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Performance Analysis of Cell-Free Massive MIMO

Systems: A Stochastic Geometry Approach
Anastasios Papazafeiropoulos, Pandelis Kourtessis, Marco Di Renzo, Symeon Chatzinotas, and John M. Senior

Abstract—Cell-free (CF) massive multiple-input-multiple-
output (MIMO) has emerged as an alternative deployment for
conventional cellular massive MIMO networks. As revealed by
its name, this topology considers no cells, while a large number of
multi-antenna access points (APs) serves simultaneously a smaller
number of users over the same time/frequency resources through
time-division duplex (TDD) operation. Prior works relied on the
strong assumption (quite idealized) that the APs are uniformly
distributed, and actually, this randomness was considered during
the simulation and not in the analysis. However, in practice,
ongoing and future networks become denser and increasingly
irregular. Having this in mind, we consider that the AP locations
are modeled by means of a Poisson point process (PPP) which
is a more realistic model for the spatial randomness than a grid
or uniform deployment. In particular, by virtue of stochastic
geometry tools, we derive both the downlink coverage probability
and achievable rate. Notably, this is the only work providing
the coverage probability and shedding light on this aspect of CF
massive MIMO systems. Focusing on the extraction of interesting
insights, we consider small-cells (SCs) as a benchmark for
comparison. Among the findings, CF massive MIMO systems
achieve both higher coverage and rate with comparison to
SCs due to the properties of favorable propagation, channel
hardening, and interference suppression. Especially, we showed
for both architectures that increasing the AP density results
in a higher coverage which saturates after a certain value
and increasing the number of users decreases the achievable
rate but CF massive MIMO systems take advantage of the
aforementioned properties, and thus, outperform SCs. In general,
the performance gap between CF massive MIMO systems and
SCs is enhanced by increasing the AP density. Another interesting
observation concerns that a higher path-loss exponent decreases
the rate while the users closer to the APs affect more the
performance in terms of the rate.

Index Terms—Cell-free massive MIMO systems, stochastic ge-
ometry, heterogeneous networks, coverage probability, achievable
rate.

I. INTRODUCTION

The landscape of wireless communications is undergoing

a rapid revolution [1]. From video streaming and social

networking to immersive technologies such as augmented and

virtual reality (AR/VR) emerging applications are pushing
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mobile operators to evolve persistently and perpetually, in

order to find the optimal cellular network architecture [2]–

[4]. The forthcoming fifth-generation (5G) networks have

accepted the adoption of the massive multiple-input-multiple-

output (MIMO) technology [5], where each base station

(BS) equips a large number of antennas and exploits the

spatial multiplexing of many users on the same time-frequency

resources, in order to take advantage of the accompanying high

spectral and energy efficiency, reliability, and simple signal

processing [6]. A collocated antenna array in each cell and

multiple geographically distributed antennas arrays represent

the two extreme ends of the topology spectrum [6], [7].

A. Prior Work

Conventional massive MIMO capitalize on the advantageous

channel hardening and the favorable propagation phenomena,

being consequences of the law of large numbers, e.g., see [8]

and references therein. In particular, channel hardening turns the

multi-antenna fading channel gain into nearly deterministic [9]

while favourable propagation turns the users’ channel vectors

to almost orthogonal [10]. Fundamentally, massive MIMO

results as a scalable form of multi-user MIMO with respect

to the number of BSs antennas, where the BSs are aware of

the channel state information (CSI) and can employ simple

linear precoding [6], [11]. In this direction, the relevant

research has revealed that the CSI acquisition, limited by the

channel coherence block, is degraded by means of the pilot

contamination [12]. In addition, it has been shown that the

transceiver hardware impairments have less impact on massive

MIMO than on contemporary systems with a finite number of

antennas [13]–[17].

On the other hand, a co-processing technology, known

as network MIMO [18], assumes a set of geographically

distributed access points (APs) to serve jointly all the users

by utilizing only local CSI at each AP, in order to keep its

implementation feasible due to substantial backhaul overhead

with a comparison to global CSI [19], [20]. In fact, the channels

between the APs and the users are estimated by means of an

uplink training phase and the property of channel reciprocity

under a time-division duplex (TDD) design. Recently, the

network MIMO notion has sprung again under the name cell-

free (CF) massive MIMO, but herein, the number of APs,

serving a smaller number of users, grows large [7]. In such

architecture, the cell boundaries are abrogated, and contrary to

centralized massive MIMO systems serving poorly cell-edge

users due to inter-cell interference, the quality of service is

improved because of reduced distances between the users and
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the APs together with rich diversity against large-scale fading.

Therefore, CF massive MIMO design enjoys the key principles

from both network and massive MIMO, i.e., it reaps the benefits

from its distributed nature being an increased macro-diversity

gain while the information exchange among the APs is limited

which results in better computational efficiency. In parallel, it

exploits channel hardening and favorable propagation. Overall,

the CF massive MIMO configuration is quite promising for

next-generation systems because many users can be served

simultaneously with high quality of service due it to high macro-

diversity, low path-losses, and increased expected coverage,

since the serving antennas are closer to the user.

With little available work in the literature at the beginning,

the high potentials of CF massive MIMO have attracted a lot

of scientific interest with [7], [21]–[30]. Specifically, in [7], the

outperformance of CF massive MIMO against small cells (SCs)

was depicted by taking into account for the effects of power

control, pilot contamination, and imperfect CSI, while in [21],

the authors studied the performance of CF massive MIMO

systems with zero-forcing (ZF) precoding, but with no pilot

contamination, i.e., the assigned pilots to the users are mutually

orthogonal. In [22], downlink training was introduced in the

design and it was showed that beamformed pilots improve

the performance. Furthermore, in [23], the APs were enriched

with multiple antennas that bring an increase to the array and

diversity gains, and maximize energy efficiency. Moreover,

in [24], the authors studied the impact of additive hardware

impairments in CF massive MIMO systems while, in [25], the

achievable rate was derived by using practical low-resolution

analog-to-digital converters. Furthermore, a user-centric ap-

proach, where each AP serves a selected number of users,

has been suggested in [26], [27] to provide larger achievable

rates with reduced backhaul overhead. Also, one of the main

challenges of distributed antenna systems, being the limited

backhaul, was studied in [28]. In [29], the spatial randomness

was taken into account to explore the assumptions that should

hold for channel hardening and favorable propagation in CF

massive MIMO systems. Regarding practical applications, a

very promising implementation of CF Massive MIMO systems

is through radio stripes as described in [30].

Unluckily, the majority of works in CF massive MIMO have

assumed a constant number of APs, being uniformly distributed

in a finite region but this randomness is taken into account

only during the simulations and not in the analysis. However,

in practice, the locations of the APs follow highly irregular

spatial patterns. In particular, in the case of SCs, tractable and

accurate models, describing the realistic randomness of the BS

locations for single-input-single-output (SISO) channels were

introduced in [31]. Specifically, the authors relied on the theory

of Poisson point processes (PPPs) which draws the number

of BSs from a Poisson random number generator [32], and

provided analytical expressions for the coverage probability

and the achievable rate. Towards this end, many studies, for

example, [33] and [34] extended [31] to a multi-user network

and multiple antennas, respectively. Actually, this approach,

applied in heterogeneous networks (HetNets), facilitates the

modeling of the cell densification and provides a more accurate

description with comparison to the grid model for example.

In fact, heterogeneous SCs have been suggested as a major

technology to be implemented in 5G networks, since it improves

dramatically the coverage, the spatial reuse, and boosts the

spectral efficiency per unit area (see [35], [36], and references

therein).

B. Motivation

This work relies on the paramount observation that the

advantageous CF massive MIMO systems have been evaluated

under the unrealistic assumption of the uniform placement of

the APs in a finite area. Moreover, there is no work in the area of

CF massive MIMO systems with PPP distributed APs providing

their coverage probability in analytical form. In fact, there are

no available results considering that the APs are PPP distributed

except the useful study in [29] that explored the validity of

the favorable propagation and channel hardening properties

but did not focus on the performance analysis. In previous

works, the APs were assumed to be distributed uniformly that

results in pessimistic conclusions. Notably, these models are

highly idealized and inaccurate, especially, in the case of CF

massive MIMO which are designed based on heterogeneous

and ad hoc deployments. Hence, the fundamental question,

addressed by this work, is “how a more realistic randomness

regarding the AP locations affects the performance of CF

massive MIMO systems?”. Motivated by this arising need, we

are going to establish the theoretical framework incorporating

the randomness of the AP locations and identify the realistic

potentials of CF massive MIMO systems before their final

implementation.

C. Contributions and Outcomes

The main contributions are summarized as follows.

• Contrary to existing work [7], which has proposed the

concept of CF massive MIMO in the case of just uniform

placement of the APs, we introduce a more realistic spatial

randomness where the APs are PPP distributed. Also, con-

trary to [29] which examined whether the phenomena of

channel hardening and favorable propagation appear in CF

massive MIMO systems, we focus on their performance

analysis in terms of derivation of analytical results.

• We carry out an asymptotic performance analysis by

deriving the deterministic equivalent (DE)1 downlink

signal-to-interference-plus-noise ratio (SINR) with maxi-

mum ratio transmission (MRT), while we have assumed

that the channel is estimated during an uplink training

phase including pilot contamination. It is worthwhile to

mention that there are no other prior works providing DE

expressions for CF massive MIMO systems.

• We derive the downlink coverage probability and the

achievable rate per user. As far as the authors are aware,

these are the only analytical results in the literature

concerning the coverage and the rate that account for APs

1The DE analysis is a tool of random matrix theory (RMT) to achieve
deterministic expressions concerning matrices when their size grows large but
with a given ratio. The DEs have been widely employed in massive MIMO
systems by providing deterministic expressions, and thus, avoiding the need
for lengthy Monte Carlo simulations [37], [38].
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PPP distributed in CF massive MIMO systems. Especially,

it is the first work in the literature providing the coverage

probability in CF massive MIMO systems. For the sake

of comparison, we also present the results corresponding

to SCs, where each user is associated with its nearest AP.

– We shed light on the coverage probability. We observe

that CF massive MIMO systems outperform the com-

parable SCs architecture. Specifically, the coverage

decreases with the target SINR due to increasing

interference. Also, as the density of APs increases, the

coverage probability increases and saturates at large

density. Also, a higher threshold limits the coverage

probability to lower values. Notably, in all studied

conditions, CF massive MIMO systems outperform

SCs mostly due to favorable propagation, channel

hardening, and interference suppression.

– We focus on the downlink achievable user rate and

delve into the effects of the duration of the training

phase and the number of users. A reduction of

the training duration or an increase in the number

of users worsens the system performance because

of more severe pilot contamination and inter-user

interference. Furthermore, the interference in SCs is

more dominant than in CF massive MIMO systems

because the latter exploit the effect of favorable

propagation. Also, a higher average number of APs

brings higher diversity gain, and as a result, it

increases the rate. The properties of favorable propaga-

tion, channel hardening, and interference suppression

become more pronounced as the average number

(density) of APs increases. Moreover, by increasing

the path-loss exponent, it is depicted that the user

rate decreases. Based on this observation, we can

extract the conclusion that distant users hardly affect

the overall rate.

D. Paper Outline

The remainder of this paper is structured as follows. Sec-

tion II presents the general framework, where the APs in a

CF massive MIMO system are PPP distributed. In Section III,

the channel estimation phase is presented. Next, Section IV

exposes the downlink transmission and the derivation of the

SINR when the APs are randomly located. In Sections V and VI,

we obtain the coverage probability and the achievable user rate

are provided by accounting for the spatial randomness. The

numerical results are placed in Section VII, while Section VIII

summarises the paper.

E. Notation

Vectors and matrices are denoted by boldface lower and

upper case symbols. The notations (·)T, (·)H, and tr(·) express

the transpose, Hermitian transpose, and trace operators, respec-

tively. The expectation and variance operators are denoted

by E [·] and var [·], respectively. The notations CM×1 and

CM×N refer to complex M -dimensional vectors and M ×N
matrices, respectively. Finally, b ∼ CN (0,Σ) represents a

circularly symmetric complex Gaussian vector with zero-mean

and covariance matrix Σ.

II. SYSTEM MODEL

A. System Core and APs Arrangement

We focus on a software-defined CF massive MIMO network,

where the central processing unit (CPU), being a software-

defined network (SDN) controller, manages separately the

control and data planes by means of a perfect backhaul.

In practice, the backhaul is not perfect, but it is subject to

significant limitations [39]. In other words, the SDN controller

regulates the operations among the APs cooperating phase-

coherently2. Specifically, we assume that a large number of

APs each equipped with N ≥ 1 antennas under a network

MIMO concept serves jointly a set of K single-antenna users

in the same time-frequency resources3. In other words, the

network is not partitioned into cells, and each user is served by

all APs simultaneously. Actually, the AP locations {xi} ⊂ R
2

are generated randomly and follow a two-dimensional homoge-

neous PPP ΦAP with density λAP

[

APs/km2
]

. Moreover, let

a finite-sized geographic area (Euclidean plane) A occupying

space S(A) m2, which denotes the Lebesgue measure of the

set A. In a specific realization of the PPP ΦAP, the number of

APs M is a random variable obeying to the Poisson distribution

with mean M̃ = E [M ] given by

M̃ = λAPS(A) . (1)

In this regard, in a specific network realization, the total

number of antennas in A, denoted by W = MN , is a Poisson

random variable with mean E [W] = M̃N . Also, in most

realizations, we assume W ≫ K corresponding to a CF

massive MIMO scenario. Under this condition, it is more

possible that distant users can enjoy coverage by a close

AP similar to the provided coverage to more central users.

Moreover, thanks to Slivnyak’s theorem, it is sufficient to

focus on a typical user, in order to conduct the analysis and

investigate the performance of the network [40]. Note that

the typical user corresponds to a user chosen at random from

amongst all users in the network 4. Without loss of generality

and for the ease of exposition, we assume that the typical user

is located at the origin.

For the sake of convenience, Table I summarizes the notation

used throughout the paper.

B. Channel Model

In our analysis, we consider both small-scale fading and

independent large-scale fading in terms of path-loss. The

independence relies on the fact that the latter stays static for

several coherence intervals, while the former changes faster

2Obviously, the introduction of SDN in this scenario seems to be an attractive
almost mandatory solution because the coordination of the APs is a complex
task missing from simpler systems such as an SCs architecture, where only the
data and power control coefficients are the burden of the CPU [7]. Otherwise,
the APs coordination will be a difficult task. This argument becomes more
meaningful in the CF massive MIMO setting because we consider that the
average number of APs is very large.

3The adaptation of a scheduling algorithm allows the selection of K from a
large set of users. Note that the locations of the users are distributed according
to some independent stationary point process [33].

4The average network performance, met by randomly located users in the
network, is equivalent to the spatially averaged network statistics followed by
the typical user.
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TABLE I
PARAMETERS VALUES FOR NUMERICAL RESULTS

Notation Description

N , M , and W Number of Antennas/AP, number of APs in a PPP realization, and total number of antennas

K Number of users

ΦAP and λAP Poisson point process of APs and its density

S(A) Space of an area A

M̃ and W̃ Mean number of APs and antennas

Bc and Tc Coherence bandwidth and time

τtr, τu, and τd Duration of uplink training, uplink and dowlink transmission phases

hmk , lmk , and gmk Channel, path loss, and small-scale fading vectors between mth AP and user k
rmk , α Distance between mth AP and user k, path loss exponent

ψk Normalized pilot sequence

ρtr and ρd Uplink training transmit power per pilot symbol and downlink transmit power

ĥmk and ẽmk Estimated and error channel vectors

Lk and Φk Covariances of hk and ĥk

µ Normalization precoding parameter

γk and γ̄k Statistical and DE SINR of user k

P cf
c Coverage probability

Rcf

k
and Řcf

k
Achievable rate and its lower bound

contingent on the user mobility, i.e., it is assumed static for one

coherence interval, but it changes from one interval to the next.

As a typical example, the large-scale fading should stay constant

for a duration of at least 40 coherence intervals [41]. Note

that each coherence interval with coherence time τc = BcTc

samples (channel uses) incorporates three phases, where Bc

in Hz and Tc in s denote the coherence bandwidth and time,

respectively. Specifically, we include the uplink training phase

of τtr symbols as well as the uplink and downlink data

transmission phases of τu and τd samples, respectively5. The

two data transmission phases assume identical channels based

on the property of channel reciprocity being achievable under

TDD operation and calibration of the hardware chains. In

this work, we focus on the uplink training and downlink data

transmission phases.

We consider a specific realization of the PPP ΦAP, where the

number of the APs is M . Let hmk be the N×1 channel vector

between the mth AP and the typical user denoted henceforth

by the arbitrary index k. In particular, the channel vector hmk

is expressed as

hmk = l
1/2
mkgmk, (2)

where lmk and gmk with m = 1, . . . ,M and k = 1, . . . ,K
represent the independent large-scale and small-scale fadings

between the mth AP and the typical user. Specifically, the

large-scale fading considers geometric attenuation (path-loss)

by means of lmk (rmk) = min
(

1, r−α
mk

)

being a non-singular

bounded pathloss model with α > 0 being the path-loss

exponent while rmk expresses the distance between the mth

AP and the typical user [42]. Note that an unbounded path-loss

model such as lmk (rmk) = r−α
mk is not appropriate in the case

5In conventional massive MIMO systems and in CF massive MIMO systems,
a downlink training phase does not take place because the users take into
advantage of the channel hardening and need only the average effective
channel gain instead of the actual effective gain [7]. However, [29] showed
that CF massive MIMO systems do not always experience channel hardening
except certain conditions such as small path-loss exponent and relatively large
distance among users. Herein, we assume that the required conditions for
channel hardening and favorable propagation are met.

of CF massive MIMO systems, where an AP can approach

arbitrarily close to a user, resulting in unrealistically high

power gain [29]. Especially, regarding the distance rmk from

the serving APs to the typical UE, which actually involves the

communication between a random AP and a random user, we

assume that it follows the uniform distribution in A. Similarly,

the distances from other users are independent and follow the

uniform distribution. Furthermore, gmk, modeling Rayleigh

fading, consists of small-scale fading elements, which are

assumed to be independent and identically distributed (i.i.d.)

CN (0, 1) random variables since, in practice, the groups of

scatterers between each AP and each user, distributed in a

wide area, are different. Given that both line and non-line

of sight signals may appear in CF massive MIMO systems,

the application of other fading models could be considered in

future works with techniques found in [43].

III. UPLINK CHANNEL ESTIMATION

Given that the promised multiplexing gains of broadcast

channels demand the knowledge of CSIT, an uplink training

phase is necessary to allow the APs to compute the estimates

ĝmk of their local channels. Nevertheless, the re-use of pilot se-

quences emerges an effect known as pilot contamination, which

is more prominent for massive MIMO than in conventional

MIMO systems [12].

For this reason, in each realization of the network, there is an

uplink training phase, where all K users send simultaneously

non-orthogonal pilot sequences with duration equal to τtr < K
samples due to the limited length of the coherence interval. Note

that the subscript tr denotes the training stage. By denoting

ψk ∈ C
τtr×1 the normalized sequence of the kth user with

‖ψk‖2 = 1, the N × τtr received channel by the mth AP is

given by

ỹtr,m=

K
∑

i=1

√
τtrρtrl

1/2
mi gmiψ

H

i +ntr,m, (3)

where ntr,m is the N × tr additive noise vector at the mth

AP consisting of i.i.d. CN (0, 1) random elements, and ρtr



5

is the normalized signal-to-noise ratio (SNR). By assuming

orthogonality among the pilot sequences, the mth AP estimates

the channel by projecting ỹtr,mk onto 1√
τtrρtr

ψk, i.e., we have

ỹmk =
1√
τtrρtr

ỹtr,mψk (4)

= gmkl
1/2
mk+

K
∑

i 6=k

l
1/2
mi gmiψ

H

iψk+
1√
τtrρtr

ntr,mψk, (5)

where the summation in the second term corresponds to the

multi-user interference. Actually, this term is the source of

pilot contamination. Assuming, that the distance rmk is known

a priori, the mth AP obtains the linear minimum mean-squared

error (MMSE) estimate according to [44] as

ĥmk=E[hH

mkỹtr,mk]
(

E
[

ỹtr,mkỹ
H

tr,mk

])−1
ỹmk

=
lmk

∑K
i=1 |ψH

iψk|2lmi +
1

τtrρtr

ỹmk. (6)

Having obtained the estimated channel vector ĥmk, the

estimation error vector, based on the orthogonality property

of MMSE estimation, is written ẽmk = hmk − ĥmk. The

estimated channel and estimation error vectors are uncorrelated

and Gaussian distributed with N identical elements having

zero mean and variances given by

σ2
mk =

l2mk

dm
(7)

and

σ̃2
mk= lmk

(

1− lmk

dm

)

, (8)

where dm =
(

∑K
i=1 |ψH

iψk|2lmi +
1

τtrρtr

)

. Hence, we have

hmk ∈ C
N×1 ∼ CN (0, lmkIN ), ĥmk ∈ C

N×1 ∼
CN

(

0, σ2
mkIN

)

and ẽk ∈ C
N×1 ∼ CN

(

0, σ̃2
mkIN

)

. At this

point, it is better for the sake of following algebraic manipu-

lations to denote the vectors hk = [hT
1k · · ·hT

Mk]
T ∈ C

W×1 ∼
CN (0,Lk), ĥk = [ĥT

1k · · · ĥT
Mk]

T ∈ C
W×1 ∼ CN (0,Φk)

and ẽk ∈ C
W×1 ∼ CN (0,Lk −Φk), where the matrices Lk,

Φk = L2
kD

−1, and D are W×W are block diagonal, i.e., Lk =
diag (l1kIN , . . . , lMkIN ), Φk = diag

(

σ2
1kIN , . . . , σ2

MkIN
)

,

and D = diag (d1IN . . . , dMIN ), respectively. In addition,

we denote Ck = Φ−1
k with Ck = diag (c1kIN , . . . , cMkIN ),

where cmk = σ−2
mk.

IV. DOWNLINK TRANSMISSION

This section elaborates on the modeling and characterization

of the downlink transmission in one realization of the network,

and aims at presenting the downlink SINR, when the APs are

PPP distributed and apply conjugate beamforming while the

system is impaired by pilot contamination. Having in mind

that the users are jointly served by the coordinated APs, we

highlight that the received signal by the typical user is given

by

yd,k =
√
ρd

∑

i∈ΦAP

h̃H

i si + zd,k, (9)

where ρd is the downlink transmit power, h̃i is the N × 1
channel vector between the associated AP located at xi ∈ R

2

and the typical user including large and small-scale fadings,

zd,k ∼ CN (0, 1) is the additive Gaussian noise at the kth user,

and si denotes the transmitted signal from the ith AP.

Given that the number of PPP distributed APs in the area

A is M , we can rewrite (9) as

yd,k =
√
ρd

M
∑

m=1

hH

mksm + zd,k, (10)

where hmk is the channel between the mth AP and user k while

sm denotes the transmitted signal from the mth associated AP.

The transmit signal is written as

sm =
√
µ

K
∑

k=1

fmkqk (11)

with qk ∈ C being the transmit data symbol for the typical

user satisfying E
[

|qk|2
]

= 1. Actually, the overall transmit

signal to users can be written in a vector notation as q =
[

q1, . . . , qK
]

T ∈ C
K ∼ CN (0, IK) for all users. Moreover,

fmk represents the (m, k)th element of a linear precoder. In

order to avoid sharing channel state information between the

APs, we assume scaled conjugate beamforming. We select

conjugate beamforming precoding because of its computational

efficiency and good performance in both massive MIMO and

SCs designs [6], [7]. Thus, the expression of the precoder

is fmk = cmkĥmk. Regarding the scaling, it relies on a

statistical channel inversion power-control policy that also

eases the algebraic manipulations henceforth [45]. Also, µ is

a normalization parameter obtained by means of the constraint

of the transmit power E [ρdss
H] = ρd. Hence, we have

µ =
1

E [trFmFH

m]
, (12)

where Fm = [fm1 · · · fmK ] ∈ C
N×K is the precoding matrix.

Taking into account for the imperfect CSIT due to pilot

contamination (see (5)), the received signal by the typical user,

given by (10), is written as

yd,k =
√
µρd

M
∑

m=1

K
∑

i=1

cmih
H

mkĥmiqi + zd,k (13)

=
√
µρdE

[

hH

kCkĥk

]

qk +
√
µρdh

H

kCkĥkqk

−√
µρdE

[

hH

kCkĥk

]

qk +
√
µρd

K
∑

i 6=k

hH

kCiĥiqi + zd,k, (14)

where the second and fourth terms in (14) describe the desired

signal and the multi-user interference. Note that we use similar

techniques to [46], i.e., (13) has been transformed to (14)

for the derivation of the SINR provided below since the

users are not aware of the instantaneous CSI, but only of

its statistics which can be easily acquired, especially, if they

change over a long-time scale. Hence, user k has knowledge

of only E

[

hH

kCkĥk

]

. In fact, similar to the well-established

bounding technique in [46], if we consider that (14) represents

a single-input single-output (SISO) system, the effective SINR

of the downlink transmission from all the APs to the typical
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user under imperfect CSIT, conditioned on the distances of

APs lmk for m = 1, . . . ,M , is given by

γk =

∣

∣

∣E

[

hH

kCkĥk

] ∣

∣

∣

2

var
[

hH

kCkĥk

]

+
∑K

i 6=k E

[

∣

∣

∣hH

kCiĥi

∣

∣

∣

2
]

+ 1
µρd

, (15)

where we assume that the APs treat the unknown terms as

uncorrelated additive noise. According to [7, Fig. 2], the

achievable rate, given by (15), provides a rigorous bound close

to the achievable rate corresponding to the scenario where the

users know the instantaneous channel gain.

As specified by its concept, a CF massive MIMO network

comprises a very large number of APs distributed across a

geographic area. Hence, relied on the theory of DE analysis

which is a common mathematical tool in the large MIMO

literature [37], [38], [47], we can apply it in the proposed

CF massive MIMO system, and obtain the asymptotic SINR

conditioned on the distances of APs as K, W → ∞, while

the finite ratio K/W is kept constant. Actually, the definition

of DEs, first met in [47] follows.

Definition 1 (Deterministic Equivalent [47]): The deter-

ministic equivalent of a sequence of random complex values

(Xn)n≥1 is a deterministic sequence
(

X̄n

)

n≥1
, which approx-

imates Xn such that

Xn − X̄n
a.s.−−−−→

n→∞
0, (16)

where
a.s.−−−−→

n→∞
0 is taken to mean almost sure convergence.

As far as the authors are aware, the DE analysis is applied

for the first time in the area of CF massive MIMO. Remarkably,

the literature and the simulations in Section VII exhibit that

the proposed result is of high practical value because of two

reasons. First, the result is tight even for conventional system

dimensions, i.e., when 20 APs serve 10 users. The second

reason lies in the fact that a statistical description of the SINR

is intractable because of i) the different path-losses from the

different APs constituting the desired signal, ii) the cross-

products of the path-losses from the different interferers in

the denominator can be correlated with the numerator because

they contain common path-loss terms.

Conditioned on the distances of APs, the deterministic SINR

γ̄k, obtained such that γk − γ̄k
a.s.−−−−→

M→∞
0, is provided below.

Proposition 1: Given a realization of ΦAP and conditioned

on the APs distances, the deterministic SINR of the downlink

transmission from the PPP distributed APs to the typical user in

a CF massive MIMO system, accounting for pilot contamination

and conjugate beamforming, is given by

γ̄k ≍ W
1
W
∑K

i=1 trDL−2
i

(

Lk + W
ρd

)

− 1
. (17)

Proof: See Appendix A.

Note that (17) holds for any given realization of ΦAP. In

other words, this SINR hides the randomness regarding the

AP locations, which is found at the path-losses between the

APs and the users. Hence, in order to study the impact of AP

density, we have to derive its expectation with respect to the

distances. Specifcally, M is found in both W and inside the

trace as one could see in the element-wise expression given

by 32. By taking the expectation and applying [48, Lemma 1],

we have

γ̄k ≍ E [M ]N

E

[

1
M

∑K
i=1

∑M
m=1 dml−2

mi

(

lmk + MN
ρd

)

− 1
] . (18)

Following a procedure as in Appendix B, we result in that

γ̄k does not depend on the AP density. This property is

known as SINR invariance and holds for single-slope path

loss models [49].

Regarding the other primary system parameters, γ̄k in 17

saturates with increasing the number of antennas per AP N .

Also, when ρd → ∞, i.e., in the high SNR regime, the SINR

reaches a ceiling. Moreover, the SINR decreases with K and

with the severity of pilot contamination.

V. COVERAGE PROBABILITY

The focal point of this section is to shed light on the

coverage potentials of CF massive MIMO systems in the

realistic setting where the APs are randomly located. Given

that the coverage probability of such a system has not been

presented before, the first task is to provide a formal definition.

The next step is the presentation of the result bringing on

the surface its dependence on the system parameters. The

derivation, provided in Appendix B, encompasses techniques

and tools from stochastic geometry. Notably, we result in the

first expression in the literature that describes the coverage

probability of a CF massive MIMO system, being actually the

complementary cumulative distribution function (CCDF) of the

SINR.

Definition 2 ([15], [34]): A typical user is in coverage in

a CF massive MIMO system if the downlink SINR from the

randomly located APs in the network is higher than the target

SINR T .

Theorem 1: The downlink coverage probability of a pilot

contaminated CF massive MIMO network, where the APs are

PPP distributed and undergo a single-slope path loss model

while employing conjugate beamforming, is lower bounded

by (19), or equivalently (20) shown at the top of next page,

where W̃ = E [W] and η = W̃
(

W̃!
)− 1

W̃

.

Proof: See Appendix B.

Focusing on (20), we observe better the dependence of the

coverage probabilty from the system parameters. In particular,

we notice the decrease of P cf
c with K being the number of

users. Also, the more severe the pilot contamination is, the

lower the coverage probability becomes. A similar behavior

results by increasing the target SINR T . In fact, if T → ∞, the

coverage probability becomes zero. In addition, if the path-loss

exponent α > 2 increases, P cf
c decreases as expected. Also,

in the high SNR regime (ρd → ∞), the coverage probability

saturates which means that it is interference limited while when

ρd → 0 it is noise limited since P cf
c → 0. Furthermore, the

dependence from the AP density and the number of antennas

per AP is given indirectly by means of W̃ . However, the

coverage probability is a complicated function of W̃ and the

dependence from the corresponding parameter can be shown

only by means of numerical results. In Sec. VII, it is depicted
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P cf
c ≥

W̃
∑

n=1

(W̃
n

)

(−1)
n+1

e
−nηT

(

K
απρd

(

∑K
j=1 |ψH

jψk|2(αρd+W̃(α−2))+ (α−2)ρd+W̃(α−1)

τtrρtr

)

−1
)

(19)

= 1−
(

1− e
−ηT

(

K
απρd

(

∑K
j=1 |ψH

jψk|2(αρd+W̃(α−2))+ (α−2)ρd+W̃(α−1)

τtrρtr

)

−1
)
)W̃

. (20)

that P cf
c increases with λAP and saturates when the AP density

becomes large. This saturation is appeared in SCs too [49] in

the case of single-slope path loss models. A similar behavior

is observed regarding the number of antennas per AP.

VI. ACHIEVABLE RATE

Herein, we provide a closed-form expression of the downlink

achievable rate in a CF massive MIMO system. Specifically,

the following lemma allows to obtain a tractable lower bound

for a large number of APs.

Lemma 1 ( [11]): The downlink ergodic channel capacity

of the typical user k in a CF massive MIMO system with

conjugate beamforming, PPP distributed AP, and a single-slope

path loss model is lower bounded by the average achievable

rate given by

Rcf
k =

(

1− τtr
τc

)

E [log2 (1 + γ̄k)] b/s/Hz, (21)

where τc is the channel coherence interval in number of samples,

τtr is the duration of the uplink training phase, and γ̄k is given

by (17).

Given that the terms in γ̄k are actually averaged over the

small-scale fading, the expectation in the previous lemma

applies to the remaining statistical variables, which are the

AP distances. Regarding the pre-log factor, it concerns the

pilot overhead. In order to avoid intractable lengthy numerical

evaluations of the integrals with respect to the AP distances, we

apply Jensen’s inequality. The following proposition presents

a closed-form expression for the downlink achievable Rk.

Theorem 2: A lower bound of the downlink average

achievable rate per user with conjugate beamforming in a CF

massive MIMO system with PPP distributed APs is expressed

by

Řcf
k =

(

1− τtr
τc

)

log2 (1 + γ̌k) b/s/Hz, (22)

where γ̌k is obtained as shown in (23) at the top of the next

page.

Proof: See Appendix C.

Basically, the impact of the system parameters on the

achievable rate is shown by means of γ̌k. Hence, given that γ̌k
decreases with the number of users K and pilot contamination

as can be seen by (23), the corresponding rate decreases as

well. Moreover, the achievable rate increases with the number

of antennas per AP N , the AP density λAP, and the transmit

power. However, the rate saturates when the number of antennas

per AP N becomes large as expected. In addition, we notice a

ceiling at the rate at high ρd but it keeps increasing with the

AP density. A similar behavior regarding the AP density is met

in small cell systems [49] when a single-slope path loss model

is considered. Moreover, the rate decreases with the path-loss

exponent α.

VII. NUMERICAL RESULTS

In this section, we illustrate and discuss the behavior of

PPP located APs in a CF architecture for the first time in the

corresponding literature since prior works have not taken into

account a realistic and well-accepted model for the randomness

of APs positions in the analysis. We focus on the analytical

expressions concerning the coverage probability P cf
c and the

achievable rate Řcf
k , which are provided by means of Theorem 1

and Theorem 26.

For the sake of comparison, we consider the system model

in [15], where independent users are associated with their

nearest multi-antenna AP, while the remaining APs act as

interferers. Henceforth, we refer to this scenario as “small

cells” or “SCs”. Especially, we assume that the base stations

in that model have the same number of antennas serving a

single user, i.e., in [15], we set M = 4 and K = 1 while

the imperfect CSIT model in that scenario is replaced by the

current one. In addition, we assume no hardware impairments

and channel aging. In addition, similar to [7], we assume that

handovers among the APs do not take place.

One main difference with CF massive MIMO is that, in

SCs, the effective channel power does not harden while in

the case of CF massive MIMO systems, the signal power

tends to its mean as the number of APs becomes large [7]. In

other words, SCs need to estimate their effective channel gain.

Hence, SCs require both uplink and downlink training phases

while CF massive MIMO systems rely only on uplink training.

During the investigation of their performance, this difference

will be more obvious. Moreover, an additional advantage, met

in CF massive MIMO, is favorable propagation which can

achieve optimal performance with simple linear processing.

For example, on the uplink, the noise and interference can

be almost canceled out with a simple linear detector such

as the matched filter. Another primary reason justifying the

outperformance of CF massive MIMO systems against SCs is

that the latter have inherent the inter-cell interference while CF

systems implement co-processing and all the APs that affect a

specific user take into account for its interference. As a result,

the CF approach achieves to suppress inter-cell interference by

eliminating any cell boundaries [30].

6It is worthwhile to mention that both theorems are obtained based on
a single-slope path loss model but they could also be easily generalized to
describe more general path-loss models such as the multi-slope path loss
model used in the seminal work regarding CF massive MIMO systems [7]. In
fact, this is the topic of ongoing work by the authors, i.e., the analysis and
comparison of multi-slope path loss models in CF massive MIMO systems.
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γ̌k = λAPN





K

απρd





K
∑

j=1

|ψH

jψk|2 (αρd +N (α− 2)) +
(α− 2) ρd +N (α− 1)

τtrρtr



− 1





−1

. (23)

TABLE II
PARAMETERS VALUES FOR NUMERICAL RESULTS

Description Values

Number users K = 10
Number of Antennas/AP N = 5

AP density λAP = 40 APs/km2

Communication bandwidth, carrier frequency Wc = 20 MHz, f0 = 1.9 GHz
Uplink training transmit power per pilot symbol ρtr = 100 mW

Downlink transmit power ρd = 200 mW
Path loss exponent α = 3.5

Coherence bandwidth and time Bc = 200 KHz and Tc = 1 ms
Duration of uplink training τtr = 10 samples

Duration of uplink and downlink training is SCs τtr = τd = 10 samples

Boltzmann constant κB = 1.381× 10−23 J/K
Noise temperature T0 = 290 K

Noise figure NF = 9 dB

A set of Monte Carlo simulations verifies the analytical

expressions. In fact, by plotting the proposed analytical expres-

sions along with the simulated results represented by means

of black bullets, we observe their coincidence7. Especially, the

simulated results are generated by means of the corresponding

statistical SINR given by (15) by averaging over 104 random

instances of the channels while the coverage probability and

achievable rate are obtained as an average of 104 realizations

of different random AP topologies. The results corresponding

to CF massive MIMO systems and SCs are depicted by means

of “solid” blue and “dot” red lines, respectively.

Fig. 1. Coverage probability for varying AP density λAP versus the target
SINR T for both CF massive MIMO systems and SCs.

7In particular, the fact that the analytical results, obtained by means of the
DE analysis, coincide with the simulations means that the former can be used
as tight approximations in the case of a CF massive MIMO system. Although
this is a known result in the massive MIMO literature [37], [50], the DE
analysis has not been verified before as an RMT tool for CF massive MIMO
systems.

A. Setup

We choose a finite window of area of 1 km× 1 km, where

we distribute the APs, each having N = 5 antennas, according

to a PPP realization with density λAP = 40 APs/km2 unless

otherwise stated. Given that the analytical expressions rely

on the assumption of an infinite plane while the simulation

considers a finite square, we assume that this area is wrapped

around at the edges to prevent any boundary effects. In addition,

the structure of the system includes a number of APs serving

similtaneously K = 10 randomly distributed users. Actually,

similar to [7], we use the default values in Table II unless

otherwise stated. The normalized uplink training transmit power

per pilot symbol ρtr and downlink transmit power ρd result

by dividing ρ̄tr and p̄d by the noise power NP given in W by

NP = Wc × κB × T0 × NF, where the various parameters are

found in Table II. Also, in order to guarantee a fair comparison

between CF massive MIMO systems and SCs, the total radiated

power must be equal in both architectures. Hence, we have

that ρ̄sctr = ρ̄tr and p̄scd = M
K p̄d, where ρ̄sctr and p̄dsc are the

normalized uplink training and downlink transmit powers [7].

B. Depictions and Discussions

1) Coverage Probability: The coverage probability, describ-

ing the SCs setting, is denoted by P sc
c and provided by [15,

Th. 1].

In Fig. 1, we assess the performance of the proposed bound

by varying the target SINR. Specifically, firstly, it is shown

the tightness of the proposed bound against the SINR. It is

evident that the tightness is very good, however, it is relaxed

as λAP increases. Although someone would expect that the

bound would become tighter with M̃ ∼ λAP due to the

use of the DE analysis, this contradiction appears due to

the Alzer’s inequality. Next, Fig. 1 depicts that the coverage

probability decreases with the target SINR in both cases of

CF massive MIMO and SCs because of the inter-user and

inter-cell interferences, respectively. Notably, the estimation
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error has its own contribution. In other words, these reasons,

degrading the SINR, result in less coverage as the threshold

increases. Especially, when the target SINR tends to zero,

the coverage probability becomes one, when T → ∞, the

coverage probability approaches zero, while, in practice, for

typical values of T being around 15 dB, P sc
c is finite and

decreases. It is obvious that CF massive MIMO systems, unlike

SCs, systematically provide higher coverage for all values of

the target SINR T because they take benefit from favorable

propagation, channel hardening, and suppression of the inter-

cell interference. Actually, as the AP density λAP increases,

these effects contribute more to the outperformance of CF

massive MIMO systems against SCs having a cellular nature.

Fig. 2. Coverage probability for varying target SINR T versus the AP density
λAP for both CF massive MIMO systems and SCs.

Fig. 3. Average downlink achievable rate for varying length of uplink training
period τtr versus the number of users K for both CF massive MIMO systems
and SCs (λAP = 80 APs/km2).

In Fig. 2, we investigate the impact of AP density on the

coverage probability for different values of the threshold T .

In other words, this figure allows the comparison between CF

massive MIMO systems and SCs with respect to the central

Fig. 4. Average downlink achievable rate for varying length of uplink training
period τtr versus the AP density λAP for both CF massive MIMO systems
and SCs.

fundamental characteristic between the two architectures, which

is the identical spatial distribution of the nodes in terms of

their density. To this end, it turns out that by increasing

the node density in CF massive MIMO systems and SCs,

the coverage probability increases and saturates at high AP

density. This behavior is already known for SCs in the

case of single-slope path loss models [49], but this figure

also shows the performance of CF massive MIMO systems

independently, and in parallel, allows the comparison between

the two network architectures. Notably, in such cases, the

provided coverage by CF massive MIMO systems is higher

than SCs as the density of the nodes increases regardless

of the exact values of the SINR threshold because of the

conditions of favorable propagation and channel hardening

met in the former architecture. Moreover, a higher threshold

reduces the coverage probability since it is less possible to

achieve certain coverage at higher values. Furthermore, the

higher the AP density, the higher the performance gap between

the two architectures because CF massive MIMO systems take

more advantage of cooperation among the APs and the massive

MIMO property in terms of channel hardening and favorable

propagation. Regarding the saturation at high AP density, this

independence from λAP is the result of the SINR invariance

described in [49] and Sec. IV of this work for SCs and CF

massive MIMO systems, respectively.

In Fig. 3, we study the impact of the duration of the training

phase and the number of users on the achievable rate on both CF

massive MIMO systems and SCs when λAP = 80 APs/km2.

As expected, as the number of users K increases the system

performance worsens. The main source of this deterioration

comes from the fact that pilot contamination becomes more

severe as can be noticed by 15. The same result takes place by

reducing the duration of the training period τtr. Another main

reason for the rate decrease is the multi-user interference shown

in the denominator of 15. Actually, the interference in SCs

is more prominent because CF massive MIMO systems take
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advantage of the favorable propagation. Relied on this property,

we observe that for a given training period the gap between

CF and SC systems increases with K, since the interference

increases. In addition, by increasing the interference, i.e., when

K grows, CF massive MIMO systems perform better than

SCs because the former enjoys cooperative multipoint joint

processing which is more robust at higher interference. Hence,

in the case that τtr = 20 samples, the gap between CF and

SCs increases from 1.6 Mbits/s to 2.1 Mbits/s when K = 10
and K = 55, respectively.

Fig. 4 shows the achievable rate against the AP density in

the cases of both CF massive MIMO and SC systems. By

increasing τtr, the estimated channel is improved in all cases

due to less pilot contamination, and thus, the rate increases.

Moreover, as anticipated, an increase in λAP increases the rate

as also described in Sec. VI, which agrees with the behavior

of single-slope path loss models in SCs [49]. Actually, the rate

in both CF massive systems and SCs increases with increasing

the mean number of APs due to the array gain and diversity

gain, respectively, as mentioned in [7]. However, CF massive

MIMO systems present a higher rate for several reasons. In

particular, CF massive MIMO systems perform much better

than SCs with increasing λAP because they take advantage of

the achievable favorable propagation and channel hardening.

Furthermore, as the AP density increases, the rate of CF systems

is higher because the benefit from the cooperation among the

APs increases. Nevertheless, the gap between the CF lines

increases since the advantage from the AP cooperation increases

by exploiting better the interference corresponding to a certain

duration of the training phase. This property is basically

justified by the reduction of the impact of pilot contamination

as τtr increases. In other words, CF massive MIMO systems are

more robust against pilot contamination as the mean number

of APs increases. Hence, when λAP = 40 APs/km2, the gap

is almost 1.6 Mbits/s while when λAP = 100 APs/km2, the

gap has increased to almost 2 Mbits/s. At these differences

of AP density, the gap is not such big but it becomes bigger

when more APs are employed.

Figures 5(a) and 5(b) present the achievable rate versus

the path-loss exponent α in the architectures of CF massive

MIMO and SC systems for λAP = 60 APs/km2, and λAP =
120 APs/km2, respectively. It can be observed that the rate

decreases monotonically with an increase of α for both CF

massive MIMO and SC systems. Especially, the reduction of

the rate is lower for larger values of α, while it is higher

for smaller values of α. This observation implies that users

far from the APs can barely affect the rate, while the users,

being closer to the APs, affect strongly the rate. In parallel,

these figures reveal that a larger number of APs brings an

improvement in the performance of the system as explained

before.

VIII. CONCLUSION

CF massive MIMO systems is a promising deployment

paradigm for next-generation networks by embodying the dis-

tributed MIMO and massive MIMO architectures while no cell

boundaries exist. In this work, given that CF massive MIMO

(a)

(b)
Fig. 5. Average downlink achievable rate for varying AP density λAP versus
the path-loss exponent α for both CF massive MIMO systems and SCs. (a)
λAP = 60 APs/km2, (b) λAP = 120 APs/km2.

systems have attracted a lot of attention but previous works did

not account for a realistic model for the spatial randomness

of the APs in the analysis despite their high irregularity, we

took advantage of PPP modeling and derived tractable and

closed-form expressions for the coverage probability and the

achievable rate. Especially, this is the unique work providing

the coverage probability of CF massive MIMO systems with

PPP distributed APs.

The analysis and numerical results revealed that CF massive

MIMO systems outmatch SCs design with regard to both cover-

age and rate since it takes advantage of benefits from network

MIMO and canonical massive MIMO systems. Especially, the

larger the average number of APs, the higher the resultant

coverage and achievable rate. Moreover, by increasing the AP

density, the coverage increases up to a certain point while

increasing the number of users the performance. Notably, this

deterioration is less in CF massive MIMO systems exploiting

the benefits of favorable propagation. Finally, the users located

closer to the APs have a greater impact on the rate, and the

larger the average number of APs is involved, the larger the

impact eventuates.
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APPENDIX A

PROOF OF PROPOSITION 1

We divide each term of (15) by the number W raised to 2,

in order to derive the correspondsing DEs. Starting with the

desired signal power, we have

Sk =
µ

W2

∣

∣

∣E

[

hH

kCkĥk

]∣

∣

∣

2

. (24)

First, the normalization parameter can be written by means

of (12) and the expression of MRT precoding as

µ =
1

1
WE

[

∑K
i=1 ĥ

H

iC
2
i ĥi

]

≍
(

1

W
K
∑

i=1

trC2
iΦi

)−1

=

(

1

W
K
∑

i=1

trCi

)−1

= µ̄, (25)

where we have applied [37, Thm. 3.7]8. Note that H =
[

h1, . . . ,hK

]

∈ C
W×K is the channel matrix from the APs to

all users. The DE of (24) is obtained as

1

W E

[

hH

kCkĥk

]

=
1

W E

[(

ĥH

k+ẽH

k

)

Ckĥk

]

(26)

=
1

W E

[

ĥH

kCkĥk

]

≍ 1

W trCkΦk

= 1, (27)

where in (26) we have taken into account that ĝk and ẽk are

uncorrelated, and next we have applied [37, Thm. 3.7] since

all conditions are satisfied. Note that the matrices commute

because they are diagonal. Therefore, the DE signal power

S̄k = limW→∞ Sk is written as

S̄k = µ̄. (28)

This result verifies the chosen scaling regarding the precoder.

Next, we focus on the derivation of DEs of the denominator

terms. The first term, involving the variance, is obtained as

1

W2
var
[

hH

kCkĥk

]

− 1

W2
E

[

∣

∣

∣ẽ
H

kCkĥk

∣

∣

∣

2
]

a.s.−−−−→
W→∞

0. (29)

In (29), we have exploited the property of the variance operator

var [x] = E[x2]−E
2[x] and that ẽk = hk−ĥk. In addition, we

have applied [37, Thm. 3.7]. After applying again this theorem,

we have

1

W2
E

[

∣

∣

∣ẽ
H

kCkĥk

∣

∣

∣

2
]

≍ 1

W2
trC2

kΦk (Lk −Φk)

=
1

W2
tr
(

DL−1
k − IW

)

. (30)

8Given two infinite sequences an and bn, the relation an ≍ bn is equivalent

to an − bn
a.s.

−−−−→
n→∞

0.

The final term becomes

1

W2
E

[

∣

∣

∣h
H

kCiĥi

∣

∣

∣

2
]

≍ 1

W2
trC2

iΦiLk

=
1

W2
trDL−2

i Lk (31)

since hk and ĥi are mutually independent. Taking into

account that the SINR is conditioned on Lk, substitution

of (25), (28), (30), and (31) into (15) completes the proof.

APPENDIX B

PROOF OF THEOREM 1

The proof starts by writing the terms of (17), including

the block matrix traces, as summations over the diagonal

elements (element-wise). Thus, the DE SINR, conditioned

on the distances rmi for i = 1, . . . ,K, is obtained as

γ̄k ≍ MN

1
M

∑K
i=1

∑M
m=1 dml−2

mi

(

lmk + MN
ρd

)

− 1
. (32)

We continue with the derivation of distribution of the SINR,

conditioned on a realization of lmi for i = 1, . . . ,K, i.e.,

P(γ̄k > T |lm1, . . . , lmK). Specifically, after substituting (32)

inside the expression of the coverage probability, and by means

of several algebraic manipulations, we obtain (33). Hence, the

conditional coverage probability is written as shown at the top

of next page

In (34), we have approximated the constant number W
by considering the dummy gamma variable g̃, having mean

W = MN and shape parameter W̃ = E [W ] = M̃N . This

approximation becomes tighter as W̃ goes to infinity [51],

since limy→∞
yyxy−1e−yx

Γ(y) = δ (x− 1) with δ (x) being Dirac’s

delta function. Notably, this approximation, used in [52],

becomes more precise in our system model involving a large

number (massive) of APs. Note that the precision increases

as the number of antennas per AP increases. In (35), we

have applied Alzer’s inequality (see [51, Lemma 1]), where

η = W̃
(

W̃!
)− 1

W̃

, while afterwards, we have used the

Binomial theorem. Note that (35) does not contain any random

variable since this expression is conditioned on the distances.

Next, the coverage probability is obtained by evaluating the

expectation of (36) with respect to AP locations given that

the distances between the APs and the users are uniformly

distributed. Thus, we have

P cf
c =

W̃
∑

n=1

(W̃
n

)

(−1)
n+1

× E

[

exp

(

− nηT

(

1

M

K
∑

i=1

M
∑

m=1

Imk − 1

))]

(37)

≥
W̃
∑

n=1

(W̃
n

)

(−1)
n+1

enηTλAP

× exp

(

− nηT E

[

1

M

K
∑

i=1

M
∑

m=1

Imk

])

, (38)
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P (γ̄k >T |rm1, . . . , rmK)= P

(

W> T

(

1

M

K
∑

i=1

M
∑

m=1

dml−2
mi

(

lmk +
MN

ρd

)

− 1

))

(33)

≈ P̃

(

g̃> T

(

1

M

K
∑

i=1

M
∑

m=1

dml−2
mi

(

lmk +
MN

ρd

)

− 1

))

(34)

≈ 1−
(

1− exp

(

− ηT

(

1

M

K
∑

i=1

M
∑

m=1

dml−2
mi

(

lmk +
MN

ρd

)

− 1

)))W̃

(35)

=

W̃
∑

n=1

(W̃
n

)

(−1)
n+1

exp

(

− nηT

(

1

M

K
∑

i=1

M
∑

m=1

dml−2
mi

(

lmk +
MN

ρd

)

− 1

))

. (36)

where we have set Imk = dml−2
mi

(

lmk + MN
ρd

)

and have

applied Jensen’s inequality since exp (·) is a convex function.

By focusing on the derivation of the expectation, we have

lim
R→∞

E

[

1

M

K
∑

i=1

M
∑

m=1

Imk

]

= lim
R→∞

EM



E|M





1

M

K
∑

i=1

M
∑

m∈ΦAP∩B(o,R)

Imk|M = Φ(B (o,R))









(39)

=

K
∑

i=1

lim
R→∞

EM [Imk] (40)

=
K
∑

i=1

E









K
∑

j=1

|ψH

jψk|2lmj +
1

τtrρtr





(

lmk +
E[M ]N

ρd

)

l−2
mi





(41)

where in (39), we have assumed a ball of radius R centered at

the origin that contains M = Φ(B(o,R)) points with S(A) =
|B(o,R)|. By conditioning on this area of radius R and on the

number of points in this area, M in the denominator cancels

out with the number of points inside the ball. In (41), we have

substituted Imk = dml−2
mi

(

lmk + MN
ρd

)

and dm. Then, we

substitute dm, and we result in

I1=E





K
∑

i=1





K
∑

j=1

|ψH

jψk|2lmj +
1

τtrρtr



 l−2
mi lmk





=E





K
∑

i=1

K
∑

j=1

|ψH

jψk|2lmj l
−2
mi lmk



+
1

τtrρtr
E

[

K
∑

i=1

l−2
mi lmk

]

(42)

and

I2 =
λAPN

ρd
E





K
∑

i=1





K
∑

j=1

|ψH

jψk|2lmj +
1

τtrρtr



 l−2
mi



 .

(43)

Regarding the first part of (42), we have

E





K
∑

i=1

K
∑

j=1

|ψH

jψk|2lmj l
−2
mi lmk





=











∑K
i=1 |ψH

iψk|2E
[

l−1
mi lmk

]

if j = i
∑K

i=1 E
[

l−2
mi l

2
mk

]

if j = k
∑K

j 6=i,k |ψH

jψk|2E
[

lmj l
−2
mi lmk

]

otherwise

. (44)

The expectation in the first branch of the right hand side of (44)

for i 6= k gives

E
[

l−1
mi lmk

]

≥ 1

E [lmi]
E [lmk] (45)

= 1, (46)

where (45) takes advantage of Jensen’s inequality, and then, (46)

is obtained since the two variables have the same marginal

distribution. By following similar steps, the derivation of the

expectation in the second branch is straightforward, while the

last branch becomes

E
[

lmj l
−2
mi lmk

]

=

{

E
[

lmj l
−1
mk

]

if i = k

E
[

lmj l
−2
mi lmk

]

if i 6= k
. (47)

If i = k, the expression in the first branch is identical to (45),

and the result is the same. The remaining term in (47) is written

as

E
[

lmj l
−2
mi lmk

]

= E
[

lmj

]

E
[

l−2
mi

]

E [lmk] (48)

≥ E
[

lmj

]

E
[

l−1
mi

]2
E [lmk] (49)

≥ 1, (50)

where (48) considers the independence among the variables,

while (49) exploits the inequality E
[

x2
]

≥ E [x]
2
. Last, (50)

follows basically the same steps as those taken in (46). The

second part of (42) becomes

E

[

K
∑

i=1

l−2
mi lmk

]

=

{

E
[

l−1
mi

]

if i = k
∑K

i 6=k E
[

l−2
mi lmk

]

if i 6= k
. (51)

Let us now tackle both expectations separately. The former,

i.e., E
[

l−v
mi

]

for v = 1 results in

E
[

l−v
mi

]

= E

[

1

lvmi

]

(52)

≥ 1

E [lvmi]
, (53)
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where Jensen’s inequality has been applied in (52). The final

expression is obtained by computing E [lvmi] as

E [lvmi] = 2π

(∫ 1

0

ydy +

∫ ∞

1

y−va+1dy

)

(54)

=
vαπ

vα− 2
. (55)

The latter expectation in (51) is computed as

E
[

l−2
mi lmk

]

= E
[

l−2
mi

]

E [lmk] (56)

≥ E
[

l−1
mi

]2
E [lmk] (57)

≥ E [lmk]

E [lmi]
2 (58)

=
1

E [lmi]
(59)

=
α− 2

απ
, (60)

where we have used similar techniques as before. By substitut-

ing all these expressions in (42), we obtain I1. Similarly, I2
is obtained as

I2 =
KλAPN

ρdαπ





K
∑

j=1

|ψH

jψk|2 (α− 2) +
α− 1

τtrρtr



 . (61)

Having derived I1 and I2, we substitute their expressions

in (41), and we eventually complete the proof resulting first

in (19), and next, in (37) after using the binomial theorem.

APPENDIX C

PROOF OF THEOREM 2

The proof is split in two subsections. In the first subsection,

we provide a more tractable bound than (21) that will allow to

average over a PPP realization of the APs, while the second

subsection includes the derivation of the PPP averaged inverse

SINR.

A. Lower bound of the downlink SE

Rewriting (21) by means of the inverse of γk, and applying

the Jensen inequality we have

E

[

log2

(

1 +
1

γ−1
k

)]

≥ log2 (1 + γ̌k) , (62)

where the expectation applies directly to the inverse of the

SINR since γ̌k = 1

E[γ−1
k ]

.

B. Derivation of γ̌k

After writing the trace of each matrix as the sum of its entry-

wise elements, the expectation of the inverse of the SINR, given

by (32), is written as

E
[

γ−1
k

]

=
1

N
E

[

1

M2

(

K
∑

i=1

M
∑

m=1

Imk −M

)]

. (63)

We are going to compute the expectation by considering a ball

of radius R centered at the origin including M = Φ(B (o,R))
points with S(A) = |B (o,R) |. Then, conditioning on this

area of radius R and on the number of points in this finite area,

the application of the law of large numbers will take place.

In the next step, we remove the conditioning regarding the

number of points while we let R → ∞, i.e., the area goes to

infinity. Specifically, the expectation in the previous expression

becomes

E

[

1

M2

(

K
∑

i=1

∑

m∈ΦAP

Imk −M

)]

(64)

= lim
R→∞

E





1

M2





K
∑

i=1

∑

m∈ΦAP∩B(o,R)

Imk −M







 (65)

= lim
R→∞

EM

[

E|M





1

M2

K
∑

i=1

∑

m∈ΦAP∩B(o,R)

Imk|M = Φ(B (o,R))





− 1

M

]

(66)

≈ lim
R→∞

1

EM [M ]
E

[

K
∑

i=1

l−2
mi





K
∑

j=1

|ψH

jψk|2lmj+
1

τtrρtr



lmk

+
N

ρd

K
∑

i=1

l−2
mi





K
∑

j=1

|ψH

jψk|2lmj+
1

τtrρtr





]

− 1

EM [M ]
, (67)

where in (65), we have written the previous equation in terms

of the ball of radius R. In (66), we condition on the number

of points inside the ball. Then, given that the SINR has been

derived by means of the DE analysis, which holds for M → ∞,

we are able to apply [48, Lemma 1]. Thus, in (67), we have

applied this lemma. Next, we have EM [M ] = λAP|B (o,R) |
while the other expectations in (67) have already been derived

in parts in Appendix B. Hence, γ̌k is obtained, and the proof

is concluded.
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