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Abstract 

 
The BER performance for an optimal circular 16-QAM constellation is theoretically derived and applied in 

wavelet based OFDM system in additive white Gaussian noise channel. Signal point constellations have been 

discussed in much literature. An optimal circular 16-QAM is developed. The calculation of the BER is based 

on the four types of the decision boundaries. Each decision boundary is determined based on the space dis-

tance d following the pdf Gaussian distribution with respect to the in-phase and quadrature components nI 

and nQ with the assumption that they are statistically independent to each other. The BER analysis for other 

circular M-ary QAM is also analyzed. The system is then applied to wavelet based OFDM. The wavelet 

transform is considered because it offers a better spectral containment feature compared to conventional 

OFDM using Fourier transform. The circular schemes are slightly better than the square schemes in most 

SNR values. All simulation results have met the theoretical calculations. When applying to wavelet based 

OFDM, the circular modulation scheme has also performed slightly less errors as compared to the square 

modulation scheme. 

 

Keywords: Performance OFDM, Fourier-Based OFDM, Wavelet-Based OFDM, Circular 16-QAM, Square 

16-QAM 

 

1. Introduction 

Quadrature amplitude modulation (QAM) is one of the 
most popular modulation schemes used by orthogonal 
frequency division multiplexing. Some popular types of 
M-ary QAM are 4-QAM, 16-QAM and 64-QAM. The 
number of 4, 16 and 64 is corresponding to 22, 24 and 26 
in which that the superscript number 2, 4 or 6 is the bit 
rate per OFDM symbol respectively. In this paper, the 
constellation points derivation and the BER analysis are 
focused on 16-QAM, which gives an intermediate result 
of BER performance between 4- and 64-QAM in an 
AWGN channel [1]. The 16-QAM is also one of the 
standard modulation schemes in OFDMs’ applications 
such as terrestrial Digital Video Broadcasting (DVB), 
Digital Audio Broadcasting (DAB) and High Perform-
ance Radio LAN Version 2 (HIPERLAN/2) [2]. In the 
transmitter, an OFDM symbol is mapped from binary to 
complex signal with amplitude and phase represented in 
real and imaginary number. On the other hand, the signal 
is demapped or extracted from complex signal to OFDM 
symbol in the receiver. The decision boundary is needed 

to detect the correct symbols between the transmitter and 
receiver. The bit error rate (BER) performance is deter-
mined after performing the difference of errors between 
the transmitted bits with the received bits. The BER per-
formance of M-ary QAM has been investigated by sev-
eral authors. The exact BER expressions for QAM is 
presented in [3]. An extension of BER expressions con-
sidering of an arbitrary constellation size is discussed in 
[4]. Both works include the square constellation points. 

In this paper, we propose an alternative BER expres-
sion using optimal circular constellation points. The cal-
culation of probability of error is based on determining 
the decision boundary. We have proposed four types of 
decision boundaries. 

Based on these types, the probability of error occurs 
when the receiver is making an incorrect decision. To the 
best of our knowledge, there is no work of the probabil-
ity of error calculation for a circular 16-QAM with the 
application of wavelet-based OFDM, namely discrete 
wavelet transform (DWT). The principle feature of DWT 
is it has low pass and high pass filters satisfying perfect 
reconstruction property in the transmitter and receiver 
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[5-7]. The use of wavelet is significant since wavelet has 
a better spectral containment feature compared to con-
ventional OFDM using Fourier filter [8,9]. To be specific, 
the application of Mband wavelet filters in wavelet-based 
OFDM, having the pulses for different overlapping data 
blocks in time, is designed to achieve a combination of 
subchannel spectral containment and bandwidth effi-
ciency that is fundamentally better than with other forms 
of multicarrier modulation [9]. Other term of DWT is 
discrete wavelet multitone modulation (DWMT) or wa- 
velet-OFDM (W-OFDM).  

This paper is organized as follows. Determining the 
constellation points the circular 16-QAM is discussed in 
the next section followed by the calculation of an exact 
probability of error in Section 3 and the wavelet OFDM 
principles in Section 4. The system model of wavelet 
based OFDM is discussed in Section 5 and finally the 
BER results are obtained in Section 6. 

2. The Derivation of an Optimal Circular 

Constellation Points 

A circular signal point constellation has been discussed 
in [1]. However, the discussion is for M = 8 constella-
tions, while M = 16 can be inferred as sub-optimal. We 
extend the work for an optimal circular 16-QAM. In this 
section, we discuss only the derivation for the circular 
16-QAM since the derivation for a square 16-QAM is 
well known in many literatures. The number of circles 
and amplitudes for the circular scheme is different than 
those of the conventional square scheme. Let the number 
of circles define as S and the amplitude level associating 
with the diameter define as r. In this particular circular 
16-QAM, we have S = 4 with 4 points on all circles with 
different diameter r1, r2, r3 and r4 with the derivation as 
follows 
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Note that the minimum distance is d = 1. By rearranging 

(1) in vector representation, we have 
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Since every 4 points share one diameter, we repeat 

every amplitude 4 times. Therefore 
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and the amplitude vector Avc for all amplitudes of QAM 
constellation points becomes  
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03 gg  . Rearranging (5), in vector representation, we 

obtain 

 321 cccc           (6) 

and θc has all angles of all constellation points. Combin-
ing the amplitude Avc and the phase θc, the circular 
16-QAM (Scir) is expressed as 

   cvccvccir jAAS  sincos      (7) 

The simulation result is obtained and shown in Figure 1. 

3. The Exact BER Calculation 

Each decision boundary in Figure 2 is determined by the 
space distance d following the pdf Gaussian distribution 
with respect to the in-phase and quadrature components 
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Figure 1. Circular 16-QAM constellation points. 
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nI and nQ with the assumption that they are statistically 

independent to each other. Thus, four types of boundary 

regions can be determined accordingly from the figure. 

Type 1 in part (a) of Figure 3 is for the points related to 

the most inner circles in Figure 2. The probability of a 

correct decision is 























































 






 
























 






 







d
Q

d
Q

d
nP

d
nP

d
nP

d
nPP

IQ

IIc

5.0
21

5.0
21

5.05.0
1

5.05.0
11

(8) 

where   



x

2

x

dxe
2π
1

xQ

2

 and the probability of 

error is 

 



























2

11

5.0
211414


d

QPP ce
   (9) 

The next type is associated with 2 points,  75, . The 

boundary region is shown in part (b) of Figure 3. The 

probability of correct decision can be expressed as 
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and the probability of error for Type 2 is given by 
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Considering the BER analysis for Type 3, six points 

{4,6,8,9,10,11} are involved. The decision boundary 

related to this type is shown in part (c) of Figure 3. Then 

probability of correct decision is given by 
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and the probability of error is 
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Figure 2. Signal-space diagram for circular 16-QAM. 

 

 
Figure 3. All types of decision boundary associated to Fig-

ure 2. Note that 0.5, 0.232 and 1.232 are the results obtained 

from (7) due to variations of Avc and Өc. 
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Next, the decision boundary for Type 4. It is associ-

ated to the points {12,13,14,15}. The probability of cor-

rect decision is 
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and the probability of error for Type 4 is expressed as 
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Combining and rearranging Equations (9), (11), (13) 

and (15), the average probability of error for the circular 

16-QAM scheme is given by 
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The analysis can also determine the exact BER for 

other circular M-ary QAM. Note that the process of ob-

taining BER analysis for the square scheme is excluded 

since it is available in much literature. 

 

4. Wavelet OFDM Principles 

 
A wavelet is normally assigned the square integrable 

function ψ(t) to illustrate the wavelet fundamental  

definition [10]. In other literature [7], it is also indicated 

by ψ(t)  where L is a Lebesque integral and 2 

signifies the integral of the square of the modulus of the 

function, and R denotes the real number for integration 

of the independent variable t. In this section, we discuss 

two principles of wavelet transforms, orthogonal and 

biorthogonal wavelet as follows. 

 RL2

 

4.1. Orthogonal Wavelets 

 
The Fourier transform has exponential parts consisting of 

cosine and sine signal bases. These bases are orthogonal 

to each other. The wavelet transform also has orthogonal 

bases. Its bases are low pass and high pass filters which 

are associated with the scaling and wavelet functions 

respectively. Among orthogonal wavelets are Daube-

chies, Coiflets, Morlet and Meyer [6].  

Orthogonal wavelet functions can be generated by 

scaling and shifting properties as follows [10]: 
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where a and b are the scaling and shifting real parameter 

values. According to [11], the wavelet transform is called 

continuous if a and b are continuous. The drawbacks of a 

continuous wavelet transform are redundancy and im-

practicality. To avoid these problems, those parameters 

have to be discredited as follows [10,12]: 
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Using a0 = 2 and b0 = 1, we can have the signal func-
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where the scaling coefficient CL.n is 
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In (20), the time domain signal U(t) is DWT trans-

formed to scales in which all the coefficients are denoted 

as the scales [10]. U(t) can also be called the finite resolu-

tion wavelet representation [12]. The sum of scaled φ(2t) 

can make up the parent scaling function, and can be ex-

pressed as [7,10]: 

    
n

n ntht 22            (23) 
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where the coefficients hn are a sequence of real or perhaps 

complex numbers called the scaling function (or scaling 

vector or filter). The use of 2  is to maintain the norm 

of the scaling function with the scale of 2. This scaling 

function in (23) can also be used for the multiresolution 

analysis (MMRA) [13]. A fundamental wavelet function 

can be expressed as a linear combination of translates of 

the scaling function as follows [10,12]: 

   
n

n ntgt 22           (24) 

where the wavelet coefficients gn are related to the scaling 

coefficients hn by 

    n
n
hng  11             (25) 

An example of the application of (23) is the Haar 

scaling function which is given by [7] as follows: 

     122  tttH           (26) 

It can be seen that  t2 can be used to construct 

 tH . It also can be noted that (26) is the result of (23) 

for the first 2 sequence of discrete samples of n with co-

efficients  
2

1
0h  ,  

2

1
1h   [7]. Examples of Haar 

scaling and wavelet functions are shown in Figure 4. 

The Haar wavelet can be categorised as an orthogonal 

wavelet. All Daubechies wavelet families are categorised 

as orthogonal wavelets [6]. Another figure of a Daube-

chie wavelet such as db2 is shown in Figure 5. 

 

4.2. Biorthogonal Wavelets 

 
Biorthogonal wavelets are different than orthogonal 

wavelets because they have biorthogonal bases. Their 

bases have symmetric perfect reconstruction properties 

with compactly support. They also have two duality 

functions for each scaling and wavelet functions which 

are   and  for the scaling filters, and ψ and ̂ ̂  

for the wavelet filters accordingly. In MATLAB, we 

have built-in functions such as bior1.1, bior2.2, bior5.5, 

rbio1.1, rbio2.2 and rbio5.5. The number next to the 

wavelet name refers to the length of the filter in the de-

composition and reconstruction filters respectively.  

Biorthogonal wavelets can be constructed from or-

thogonal wavelets by considering the duality concept. 

Let   and  be two scaling functions and let ψ and ̂
̂ be two wavelet functions, then we can express the 

biorthogonal scaling and wavelet functions as follows 

[5,14]: 
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n ntht 2ˆˆ2ˆ  and     
n

n ntht 2ˆˆ2ˆ   

with n  and k  are the results of biorthogonal bases. 

The last two equations in (27) satisfy the orthogonality 

properties. One advantage of using biorthogonal wave-

lets is that the scaling and wavelet functions are symmet-

ric due to the duality concept [5,7], therefore, biorthogo-

nal wavelets provide an advantage over orthogonal 
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Figure 4. Haar (db1) scaling function  (left) and wave-

let function 

 t
 t  (right). 

 
Figure 5. Db2 scaling function  (left) and wavelet func-

tion 

 t

 t  (right). Note that this plot is similar to [5] p. 197 

and [7] p. 81. 
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Figure 6. Bior5.5 shows duality concept with two scaling 

functions, (left) and ̂   (right). Note that this plot is 

similar to [5] p. 280. 

 
Figure 7. Bior5.5 shows duality concept with two wavelet 

functions, (left) and  (right). Note that this plot 

is similar to [5] p. 280.  
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wavelets because they offer not only orthogonality but 

also symmetry. In [15], comparing orthogonal transforms, 

biorthogonal transforms relax some of the constraints on 

the mother wavelet (or filters) and allow the mother 

wavelet to be symmetric and have linear phase. The plots 

of biorthogonal scaling and wavelet functions are shown 

in Figure 6 and Figure 7. 
 

5. System Model of Wavelet-Based OFDM 
 

The wavelet transform blocks comprise of an inverse 

discrete wavelet transform (IDWT) at the transmitter and 

a discrete wavelet transform (DWT) at the receiver as 

shown in Figure 8. Due to the overlapping nature of 

wavelets, the wavelet-based OFDM does not need a cy-

clic prefix to deal with the delay spreads of the channel. 

As a result, it has a higher spectral containment than in 

Fourier based OFDM [8,9]. The DWT-OFDM system 

model comprise of low pass as LPF filter coefficients 

and h as HPF filter coefficients, the orthonormal bases 

are satisfied by four possible ways as follows [6]: 

1, * gg                  (28) 

1, * hh                  (29) 

0, * hg                  (30) 

1, * gh                  (31) 

where (28) or (29) is related to the normal property and 

(30) or (31) is for orthogonal property accordingly. The 

commas and star symbols in Equations (28) to (31) 

above are referring to the dot product and transpose vec-

tor accordingly. Both filters are assumed having perfect 

reconstruction property. This means that the input and 

output of the two filters are expected to be the same. The 

g and h coefficients can be further described as having 

convolution operations to perform as orthonormal wave-

lets which can be represented as [16] 
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where  ji   is a positive integer for N-2. ,...,1,0, ji

The signal is up-sampled and filtered by the LPF coef-
ficients or namely as approximated coefficients. 

The system model in Figure 8 is assumed that there is 
no frequency offset so that the DWT itself acts as a 
matched filter at the receiver. To determine the data in 
sub-channel k, we match the transmitted waveform with 
carrier i [17]: 

 

 

Figure 8. The system model of wavelet based OFDM transceiver. 
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   tWtW ik ,  equals 1 when k = i and 0 when ik  . 

In a typical communication system, data is transmitted 

over a dispersive channel. The impulse response of a 

deterministic (and possibly time-varying) channel can be 

modeled by a linear filter h(t): 
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where , and g (g > 1) is the wavelet 

genus so that Ng is the filter order (number of taps in that 
subband), and n(t) is an additive white Gaussian noise. 
Due to the overlapped nature of the wavelet-based 
OFDM, it requires g symbol periods, for a genus g sys-
tem, to decode one data vector [17]. This is the reason of 
having the wavelet transforms of g-1 other data vectors 
in the second term of (34).  
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where  0,iikd   is the recovered data with correlation 

term  0,ii . The second term which is  

is the interference due to the distorted filters that are no 

longer orthogonal to one another with correlation terms 
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  due to the overlapped nature of 

the wavelet transform. If the channel has no distortion, 

only the first and last terms would appear, which result 

that the decoder would obtain almost the correct signal. 

 

6. System Performance 

 
The performance between the square and circular for 

16-QAM for unfiltered constellation points is discussed 

in Subsection 6.1. A filtered version, which is the proc-

essed signal through the matched filter and DWT block 

shown in Figure 8 at the receiver, is then considered. The 

result is obtained and discussed in Subsection 6.2. 

 

6.1. Square versus Circular 

 
In this subsection, two main parts are discussed. The first 

part is to obtain the simulation result for circular 16- 

QAM from (16) and compare with the square 16-QAM 

provided by (17) in [4] which is written as follows 

 
 

 

 
 

 

2

02

2

02

3log .1

2 1log

3log .2

2 1log

b

sq

b

M EM
P Q

M NM M

M EM
Q

M NM M

 
     

 
 

     
 

   (36) 

Note that the square 16-QAM curve in Figure 9 is also 

approximately similar to the theoretical 16-QAM plot if 

one uses the Bit Error Rate Analysis Tool (bertool) from 

Matlab. From the figure, it is shown that the circular 

scheme slightly outperforms the counterpart scheme at 

most SNR values. 

The second part is to obtain the result for other M-ary 

QAM. The exact BER analysis for other circular M-ary 

QAM is performed by changing the value of M in 

 1M2

M.E3log
d b2


  and fix σ accordingly. When M is 

changed, the parameters A, B and C are consequently 

affected. Then, they are substituted into (16). Table I 

shows the summary of the arbitrary parameters due to 

varying M. Figure 9 also shows the BER results for other 

circular schemes with comparisons of other square QAM. 

The circular of other M-ary QAM are also slightly better 

than the square schemes in most SNR values. The simu-

lation results show that they met the theoretical analysis. 

6.2. Wavelet Based OFDM 

To simulate the system using wavelet based OFDM (W-OF- 

DM), the orthogonal wavelet family such as Daubechies,           
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Figure 9. Exact BER of circular and square M-ary QAM. 

 

 

Figure 10. Comparison of circular and square of 16-QAM wavelet (db2 and bior5.5) and Fourier based OFDM. 

 

db2 with comparison of the biorthogonal wavelet family, 

bior5.5 are considered. From Figure 10, it is shown that 

circular 16-QAM has better outperformed the square 

scheme in most SNR values. It is interesting to observe 

that the W-OFDMs results have less BER performance 

compared to Pcir and Psq. The result is the effect of the 

filtered version that have been through the imperfect 

functional components in the receiver such as distorted 

filters and an additive white Gaussian noise channel as 

indicated in the previous section. 
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Table 1. Summary of parameters for circular M-Ary (M ≤ 

16) Qam. 
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Note: b=0.464, c=2.464 and Q(.)=erfc(.) 

 

7. Conclusions 

 
The optimal circular 16-QAM constellation points and 

the analysis of its exact BER calculation have been de-

rived. The work has also been applied to wavelet based 

OFDM systems to compare the circular and square 

schemes. The results showed that the circular were 

slightly better than the square counterparts. When apply-

ing wavelet based OFDM using different wavelet fami-

lies (orthogonal and biorthogonal), the same results were 

also obtained that the circular has slightly outperformed 

the square. 
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