estimated by the equalizer was

enforced in all processing.

In all cases, the length of the impulse response estimate

was 175 symbols �350 baseband samples� corresponding to a

delay spread of 15.7 ms. The channel estimation algorithm

used exponential weighting factors of 	�0.9966 and

	�0.9933, respectively, for data sets 331 and 334. The algo-

rithms updated estimates at the symbol rate yielding effective

averaging intervals, defined as 1/�1�	�, of 294 and 149 sym-

bols, respectively. This channel length and these exponential

weighting factors offered the best compromise between

tracking enough of the channel impulse response to account

for the total energy in the received signal and keeping the

FIG. 4. Intensity of the estimates of the time-varying impulse response of

the channel between the transducer and the lowermost of the hydrophones

from which data is presented. The estimates were made using exponentially

weighted least-squares algorithms. These estimates use data from two dif-

ferent 53.2 s transmission sequences. �a� The estimates made using data

collected during a period when the significant wave height was 0.3 m. This

is referred to in the paper as data set 331. �b� The estimates made using data

collected during a period when the significant wave height was 3.0 m. This

is referred to in this paper as data set 334. In �a� and �b�, the levels are

represented in dB relative to the mean intensity of the direct path arrival

during the period. The delay axis has been shifted so that a delay of zero

corresponds to the peak of the direct path arrival. The direct and first bottom

bounce arrivals make up the thick solid orange line at the bottom of �a� and

�b�. The white tic marks at the right edge of �a� and �b� represent the

predicted arrival time of each successive arrival as labeled on the right-hand

side. In order from bottom to top these are the surface, surface/bottom,

bottom surface, bottom/surface/bottom, and surface/bottom/surface arrivals.

The estimates shown in �a� show a stable arrival pattern and close agreement

between predicted and actual arrival times. The estimates in �b� show a

highly variable arrival pattern. The arrival time predictions were made as-

suming two-dimensional propagation in the vertical plane joining the source

and receiver and assuming a flat sea surface and bottom. Deviations from

this assumption for an arrival due to scattering from a location other than the

nominal specular reflection point will almost always result in a greater delay

of the arrival �the one exception is the scattering from the trough of a wave

at which the sea surface is below the assumed sea surface level�. Thus, the

predicted arrival times represent the earliest expected arrival time for a

particular path. While the estimates in �b� do not line up with the predicted

arrival times, the data and the predicted arrival times for the surface and

surface/bottom/surface arrivals support this interpretation and represent the

earliest arrival times for the single and double surface bounce arrivals, re-

spectively.
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estimated channel length small enough to enable tracking of

rapid channel fluctuations. The lower value of 	 for process-

ing data set 334 was required to enable better tracking of the

rapid channel fluctuations. The ability of this trade-off to

enable improved overall performance was due in part to the

very high signal-to-noise ratio �SNR� of the data set.

The observed SNR was 41 dB. However, the cut off of

the estimated impulse response at a delay spread of 15.7 ms

resulted in some late arriving energy due to the tail of the

channel impulse response appearing as ambient noise from

the perspective of the channel estimation and equalization

algorithms. When accounting for this energy as part of the

ambient noise, the effective SNR dropped to 18.7 dB. In

calculating the CE-DFE coefficients, it was assumed that the

ambient noise correlation matrix had the form of R
v
��

v

2I,

where �
v

2 was based upon either the observed ambient noise

level or the observed ambient noise level plus the late arriv-

ing energy from the tail of the channel impulse response.

These two values are denoted as �
va
2 and �

vt
2 , respectively.

For the fractionally spaced equalizer used here, the sampled

ambient noise is not white because the downsampling filter

limits its bandwidth to approximately one half of the full 2


rad/sample of available bandwidth. Thus the model of R
v

��
v

2I is not valid in the MAE expressions. However, at the

SNRs observed here, this inaccuracy in the ambient noise

model is not expected to significantly affect the results.

The prediction of equalizer performance required esti-

mating both the MAE and the excess error. The excess error

calculations required estimates of the error correlation ma-

trix, REG
. These estimates were made using two different

methods. The first was to calculate a running average of the

correlation matrix of the residual prediction error of the input

signal to the feedforward equalizer. That is

eff�n��u�n��û�n��u�n��Ĝ�n�d�n� . �27�

This can be rewritten as

eff�EGd�n��v�n� . �28�

Assuming that the observation noise is independent of the

channel estimation error and the transmitted data symbol and

that d�n� is a white, unit variance data sequence yields

Reff
�REG

�R
v

. �29�

Thus, subtracting the assumed R
v

from the estimated Reff

yields an estimate of REG
. Results generated using this

method are shown in Sec. VI A.

The second method of estimating REG
was to estimate

the channel scattering function as described in Appendix C.

The scattering function estimates were used to calculate the

diagonal elements of R� ,��1� using Eq. �25�. The estimate of

REG
then equals the trace of this matrix times the identity

matrix. Recall that this method assumes that the channel

fluctuations are well modeled as a WSSUS process and the

off-diagonal elements of R� ,��1� therefore equal zero. Re-

sults generated using this method are shown in Sec. VI B.

The presentation of the experimental data here serves

several purposes. The results in Sec. VI A provide experi-

mental verification of the error expressions derived in Sec.

III and quantify the relative contributions of MAE and ex-

cess error to the soft decision error for the conditions en-

countered. They also offer some insight into the factors that

limit equalizer performance which motivates the modifica-

tion of the CE-DFE presented in Sec. VII. The results in Sec.

VI B verify the applicability of Eq. �25� to predicting channel

estimation error and is a further step in the development of

quantitative expressions for predicting the performance of

equalizers given knowledge of environmental conditions. Fi-

nally, the results generated using the CE-DFE and P-TR

equalizers are compared which quantifies the improvement

realized by the MMSE filter coefficient optimization and

DFE structure of the CE-DFE when operating with only a

small hydrophone array aperture as is the case here.

A. CE-DFE performance prediction from the residual
prediction error correlation matrix „Reff

…

Figure 5 shows the predicted and observed estimation

errors when processing data set 334 with a one channel CE-

DFE. There is close agreement between the observed and

predicted soft decision error. For this figure, the assumed

noise level was �
vt
2 . These data show a rough balance be-

tween the MAE and excess error. For comparison, the data

were also processed with an equalizer that assumed a noise

level of �
va
2 . The result of this processing showed a 3 dB

increase in excess error but a 2.5 dB drop in MAE. Had the

channel fluctuations been slower allowing for the estimation

of a larger portion of the channel impulse response, this

MAE figure would more accurately represent the true MAE

for the equalizer. Thus, in this case, the performance of the

equalizer is dominated by the excess error, that is the ability

to track the channel.

A striking feature of the data in Fig. 5 is the periodic

structure of the fluctuations in the error. The minimum soft

decision error in each period is between �5 and �6 dB. By

comparison, the processing of data set 331 �data collected

during relatively calm conditions� yielded a soft decision er-

ror of �6.1 dB. This indicates that even in periods of rough

surface conditions, the channel cycles periodically between

conditions of a high rate of fluctuation and low rate of fluc-

tuation. The time scale of this cyclic behavior matches that

of the dominant surface waves measured during this time

interval. In addition, the conditions during a low rate of

channel fluctuations are close to as good as those encoun-

tered during calm surface conditions. This conclusion is fur-

ther supported by the analysis in Sec. VI B.

Figure 6 shows comparable data for a four channel CE-

DFE processing data set 334. Again, there is close agreement

between the observed and predicted soft decision error. In

this case, the error is dominated by the excess error. A feature

of the data present in Fig. 6 and to a certain extent in Fig. 5

is that the periodic nature of the soft decision error is due

primarily to fluctuations in the excess error and not the

MAE. In fact, the MAE is relatively constant indicating that

the MAE is somewhat insensitive to the particular realization

of the channel encountered. Figure 7 shows the bit error rates

achieved by the one and four channel equalizers.
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B. Performance prediction using channel scattering
functions and the influence of surface
scattering

While the use of the observed residual prediction error

correlation matrix to predict equalizer performance is effec-

tive for understanding the factors limiting performance in a

postexperiment data analysis scenario, it is less valuable for

the purposes of predicting system performance ahead of

time. The capability to predict communications system per-

formance ahead of time based upon assumed or measured

environmental conditions is highly desirable for future work

on system trade-off studies or the configuration of commu-

nications networks. A step in this direction is to be able to

predict performance based upon the channel scattering func-

tion. The channel scattering function is sufficient to calculate

the diagonal elements of the channel estimation error corre-

lation matrix, REG
. In some cases, these diagonal elements

are adequate to yield accurate predictions of equalizer per-

FIG. 5. The predicted and measured data estimation errors are shown for a

one channel CE-DFE processing data set 334. All errors are shown in dB

relative to the data symbol variance of �d
2
�1. �a� The predicted MAE �solid

gray line� and excess error �dashed black line�. The excess error was calcu-

lated using a running average of the full autocorrelation matrix of the feed-

forward filter residual prediction error. The average used an exponential

weighting with an exponential weighting factor of 	�0.999. Note that the

levels of the two different errors are commensurate with the excess error

exceeding the MAE during times of rapid channel fluctuations and the re-

verse being the case at times with no rapid channel fluctuations. �b� The

predicted �dashed black line� and observed �solid gray line� soft decision

errors. The predicted error shown here is the sum of the predicted MAE and

excess error shown in �a�. Note the periodic nature of the equalizer soft

decision error performance. The data in �a� indicate that the primary source

of the periodic variability is the excess error. In addition, the periodicity is in

line with the dominant surface wave period of 8.5 s that was measured

during the time that these data were collected. Note that the predicted soft

decision error consistently exceeds the observed error by up to 1 dB.

FIG. 6. The predicted and measured data estimation errors are shown for the

four channel CE-DFE processing data set 334. All errors are shown in dB

relative to the data symbol variance of �d
2
�1. �a� The predicted MAE �solid

gray line� and excess error �dashed black line�. The excess error was calcu-

lated using a running average of the full autocorrelation matrix of the feed-

forward filter residual prediction error. The average used an exponential

weighting with an exponential weighting factor of 	�0.999. Note that the

excess error is slightly greater than that shown in Fig. 5�a� for the one

channel CE-DFE while the MAE is significantly less than the MAE for the

one channel CE-DFE. The limiting factor in this four channel case is the

excess error due to a combination of channel estimation errors and a lack of

robustness with respect to such errors rather than the MAE which reflects

the static channel structure and the ambient noise. �b� The predicted �dashed

black line� and observed �solid gray line� soft decision errors. The predicted

error shown here is the sum of the predicted MAE and excess error shown

in �a�. The data here exhibit the same periodicity as that exhibited by the

data shown in Fig. 5.
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formance. In these cases, a predicted channel scattering func-

tion based upon acoustic propagation and scattering models

would be the input to the prediction process. In the cases

where the diagonal elements of REG
are not sufficient to

yield accurate performance predictions, additional work

needs to be done.

Figure 8 shows the predicted and observed channel and

data estimation errors for a one channel CE-DFE processing

data set 334 with an estimated noise level of �
vt
2 . The pre-

dictions in these cases were made using estimates of the

channel scattering function and show close agreement with

the observed errors. In other cases the agreement was not

close. When processing data set 334 with a one channel CE-

DFE using an estimated noise level of �
va
2 , the predictions of

the excess error were 11–16 dB above the values shown in

Fig. 5. This resulted in an overprediction of the soft decision

error by up to 15 dB. In the case of the four channel CE-DFE

processing data set 334, the excess error predictions made

using only the diagonal elements of REG
resulted in a lower

excess error than shown in Fig. 6 and an underprediction of

the soft decision error by approximately 2 dB. Thus, addi-

tional work needs to be done with respect to predicting the

channel estimation error correlation matrix REG
from a priori

information.

The channel scattering function approach is also useful

for determining which channel fluctuations most signifi-

cantly contribute to the degradation of performance by the

equalizers. Figure 9 shows a prediction of the estimation

error for each tap of the channel impulse response as a func-

tion of time in data set 334. These channel estimation errors

are the cause of the degradation of equalizer performance.

The data clearly show a periodic structure to the increase in

channel estimation errors that results in an increased excess

error, soft decision error, and bit error rate in Figs. 5–8. The

errors are largest for the single surface bounce paths reflect-

ing higher energy levels of these arrivals and/or a higher rate

of fluctuation for these arrivals.

The errors for the single surface bounce paths are also

highly localized in delay and time indicating their depen-

dence on conditions in a fairly localized scattering region of

the ocean surface. The single surface bounce path errors in

the period of high error in the interval of 25–30 s also show

a pattern that is characteristic of the surface wave focusing

phenomenon reported in Preisig et al.11 Interestingly, the in-

crease in excess error during this period shown in Figs. 5 and

6 shows a distinctive double hump that may be a result of

this surface wave focusing.

Comparing the high error region around a time of 50 s in

Fig. 9 with the expanded view of the channel impulse esti-

mates shown in Fig. 10 confirms that this region corresponds

to a high intensity arrival with a rapidly increasing delay.

This analysis indicates that a potential area for the improve-

ment of future channel estimate based equalizers is the im-

provement of techniques for tracking these rapidly moving

impulse response arrivals. While the improvement of the

ability to estimate the channel impulse response is one ap-

proach to improving equalizer performance, another ap-

proach is to improve the robustness of these equalizers with

respect to channel estimation errors. Such an approach is

presented in Sec. VII.

C. Comparison of adaptive channel estimate decision
feedback and passive time reversal equalizers

A passive time reversal equalizer was used to process

data set 334 using both one and four channels of data. In

both cases, the performance of the equalizer is dominated by

the MAE. For the one channel case, the MAE was 4.14 dB

resulting in a soft decision error of 4.24 dB and a bit error

rate of 0.2. For the four channel processing, the MAE was

2.54 dB, the soft decision error was 2.58 dB, and the bit error

rate was 0.17. The predicted and observed soft decision er-

rors in both cases showed excellent agreement.

The error of the P-TR equalizer in this case is com-

pletely dominated by the MAE despite the observed large

errors in estimating the channel impulse response showing in

Fig. 8�a�. This result is not surprising since the passive time

reversal equalizer relies on near orthogonality of the replica

vector for the data symbol to be estimated (go) and the re-

maining columns of the channel impulse response matrix �G�

in order to achieve interference cancellation. This orthogo-

nality is difficult to achieve with no spatial aperture �the one

channel case� or the 18.7 cm aperture available in the four

channel case. However, the results shown in Flynn et al.3

indicate that the performance of passive time reversal sys-

tems improves substantially as a significantly wider aperture

and more channels of data are available.

VII. ROBUST DECISION FEEDBACK EQUALIZATION
USING RESIDUAL PREDICTION ERRORS

The results in Sec. VI show that the excess error result-

ing from channel estimation errors and the sensitivity of a

FIG. 7. Bit error rate for the processing of the data set 334 by the one �solid

gray line with circles� and four �dashed black line with asterisks� channel

CE-DFEs. These bit error rates were calculated over 1230 symbol intervals

corresponding to a time interval of 0.1102 s. Thus, the minimum error rate

shown is 0.000 81, which corresponds to one demodulation error in a single

averaging block. Points in time where successive marks �asterisks for the

four channel data� are not connected by lines indicate periods where there

were no demodulation errors in a block. The data for both equalizers show

periodic increases in bit error rate corresponding to the increases in soft

decision error shown in Figs. 5 and 6.
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traditional CE-DFE to those errors is a major contributor to

the overall soft decision error. Thus, a significant perfor-

mance improvement can be expected by improving the ro-

bustness of the CE-DFE with respect to channel estimation

FIG. 8. Comparison of predicted and observed estimation errors for the

channel estimation algorithm and the one channel CE-DFE processing data

set 334. �a� The predicted �dashed black line� and observed �solid gray line�

received signal residual prediction error achieved by the exponentially

weighted least-squares algorithm used to estimate that time-varying channel

impulse response as shown in Fig. 1. The errors are shown in dB relative to

the mean received signal level over the data set. The channel estimate was

updated at the symbol rate of 11 161 symbols/s and the exponential weight-

ing factor was 	�0.9933. The prediction of the residual prediction error is

calculated using Eq. �25� and equals the trace of the calculated error corre-

lation matrix. Note that in the periods of slow channel fluctuations when the

error is low, the predicted error closely matches the observed error. How-

ever, the predicted error is significantly below the observed error in times of

rapid channel fluctuations. It is believed that this is due to the inability to

accurately estimate the channel scattering function during times when the

channel is not only changing rapidly but the channel scattering function is

changing rapidly as well. Such a situation has been shown to exist in some

situations where signals are scattered off of surface gravity waves �Preisig

et al..11�. The analysis shown in Figs. 9 and 10 indicates that it may exist

here as well. �b� The predicted �dashed black line� and observed �solid gray

line� soft decision error achieved by the CE-DFE processing data set 334.

All errors are shown in dB relative to the data symbol variance of �d
2
�1.

While the predicted and observed errors show close agreement, the pre-

dicted error is based upon an underprediction of channel estimation error as

evidenced by the data shown in �a�. This indicates that the prediction of soft

decision error itself overestimates the error as discussed in the text and is

consistent with the data shown in Fig. 5�b�.

FIG. 9. The predicted estimation error for each tap of the time-varying

channel impulse response for the time period corresponding to data set 334.

The errors are shown in dB relative to the mean intensity of the direct path

arrival. The delay axis has been shifted in the same manner as Figs. 4 and 10

so that a delay of zero corresponds to the peak of the direct path arrival.

These predicted errors are calculated based on estimates of the channel

scattering function as was the case for the data shown in Fig. 8�a�. The white

tic marks on the right axis correspond to modeled arrival times for succes-

sive propagation paths as described in the caption of Fig. 4. The data clearly

show the periodic nature of the increase in channel estimation errors. In

addition, the data show moderate coincidence between the time at which the

single surface bounce arrivals �the first four arrivals� show high errors and

the periods of time at which later arrivals show high error. The most intense

sources of error are the single surface bounce arrivals. The coherent steep

diagonal structure in the time/delay plane of these errors indicates that they

are caused by a single scattered path with a scattering point that is moving

rapidly in space resulting in a rapid rate of change of the propagation path

length.

FIG. 10. An expanded view of the intensity of the channel estimates for data

set 334 shown in Fig. 4�b�. Note the rapid increase in delay of the arrival

between the bottom/surface and bottom/surface/bottom marks at around the

time of 50 s. The time and delay of this arrival corresponds to the largest

source of channel estimation error shown in Fig. 9 and supports the conclu-

sion that the surface scattered arrivals with rapid rates of change of their

propagation path lengths comprise a large source of channel estimation error

in the data shown here.
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errors. The work presented in Stojanovic et al.4 showed that

the MMSE CE-DFE equalizer given knowledge of the statis-

tics of the channel estimation errors is one that calculates the

filter weights by accounting for these estimation errors in an

assumed noise correlation matrix. However, the estimation of

the statistics of the channel estimation errors was not ad-

dressed.

The residual prediction error of the input signal to the

feedforward filter defined in Eq. �27� can be calculated di-

rectly by the equalizer and used to estimate the required as-

sumed noise correlation matrix. The equalizer using this ap-

proach is referred to here at the residual prediction error DFE

�RPE-DFE�. The data presented here indicate that this is an

effective way of implementing the robust CE-DFE derived in

Stojanovic et al.4 and results in a significant performance

improvement.

The sample effective noise correlation matrix is this ex-

ample was calculated as

R̂eff
�n�� �

m�0

n

	e
n�meff�m�eff

h
�m� �30�

with an exponential weighting factor of 	e�0.999. This ef-

fective noise correlation matrix was used in the place of R
v

to estimate the matrix Q in Eq. �9�. The resulting Q was used

in Eq. �10� to calculate the RPE-DFE filter coefficients.

Figure 11 shows the soft decision error and bit error

rates achieved by one and four channel RPE-DFEs process-

ing data set 334. The results show the approach improves the

robustness of the equalizer but does not completely eliminate

the sensitivity to channel estimation errors. A computation-

ally simpler approach was also tried in which R̂eff
�n� was

assumed to be the identity matrix times the mean value of the

diagonal elements of R̂eff
�n� as defined in Eq. �30�. This

approach yielded some performance improvement but not

nearly as much as that indicated by the data in Fig. 11. This

indicates that it is important to properly account for not only

the level of the residual prediction error but also the eigen-

structure of the residual prediction error correlation matrix.

VIII. CONCLUSIONS

Expressions for predicting the minimal achievable error

and excess error of channel estimated based linear and deci-

sion feedback equalizers have been derived and analyzed.

The analysis of experimental data verifies that the expres-

sions can accurately predict equalizer performance when the

second-order statistics of the errors in the channel impulse

response estimates are known. The data also show that the

excess error was always a significant contributor to the soft

decision error when rough sea surface conditions prevailed.

This motivates the use of residual prediction errors to esti-

mate an effective noise correlation matrix that results in an

improved robustness of the CE-DFE to channel estimation

errors. The expressions for the minimal achievable error al-

low its interpretation in terms of the projection of the replica

vector for the data symbol being estimated onto the replica

vectors for the interfering data symbols. This lends insight

into the very poor minimal achievable error exhibited by the

P-TR equalizer compared to that exhibited by the CE-DFE

when using data from a small array aperture.

An expression relating the channel estimation error for

an exponentially weighted least-squares algorithm to the

spectral correlation matrix of the channel impulse response is

presented. For the case of WSSUS channels, this allows for

the prediction of equalizer performance based upon the sta-

tistics of the fluctuations of the channel impulse response in

the form of the channel scattering function. This is an impor-

tant step toward the eventual goal of quantitatively predict-

ing equalizer performance based upon predictions or obser-

vations of environmental conditions. The analysis of data

FIG. 11. Estimation error performance with RPE-DFEs processing of data

set 334. �a� The soft decision error for the one �solid gray line� and four

�dashed black line� channel RPE-DFEs. �b� The bit error rate for the pro-

cessing achieved the one �solid gray line with circles� and four �dashed

black line with asterisks� channel RPE-DFEs. These bit error rates were

calculated over 1230 symbol intervals corresponding to a time interval of

0.1102 s. Thus, the minimum error rate shown is 0.000 81, which corre-

sponds to one demodulation error in a single averaging block. Points in time

where successive marks �circles for the one channel data, asterisks for the

four channel data� are not connected by lines indicate periods where there

were no demodulation errors in a block. Note the improvement in perfor-

mance with respect to the data presented for the standard CE-DFEs in Figs.

5 and 6. This performance improvement is particularly strong in the times

when the channel estimation error is poor. This confirms the improvement in

equalizer robustness with respect to channel estimation errors afforded by

the residual prediction error approach.
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from the SPACE02 experiment collected during rough

weather conditions shows that the equalizer performance

characterized by both the excess error and the soft decision

error is periodic with the period related to the wave period.

Surprisingly, the equalizer performance during the best times

of each period is almost as good as the performance achieved

when processing data collected during calm weather condi-

tions. If this feature proves to hold for a broad range of

shallow water environments, it may be exploitable to im-

prove the overall data throughput of underwater acoustic

communications systems.

Finally, the scattering function analysis approach shows

the distribution of channel estimation errors as a function of

delay in the channel impulse response. The analysis shows a

well-defined structure in delay and time. This structure indi-

cates that the primary contributor to the error is the rate of

change of the propagation path length for well-defined single

surface bounce arrivals. This motivates future work on im-

proving the ability of channel estimation algorithms to track

or estimate these arrivals.
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APPENDIX A: DERIVATION OF EQUALIZER
COEFFICIENT AND MAE EXPRESSIONS

The derivation of the equalizer coefficients assumes that

the estimates of the channel impulse response are accurate

�e.g., G�Ĝ� and that past symbol decisions are accurate

�e.g., dfb�n��d̂fb�n�). Therefore, the caret is dropped off of

the estimates of these quantities throughout this derivation.

Starting with the CE-DFE, let

z�n��� u�n�

dfb�n�
� , �A1�

and

h�� hff

hfb
� .

Then, from Eq. �5�

d̂s�n��hhz�n� .

The equalizer coefficients are the solution to

hopt�arg min
h

E� �hhz�n��d�n��2�G� ,

where the expectation is shown as being conditioned on G. It

is straightforward to show that

hopt�Rz ,z
�1rz ,d , �A2�

and

�oDFE

2
��d

2
�rz ,d

h Rz ,z
�1rz ,d , �A3�

where Rz ,z�E�z�n�zh�n��G� and rz ,d�E�z�n�d*�n��G� .

Recall that d�n� is a unit variance and white sequence and is

independent of v�n� . Then, substituting Eq. �8� into Eq. �A1�

and using the result to evaluate these expectations yields

rz ,d�� g0

0Lfb�1
� , �A4�

and

Rz ,z�� �g0g0
h
�Q�GfbGfb

h � Gfb

Gfb
h I

� , �A5�

where Q is as defined in Eq. �9�. Partition Rz ,z
�1 as follows:

Rz ,z
�1

�� Ã D̃

C̃ B̃
� ,

where Ã and B̃ are square matrices with sizes La�Lc and

L fb , respectively. C̃ and D̃ are appropriately sized rectangu-

lar matrices. Then, hff�Ãg0 , hfb�C̃g0 , and �oDFE

2
�1

�g0
hÃg0 . It can be shown that

Ã��Q�g0g0
h��1

�Q�1
�

Q�1g0g0
hQ�1

1�g0
hQ�1g0

, �A6�

and

C̃��Gfb
h Ã. �A7�

The first equality in Eq. �A6� and the equality in Eq. �A7�

follow from the application of the matrix inversion identity

for partitioned matrices �Kailath12�. The second equality in

Eq. �A6� follows from the well-known identity for the in-

verse of a rank one update to a matrix. Using Eqs. �A6� and

�A7� to evaluate the expressions for the CE-DFE filter coef-

ficients and MAE yields

hff�Ãg0�

Q�1g0

1�g0
hQ�1g0

,

hfb�C̃g0��Gfb
h hff ,

and

�oDFE

2
�

1

1�g0
hQ�1g0

.

The derivation of similar expressions for the MMSE

Linear equalizer starts with z�n��u�n� and h�hlin ,

hopt�hlin�Rz ,z
�1rz ,d , �A8�

and

�o lin

2
��d

2
�rz ,d

h Rz ,z
�1rz ,d . �A9�

Then,

rz ,d�g0 , �A10�

and

Rz ,z�g0g0
h
�Q�GfbGfb

h .

Evaluating Rz ,z
�1 yields

275J. Acoust. Soc. Am., Vol. 118, No. 1, July 2005 James C. Preisig: Robust coherent equalization and performance analysis



Rz ,z
�1

��Q�GfbGfb
h ��1

�

�Q�GfbGfb
h ��1g0g0

h
�Q�GfbGfb

h ��1

1�g0
h
�Q�GfbGfb

h ��1g0

. �A11�

Substituting Eqs. �A10� and �A11� into Eqs. �A8� and �A9�

gives

hlin�

�Q�GfbGfb
h ��1g0

1�g0
h
�Q�GfbGfb

h ��1g0

,

and

�o lin

2
�

1

1�g0
h
�Q�GfbGfb

h ��1g0

.

For the passive time-reversal equalizer, the filter coeffi-

cients are the matched filter normalized so that htrg0�1.

Therefore htr�g0 /g0
hg0 . This yields a soft decision of

d̂s�n��htr
hu�n��d�n��

g0

g0
hg0

�Gfbdfb�n���v�n�

�Godo�n� ��,

and a soft decision error of

d̂s�n��d�n��

g0

g0
hg0

�Gfbdfb�n���v�n��Godo�n� ��.

Evaluating the expectation of the magnitude squared of this

soft decision error yields

�o tr

2
�

g0
h
�Q�GfbGfb

h �g0

�g0
hg0�2

.

APPENDIX B: DERIVATION OF EQ. „25…

The time-varying channel impulse response, g̃h�n� , is

modeled as a zero-mean, wide-sense stationary vector ran-

dom process with a correlation function

Rg̃ , g̃�m��E� g̃�n� g̃h�n�m�� .

The vector g̃�n� has dimension No�1.

The system identification problem is to estimate g̃�n�

from observations u�n� where

u�n�� g̃h�n�d�n��v�n� . �B1�

d�n� is a known zero-mean, white vector time series with

E�d�n�dh�n���Rd ,d and is independent of g̃�m� for all m

and n. v�n� is zero-mean, white observation noise with a

variance �
v

2. v�n� is independent of both d�m� and g̃�m� for

all m and n. The estimate is computed as the solution to Eq.

�24�.

One form of the recursive least-squares solution to Eq.

�24� denoted by g̃̂�n� is �Haykin13�

g̃̂�n�� ĝ̃�n�1��R̂d ,d
�1

�n�d�n��u�n�� û�n� �*, �B2�

where

û�n�� ĝ̃h�n�1�d�n� , �B3�

and R̂d ,d�n���m�0
n 	 (n�m)d�m�dh�m� . The quantity of in-

terest is the M-step state prediction error,

��n�M �n�� g̃̂�n�� g̃�n�M � , �B4�

and its error correlation matrix

R� ,��M ��E���n�M �n��
h�n�M �n�� .

For the case considered here, the value of M�1 is used.

While a strict evaluation of the expressions for

REG
�E�EGEG

h �Ĝ� requires the evaluation of R� ,��M � at

multiple lags greater than one, the results achieved using

M�1 suffice to demonstrate the techniques presented in this

paper.

The derivation of the error correlation equations relies

on a state space representation of the process g̃�n� as derived

in Sec. 1 of Appendix B. The state equation for the estima-

tion error is then derived in Sec. 2 of Appendix B. The state

equations for the process and the estimation error are com-

bined in a coupled state model in Sec. 2 a of Appendix B.

Sections 2 b and 2 c of Appendix B present the solution of

the coupled state equations for required cross-correlation ma-

trices and for R� ,��1� .

1. The state space representation of g̃†n‡

For any matrix correlation function Rg̃ , g̃�m� that corre-

sponds to a rational power spectrum, it is possible to define

another zero-mean stationary vector random process g�n�

with dimension NgNo such that

g�n�1��Ag�n��w�n� , �B5�

g̃�n��Sgg�n� �B6�

for a selection matrix Sg , �The selection matrix Sg is an

No�Ng matrix with all elements equal to zero except for a

single element in each row that equals one�, and

Rg̃ , g̃�m��SgRg ,g�m�Sg
h �B7�

is the above-specified matrix correlation function. Here, A is

an Ng�Ng state transition matrix and w�n� is zero-mean,

white process noise with a correlation matrix Rw . w�n� is

independent of g�0� for all n0 and is independent of v�m�

and d�m� for all n and m. Note that for M�0,

Rg ,g�M ��Rg ,g�0��AM �h. �B8�

2. The error state equation

Equations �B5� and �B6� can be manipulated and com-

bined to yield

g̃�n�1�� g̃�n��Sg�I�A�g�n��Sgw�n� . �B9�

Substituting Eqs. �B1� and �B3� into Eq. �B2� and substitut-

ing Eq. �B4� into the result yields

g̃̂�n�� ĝ̃�n�1��R̂d ,d
�1

�n�d�n��v*�n��dh�n���n�n

�1� �. �B10�

Subtracting Eq. �B9� from Eq. �B10�, substituting Eq.

�B4� into the result, and grouping terms results in the error

state equation
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��n�1�n���I�R̂d ,d
�1

�n�d�n�dh�n� ���n�n�1��Sg�I

�A�g�n��R̂d ,d
�1

�n�d�n�v*�n��Sgw�n� .

�B11�

Equation �B11� is a difference equation with a random

time-varying state transition matrix, (I�R̂d ,d
�1

�n�d�n�dh�n�)

and coefficient matrix R̂d ,d
�1

�n� . The direct averaging method

�Kushner14� may be used to evaluate the convergence behav-

ior of this equation in an average sense. Under the assump-

tion that these matrices vary slowly with time �i.e., 	 is close

to one�, they can be replaced by their expected values. The

resulting expression can be used to evaluate the steady state

behavior of Eq. �B11� in an average sense. Following the

convention adopted in Haykin13 and Eleftheriou et al.15

R̂d ,d
�1

�n� is replaced by (1�	)Rd ,d
�1 and d�n�dh�n� is re-

placed by Rd ,d . With these substitutions, Eq. �B11� can be

rewritten as

��n�1�n��	��n�n�1��Sg�I�A�g�n���1

�	 �Rd ,d
�1d�n�v*�n��Sgw�n� . �B12�

a. The coupled state equations

The state equations �B5� and �B12� can be written in

coupled form as

� g�n�1�

��n�1�n�
��� A 0

Sg�I�A� 	I
� � g�n�

��n�n�1�
�

�� I 0

�Sg �1�	 �Rd ,d
�1d�n�

� � w�n�

v*�n�
� .
�B13�

For a stable matrix A and 0�	�1, the state transfer matrix

in Eq. �B13� is stable and the equation describes a zero-mean

stationary random process. Therefore

lim
n→�

E���n�1�n���0. �B14�

Define

R� ,g�m��E���n�1�n�gh�n�m��

and let Rg ,��m��R� ,g
h

�m� . Then, taking the outer product of

both sides of Eq. �B13�, taking the expectation of both sides,

and taking the limit as n→� yields the following four equa-

tions that are satisfied by Rg ,g�0� , R� ,g�1� , Rg ,��1� , and

R� ,��1�:

Rg ,g�0��ARg ,g�0�Ah
�Rw , �B15�

R� ,g�1��	R� ,g�1�Ah
�Sg�I�A�Rg ,g�0�Ah

�SgRw ,
�B16�

Rg ,��1��	ARg ,��1��ARg ,g�0��I�A�hSg
h
�RwSg

h ,

�B17�

R� ,��1��	2R� ,��1��Sg�I�A�Rg ,g�0��I�A�hSg
h

�	R� ,g�1��I�A�hSg
h
�	Sg�I�A�Rg ,��1�

�SgRwSg
h
��1�	 �2�

v

2Rd ,d
�1. �B18�

b. Solving the coupled state equations for R�,g[1]
and Rg,�[1]

Equation �B16� can be rewritten as

R� ,g�1��	R� ,g�1�Ah
�SgRg ,g�0�Ah

�Sg�ARg ,g�0�Ah

�Rw�.

Substituting Eq. �B15� into the last term of this equation and

rearranging terms yields

R� ,g�1��SgRg ,g�0��Ah
�I��I�	Ah��1. �B19�

Since 0�	�1 and the magnitude of each eigenvalue of A is

less than one, the matrix 	A has eigenvalues all of whose

magnitudes are less than one. Therefore �Golub et al.16�

�I�	Ah��1
� �

m�0

�

	m�Am�h. �B20�

Substituting Eq. �B20� into Eq. �B19�, rearranging terms, and

substituting Eq. �B8� into the result yields

R� ,g�1���Sg� �
m�0

�

	mRg ,g�m� � �I�Ah�. �B21�

Similarly,

Rg ,��1����I�A�� �
m�0

�

	mRg ,g
h

�m� � Sg
h . �B22�

c. Solving the coupled state equations for R�,�[1]

Substituting Eqs. �B7�, �B8�, �B15�, �B21�, and �B22�

into Eq. �B18� and rearranging terms yields

R� ,��1��

2

�1�	 �
� Rg̃ , g̃�0���1�	 � �

m�0

�

	mRM g̃ , g̃�m

�1� � �

�1�	 �

�1�	 �
�

v

2Rd ,d
�1. �B23�

3. Frequency domain expressions for Rg̃,g̃†1‡

Let the function 	1(m)�	�1	 �m� when �m�1 and

equal 0 for m�0. Then, the lag error term �i.e., the first term�

in Eq. �B23� may be rewritten as

Rlag�1���1�	 ��1� 2Rg̃ , g̃�0���1

�	 � �
m���

�

	1�m �Rg̃ , g̃�m� � .

This can be written in the frequency domain as

Rlag�1���1�	 ��1
1

2

�

�





�2��1

�	 �F�	1��Sg̃ , g̃�� �d� , �B24�

where F(	M) denotes the Fourier transform of the sequence

	M(m). That is,
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F�	M ��	�M �
�m�M

	 �m�e� j�m

�

e� j�M
�e j�M

�	�e� j��M�1 �
�e j��M�1 ��

�1�	e� j��2
.

�B25�

Evaluating Eq. �B25� for M�1, substituting the result into

Eq. �B24�, noting that �1�	e� j��2
�(1�	e� j�)(1

�	e j�), and combining and rearranging terms yields

Rlag�1��

1

2

�

�



 �e� j�
�1�2

�1�	e� j��2
Sg̃ , g̃�� �d� . �B26�

This result is seen to generalize the result presented in Lin

et al.,17 which is applicable only to channels for which the

power spectrum of the fluctuations of the channel taps is the

same for all taps. Substituting Eq. �B26� for the first term in

Eq. �B23� and recalling that it is assumed that Rd ,d�I yields

Eq. �25�.

APPENDIX C: SCATTERING FUNCTION ESTIMATION

The acoustic signals received from each of the transmis-

sions were processed to yield estimates of the time-varying

scattering function of the acoustic channel �See Proakis6 and

VanTrees7�. The received signals for the maximum length

sequence �m-seq� transmissions �see Sec. V� were modulated

to baseband, low-pass filtered, and then downsampled to a

rate of two samples per symbol. The channel scattering func-

tion was estimated by matched filtering resampled segments

of the received baseband signal with a sequence consisting of

frequency shifted versions of three repetitions of the trans-

mitted 4095 point m-seq. The resampling of the baseband

signal was necessary to account for the fact that the band-

width of the transmitted signal was too large to allow for

modeling the impact of the rate of change of the length of

individual propagation paths as a simple frequency �Doppler�

shift. Note that the wideband nature of the signal and rate of

change of the propagation path lengths results in a violation

of the wide-sense stationary channel assumption. However,

the framework of the channel scattering function when

evaluation over short time intervals is still useful for quanti-

fying and providing insight into the impact of channel fluc-

tuations on the performance of underwater acoustic commu-

nications algorithms.
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