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ABSTRACT

Transmit diversity techniques have received a lot of attention
recently, and open–loop and closed–loop downlink trans-
mit diversity modes for two transmit antennas have been in-
cluded into 3GPP WCDMA Release 4. System capacity can
be increased from that of open–loop modes if the transmitter
is equipped with additional side information of the downlink
channel. In a frequency division duplex system this means
that the receiver has to provide the information through a
feedback mechanism.
In this paper, we study the performance loss caused by feed-
back errors using the bit error probability (BEP) as a per-
formance measure. It is shown that the asymptotic diversity
of closed-loop schemes is reduced to one in the presence of
feedback errors, i.e., the performance is similar to a single
transmit antenna system with some SNR gain. The proof is
given in a very general manner and it is valid for a large va-
riety of feedback schemes. Two example schemes, selection
and co-phasing algorithms, are discussed in more detail to
verify the results.

1 Introduction

The capacity of wireless cellular systems is limited by sev-
eral different physical constraints like co-channel and adja-
cent channel interference, propagation loss, and ¤at or mul-
tipath fading. Deploying multiple antennas at base stations
presents one possible approach to the problem, while mul-
tiple receive antennas at mobile terminals do no present as
attractive solution due to the increase in signal processing
complexity and power consumption.

Several different open–loop downlink transmit diversity
techniques based on space–time coding have been developed
in recent years, and the simplest space-time block code [1]
has been adopted into 3GPP WCDMA Release 4 as an open-
loop transmit diversity method for two transmit antennas.
Unfortunately, full rate full diversity orthogonal space–time
codes for complex modulation alphabets do not exist when
the number of transmit antennas is larger than two, and when
extending open–loop schemes to more than two antennas it is
necessary to £nd a suitable balance between diversity order,
rate, and orthogonality. Retaining the latter reduces the code
rate thereby introducing some coding gain to the system due

to the space–time code. However, the space–time codes are
rather weak, and the increase in spatial diversity is typically
not able to compensate the reduction in code diversity be-
cause the rate of the error correcting code has to increase to
match the reduced rate of the channel. Another approach is
to retain the rate of the space–time code and give up orthog-
onality which leads to more complicated decoding and loss
in asymptotic diversity [2].

Closed–loop transmit diversity techniques can provide full
diversity and increase the received SNR without space–time
coding. When uplink and downlink operate in different fre-
quency bands the side information related to the downlink
channel requires additional signaling, and the design of sig-
naling formats optimizing some performance measure, e.g.
BEP in the mobile terminal while simultaneously minimiz-
ing the amount of uplink signaling makes the problem chal-
lenging. Closed–loop techniques typically outperform the
open–loop ones particularly within low–mobility environ-
ments when the delay of the feedback signaling does not ex-
ceed channel coherence time. Different quantization strate-
gies for the feedback message using SNR gain as a perfor-
mance measure have been studied in [3, 4, 5].

The 3GPP FDD WCDMA speci£cation currently includes
two different closed–loop transmit diversity modes for two
transmit antennas with slightly different tradeoffs in effective
constellation resolution and signaling robustness. In Mode 1
the length of the feedback word is one bit, and the base sta-
tion interpolates between two consecutive feedback words
making the transmit weight to follow a time-varying QPSK
constellation. In Mode 2 the feedback word consists of four
bits where three bits are assigned to phase and one bit to gain.
Thus, Mode 1 maintains equal power transmission from both
antennas while with Mode 2 the antennas transmit with dif-
ferent powers so that the better channel is assigned 6dB more
transmit power than the weaker one. A detailed description
of frame and slot structures can be found in [6]. The perfor-
mance of WCDMA closed–loop schemes has been addressed
in [7, 8] without taking into account quantization of the feed-
back messages and errors in the feedback link.

In this paper we study bit error probabilities of some gen-
eral closed–loop transmit diversity schemes and show that
in the presence of feedback errors the asymptotic diversity



of the feedback schemes is equal to one which is similar to
a single antenna transmission. This may seem to be a se-
vere drawback of feedback schemes, but with two transmit
antennas and relatively low SNR operation points typical to
WCDMA systems feedback errors do not dominate the per-
formance. However, increasing the number of transmit an-
tennas necessarily implicates longer feedback words, and the
effect of feedback errors becomes more pronounced.

The paper is structured as follows: Section 2 introduces
the system model and feedback algorithms which are further
analyzed in Section 3. Concluding remarks are presented in
Section 4.

2 System Model

Consider a system with M transmit antennas in the base sta-
tion and a single receive antenna in the mobile station. For
the analysis we adopt a single path Rayleigh fading channel
model. Since hm is now a complex scalar rather than vector,
we denote hm instead of hm and h = (h1,h2, . . . ,hM)T instead
of H = (h1,h2, . . . ,hM)T . Mobile station receives the signal
from the dedicated channel as

r = (w ·h)s+n,

where s is the transmitted symbol, n is zero-mean Gaussian
noise, w = (w1,w2, ...,wM) consists of transmit weights se-
lected based on the feedback from mobile station, and com-
ponents of the channel vector h = (h1,h2, ...,hM)T are sam-
ples of a zero-mean Gaussian process with the common vari-
ance σ2 = 1

2 . We assume that channel coef£cients hm(t) are
samples from independent processes.

Let us de£ne W = {w ∈ C : ‖w‖ = 1} and denote by WK
a quantization set that is a subset of W and consists of K
points. Usually K is selected such that κ = log2(K) ∈ N.
Now we can introduce an optimal feedback algorithm given
the quantization WK .

Optimal Algorithm. Assume that κ bits of side information
are available in the transmitter. The problem of £nding the
optimal transmit weight vector ŵ becomes

Find ŵ ∈ WK : |ŵ ·h| = max
w∈WK

|w ·h|. (1)

The given algorithm is optimal in the sense that it selects
the optimal quantization point from SNR maximization point
of view. We remark that in the forthcoming discussion we
will use ’feedback word’ and ’transmit weight’ interchange-
ably. In practice they are, of course, not the same but there is
a one-to-one mapping between the quantization set and the
set of feedback words.

When the number of transmit antennas is large, the com-
plexity of this algorithm can be very high, and the selection
of the optimal quantization points WK is not straightforward.
Thus, there is a need for simple suboptimal solutions, and in
the sequel we give two examples of such schemes, the selec-
tion algorithm and the co–phasing algorithm. First we de£ne

Selection Algorithm. In this case quantization consists of
vectors w = (0, . . . ,0,1,0, . . . ,0), where the nonzero compo-
nent indicate the best channel in terms of received power.
Hence

|w ·h| = max{|hm| : 1 ≤ m ≤ M}.
Since the quantization set has M points, �log2(M)� feedback
bits are needed.

Selection algorithm is very simple and it requires a rela-
tively low feedback capacity. However, the corresponding
SNR gain is proportional to logM for large M, and we will
later see that the selection algorithm is also sensitive to feed-
back errors. As another example of a suboptimal algorithm
we give

Co-Phasing Algorithm. Now quantization set WK has a
product form,

WK =
M

∏
m=2

{e− j2π(n−1)/2N
/
√

M : n = 1,2, . . . ,2N}.

Feedback bits are selected using the condition

|ŵ1h1 + ŵmhm| = max
wm

|w1h1 +wmhm|, (2)

where 2 ≤ m ≤ M and ŵ1 = w1 = 1/
√

M. That is, we ad-
just each phase independently against the phase of the £rst
channel. It should be noticed that the complexity of the ex-
ample algorithm increases linearly with additional antennas,
i.e., complexity is proportional to (M−1)2N . Furthermore, it
can be shown that the SNR gain increases linearly as well [4].

We note that when M = N = 2 the co–phasing algorithm
resembles FDD WCDMA transmit diversity Mode 1. The
only difference between Mode 1 and the example algorithm
is that in Mode 1 the feedback word results from the inter-
polation between two consecutive one–bit feedback words.
However, this difference is irrelevant here, because the delay
in feedback signaling is not taken into account.

3 Analysis

Let us now study the receiver BEP when selection and co-
phasing are employed. For that purpose we recall the well
known BEP of the selection algorithm when BPSK modula-
tion is used (see, for example [10]),

Psc(0) =
1
2

(
1−

M

∑
m=1

(
M
m

)
(−1)m−1

√
γ

m+ γ

)
, (3)

where γ = Eb/N0 is the SNR per bit, and argument 0 em-
phasizes that the given BEP is valid when no feedback errors
occur. It is known that the selection algorithm provides full
diversity, i.e. the slope of the asymptotic BEP curve in a log-
arithmic scale is M when M transmit antennas are employed.

Intuitively the co-phasing should also give full diversity
bene£t. This has also been shown in [9], where the following
result has been proved.



Proposition 1 Assume that the expected signal-to-noise ra-
tio γM = Eb/(MN0) per bit and per antenna is large (γM >>
1) and co–phasing transmit diversity with (M−1)N feedback
bits is employed. Then the bit error probability for BPSK sig-
nal is given by

Pcp(0) =
(

2M−1
M

)(CM,N

4γM

)M
, (4)

where the constant CM,N attains the form

CM,N =
{ ∫

RM−1

qθ (θ)
( ∫

RM−1
+

(M−1)!2M−1π(r)
R(r,θ)2M dr

)
dθ

} 1
M

,

and r = (1,r1, . . . ,rM−1), dr = dr1 . . .drM−1.

Function R(α,θ) refers to the the amplitude of the ad-
justed sum channel and it is de£ned by

R(α,θ) =
∣∣∣ M

∑
m=1

αme jθm

∣∣∣,
where α = (α1,α2, . . . ,αM), αm = |hm| and component am-
plitudes follow the Rayleigh distribution. The component
phases of θ = (θ1,θ2, . . . ,θM) are uniformly distributed on
(− π

2N , π
2N ) if m > 1 and θ1 = 0. The joint distribution of θ

is denoted by qθ (·). We remark that in the case of the co–
phasing algorithm the SNR is given per bit and per antenna
while in the case of the selection algorithm SNR is given per
bit. This is due to the fact that the selection algorithm trans-
mits all power through a single antenna, while the co-phasing
algorithms divides the transmit power between all M anten-
nas. It is noticed that the given asymptotic formula is very
similar to the known asymptotic BEP of receiver maximal
ratio combining [11]. The closed–form expressions for CM,N
are available for M = 2 [9].

Lemma 1 Let the assumptions of Proposition 1 be valid.
Then there holds

C2,N =
{1− 2N−1

π sin π
2N−1

2sin2 π
2N

} 1
2
.

For ideal feedback (N → ∞) we have Cideal = 1/M while the
BEP gain for ideal co–phasing is of the form

CM,∞ =
{2M−1(M−1)!

(2M−1)!

} 1
M

.

Using the results of Proposition 1 and Lemma 1 the
asymptotic BEP performance of co–phasing algorithm is ob-
tained. Moreover, from Proposition 1 it is clear that co–
phasing attains full M–fold diversity. In the following we
show that this is not true any more in the case of feedback
bit errors. We assume that the feedback bit error probability
is constant and bit errors are uniformly distributed in time.
This model can be considered to be approximately valid in
FDD WCDMA since the fast uplink power control is applied

to the control channel carrying the feedback information. Of
course, this assumption does not hold any more with high
mobile speeds when the delay of the feedback loop exceeds
the coherence time of the channel. However, the assumption
is well justi£ed within low mobility environments.

Consider £rst an example where M = 2 and a single feed-
back bit is available. Let h1 and h2 be uncorrelated zero–
mean complex Gaussian variables corresponding to the chan-
nel coef£cients of the £rst and the second antenna. First we
show an interesting property: Under these assumptions se-
lection and co–phasing algorithm are equivalent. Let us de-
note k± = h1 ± h2. Then it is easily seen that E{k+k∗−} =
E{|h1|2} − E{|h2|2} = 0. Thus, k+ and k− are uncorre-
lated zero-mean complex Gaussian random variables, and
max{|h1|, |h2|} = max 1√

2
{|k+|, |k−|}. In [3], it was also re-

marked that the two quantization strategies result in the same
SNR gain, but no justi£cation for the phenomenon was given.

Consider next the effect of feedback bit errors to the BEP
performance when M = 2. Let Psc be the BEP of two-antenna
selection algorithm when the probability of a feedback bit
error is p. Then there holds

Psc = (1− p)Psc(0)+ p ·Psc(1),

where Psc(0) and Psc(1) refer to error–free and erroneous
received feedback bit, respectively. The feedback bits are
equally probable, and there holds

Psa =
1
2

Psc(0)+
1
2

Psc(1),

where Psa is the BEP corresponding to the single antenna
transmission. The two-antenna system performance is re-
duced to that of a single transmit antenna if each feedback bit
is randomly selected. Combining these two equations gives

Psc = (1−2p)Psc(0)+2p ·Psa. (5)

Thus, it is seen that the asymptotic diversity of the co–
phasing algorithm is only one when p > 0.

Fig. 1 displays the BEP curve of two-antenna
selection/co–phasing with N = 1. It is seen that the
term 2p in (5) de£nes the asymptotic difference between the
single antenna and the two–antenna bit error probabilities.
In practice, the loss of asymptotic diversity is not critical in
case of the present WCDMA feedback modes since — as
seen from Fig. 1 — the effect of feedback bit errors is not
serious at low SNR values where WCDMA usually operates.
However, when studying extensions of the closed–loop
modes for more than two antennas this phenomenon should
be taken into account.

Next we move on to study a more general case: Consider
a feedback scheme with quantization WK such that all feed-
back words are equally likely. Moreover we assume that the
optimal feedback word ŵ is arbitrary but £xed. The single
antenna BEP is given by

Psa =
1
K ∑

w∈WK

Pg(w),
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Figure 1: Bit error probability curves as a function of SNR
for two-antenna selection/co–phasing with N = 1 when p =
0.00, 0.04, 0.08, 0.16, 0.50.

where Pg(w) is the BEP of the general algorithm provided
that the feedback word w is used. Hence, irrespective of the
optimal feedback word, the performance of the multiantenna
system is equal to the performance of a single antenna one
when the feedback word is randomly selected. Let us de-
note by Pg the BEP of the general algorithm in the presence
of feedback errors and £nally, let qw be the probability of a
feedback word w on the condition that ŵ is the optimal (se-
lected) feedback word. Then there holds

Pg = ∑
w∈WK

qwPg(w)

= ∑
w∈WK

(
qw − min

w∈WK

{qw}
)
Pg(w)+K · min

w∈WK

{qw}Psa.

Since the difference in the sum term is always non-negative,
we £nd that Pg admits a lower bound

Pg ≥ K · min
w∈WK

{qw}Psa.

This bound shows that the asymptotic BEP of the general
feedback method is always reduced to one in the presence of
feedback errors. The assumption that all feedback words oc-
cur with equal frequency in the long run is not too restrictive
and it can easily be removed. This result is formulated as
follows:

Proposition 2 Assume a feedback scheme for which the
quantization WK is such that all feedback words are equally
likely. Then the BEP of the feedback algorithm attains a
lower bound

Pg ≥ K · min
w∈WK

{qw}Psa (6)

where Psa is the BEP of a single antenna transmission, and
qw is the probability of a feedback word w on the condition
that ŵ is the optimal (selected) feedback word.

Consider the bound of Proposition 2 for selection and co-
phasing algorithms. There holds

Psc ≥ M
M−1

(
1− (1− p)log2(M))Psa, Pcp ≥ (2p)N(M−1)Psa.

These bounds are equal if M = 2 and N = 1 as expected. If we
compare these bounds, for example, when p = 0.04, M = 8
and N = 1 we £nd that the coef£cients in front of Psa are
very different: the coef£cient corresponding to the selection
algorithm is 0.13 while the coef£cient corresponding to the
co-phasing is 2 ·10−8. This difference is only a hint concern-
ing the asymptotic performance of studied algorithms since
these coef£cients do not necessarily give the difference in
asymptotic curves as was the case in (5). However, for the
selection algorithm there holds

Corollary 1 Assume that the feedback bit error probability
is p. Then the BEP of the selection algorithm is given by

Psc = (1− q
M−1

)Psc(0)+
q

M−1
Psa. (7)

where Psa is the BEP of a single antenna transmission and
q = 1− (1− p)log2(M) is the probability of a feedback word
error.

Proo f . Consider the proof of Proposition 2. Now qŵ = (1−
p)log2(M) while for other weights there holds qw = 1/(M −
1)(1− (1− p)log2(M)). Hence

qw − min
w∈WK

{qw} =

⎧⎨
⎩

qŵ − min
w∈WK

{qw}, w = ŵ,

0, w �= ŵ.

This formula shows the desired result.

Figure 2 displays the BEP of the selection algorithm in the
presence of different feedback bit error probabilities when
M = 8. It is seen that already at the feedback bit error level
p = 0.04 the effect of the errors is signi£cant, and the slope
is similar to that of a single transmit antenna (p = 0.50).

Let us study the effect of feedback word labeling. When
different feedback adjustment alternatives are randomly la-
beled, a single feedback bit error makes the selection of the
feedback word random, and in terms of proof of Proposi-
tion 2 there holds

Pg =
(
qŵ − min

w∈WK

{qw}
)
Pg(ŵ)+K · min

w∈WK

{qw}Psa.

This cannot be avoided in the case of the selection algo-
rithm, but when co–phasing is employed, Gray coding can
be used when N > 1. Even when N = 1, M > 2 error
probabilities of the feedback words of the co–phase algo-
rithm are not uniformly distributed. Fig. 3 displays the BEP
of the co–phasing algorithm when N = 1, M = 8 and p =
0.00,0.04,0.08,0.16,0,50. Comparing Figs 2 and 3 shows
that when p = 0 the BEP performance of the co–phasing
algorithm is almost the same as the performance of the se-
lection algorithm, and in the case of erroneous feedback the
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Figure 2: Bit error probability curves as a function
of SNR for selection algorithm when M = 8 and p =
0.00,0.04,0.08,0.16,0.50.

co–phasing scheme outperforms the selection algorithm. Fi-
nally, we remark that the comparison is not necessarily fair
because the number of feedback bits is 3 for selection and 7
for co–phasing. However, our goal has not been to compare
the performance of different feedback algorithms but to illus-
trate the detrimental effects of feedback errors to closed–loop
transmit diversity schemes.

4 Conclusions

The effect of feedback errors to the closed–loop transmit
diversity techniques suitable to wireless frequency division
duplex systems were studied using the bit error probabil-
ity (BEP) as a performance measure.

It was found out that feedback bit errors reduce the slope
of the asymptotic BEP of closed-loop schemes into one. The
proof of this result was given in a very general manner and
it is valid for a large variety of feedback schemes. Two ex-
ample schemes, selection and co-phasing algorithms, were
studied in more detail showing that the former algorithm is
more sensitive to feedback errors than the latter one.
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