IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.22, NO.6, JUNE 2011 931

Performance Analysis of Cloud Computing
Services for Many-Tasks Scientific Computing

Alexandru losup, Member, IEEE, Simon Ostermann, M. Nezih Yigitbasi, Member, IEEE,
Radu Prodan, Member, IEEE, Thomas Fahringer, Member, IEEE, and Dick H.J. Epema, Member, IEEE

Abstract—Cloud computing is an emerging commercial infrastructure paradigm that promises to eliminate the need for maintaining
expensive computing facilities by companies and institutes alike. Through the use of virtualization and resource time sharing, clouds
serve with a single set of physical resources a large user base with different needs. Thus, clouds have the potential to provide to their
owners the benefits of an economy of scale and, at the same time, become an alternative for scientists to clusters, grids, and parallel
production environments. However, the current commercial clouds have been built to support web and small database workloads,
which are very different from typical scientific computing workloads. Moreover, the use of virtualization and resource time sharing may
introduce significant performance penalties for the demanding scientific computing workloads. In this work, we analyze the
performance of cloud computing services for scientific computing workloads. We quantify the presence in real scientific computing
workloads of Many-Task Computing (MTC) users, that is, of users who employ loosely coupled applications comprising many tasks to
achieve their scientific goals. Then, we perform an empirical evaluation of the performance of four commercial cloud computing
services including Amazon EC2, which is currently the largest commercial cloud. Last, we compare through trace-based simulation the
performance characteristics and cost models of clouds and other scientific computing platforms, for general and MTC-based scientific
computing workloads. Our results indicate that the current clouds need an order of magnitude in performance improvement to be
useful to the scientific community, and show which improvements should be considered first to address this discrepancy between offer
and demand.

Index Terms—Distributed systems, distributed applications, performance evaluation, metrics/measurement, performance measures.

4

1 INTRODUCTION

SCIENTIFIC computing requires an ever-increasing number
of resources to deliver results for ever-growing problem
sizes in a reasonable time frame. In the last decade, while
the largest research projects were able to afford (access to)
expensive supercomputers, many projects were forced to
opt for cheaper resources such as commodity clusters and
grids. Cloud computing proposes an alternative in which
resources are no longer hosted by the researchers” compu-
tational facilities, but are leased from big data centers only
when needed. Despite the existence of several cloud
computing offerings by vendors such as Amazon [1] and
GoGrid [2], the potential of clouds for scientific computing
remains largely unexplored. To address this issue, in this
paper we present a performance analysis of cloud comput-
ing services for many-task scientific computing.

e A. Iosup, M.N. Yigitbasi, and D.H.]. Epema are with the Parallel and
Distributed Systems Group, Faculty EEMCS, Delft University of
Technology, Mekelweg 4, Delft 2628CD, The Netherlands.

E-mail: {A.Iosup, M.N.Yigitbasi)@tudelft.nl, D.H.].Epema@ewi.tudelft.nl.

e S. Ostermann, R. Prodan, and T. Fahringer are with the Distributed and
Parallel Systems Group, Institute for Computer Science, University of
Innsbruck, Technikerstr. 21a, Innsbruck A-6020, Austria.

Email: Simon.Ostermann@dps.uibk.ac.at,
{Radu.Prodan, Thomas.Fahringer|@uibk.ac.at.

Manuscript received 21 Dec. 2009; revised 2 July 2010; accepted 19 Aug.
2010; published online 16 Feb. 2011.

Recommended for acceptance by 1. Raicu, 1.T. Foster, and Y. Zhao.

For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number
TPDSSI-2009-12-0653.

Digital Object Identifier no. 10.1109/TPDS.2011.66.

1045-9219/11/$26.00 © 2011 IEEE

The cloud computing paradigm holds great promise for
the performance-hungry scientific computing community:
Clouds can be a cheap alternative to supercomputers and
specialized clusters, a much more reliable platform than
grids, and a much more scalable platform than the largest of
commodity clusters. Clouds also promise to “scale by credit
card,” that is, to scale up instantly and temporarily within
the limitations imposed only by the available financial
resources, as opposed to the physical limitations of adding
nodes to clusters or even supercomputers and to the
administrative burden of over provisioning resources.
Moreover, clouds promise good support for bags-of-tasks
(BoTs), which currently constitute the dominant grid
application type [3]. However, clouds also raise important
challenges in many aspects of scientific computing, includ-
ing performance, which is the focus of this work.

There are three main differences between scientific
computing workloads and the initial target workload of
clouds: in required system size, in performance demand,
and in the job execution model. Size wise, top scientific
computing facilities comprise very large systems, with the
top ten entries in the Top500 Supercomputers List together
totaling about one million cores, while cloud computing
services were designed to replace the small-to-medium size
enterprise data centers. Performance wise, scientific work-
loads often require High-Performance Computing (HPC) or
High-Throughput Computing (HTC) capabilities. Recently,
the scientific computing community has started to focus on
Many-Task Computing (MTC) [4], that is, on high-perfor-
mance execution of loosely coupled applications compris-
ing many (possibly interrelated) tasks. With MTC, a

Published by the IEEE Computer Society



932 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.22, NO.6, JUNE 2011

paradigm at the intersection of HPC and HTC, it is possible
to demand systems to operate at high utilizations, similar to
those of current production grids (over 80 percent [5]) and
Parallel Production Infrastructures (PPIs) (over 60 percent
[6]), and much higher than those of the systems that clouds
originally intended to replace (servers with 10-20 percent
utilization). The job execution model of scientific computing
platforms is based on the exclusive, space-shared usage of
resources. In contrast, most clouds time-share resources and
use virtualization to abstract away from the actual hard-
ware, thus increasing the concurrency of users but poten-
tially lowering the attainable performance.

These three main differences between scientific comput-
ing workloads and the target workloads of clouds raise an
important research question: Is the performance of clouds
sufficient for MTC-based scientific computing?, or, in other
words, Can current clouds execute MTC-based scientific work-
loads with similar performance (that is, for traditional perfor-
mance metrics [7]) and at lower cost? Though early attempts to
characterize clouds and other virtualized services exist [8],
[9], [10], [11], [12], this question remains largely unexplored.
Our main contribution toward answering it is threefold:

1. We investigate the presence of a (proto-)MTC
component in scientific computing workloads and
quantify the presence of these users in scientific
computing environments.

2. We evaluate with well-known microbenchmarks
and application kernels the performance of four
commercial cloud computing services that can be
used for scientific computing, among which the
Amazon Elastic Compute Cloud (EC2), the largest
commercial computing cloud in production.

3. We compare the performance of clouds with that of
scientific computing alternatives such as grids and
parallel production infrastructures. Our comparison
uses trace-based simulation and the empirical perfor-
mance results of our cloud performance evaluation.

The remainder of the article is organized as follows: In
Section 2, we give a general introduction to the use of cloud
computing services for scientific computing, and select four
exemplary clouds for use in our investigation. Then, in
Section 3 we focus on finding the MTC component in
existing scientific computing workloads, and in Section 4
we evaluate empirically the performance of four commer-
cial clouds. In Section 5, we compare the performance of
clouds and of other scientific computing environments.
Last, we compare our investigation with related work in
Section 6, and we present our conclusion and potential
future research topics in Section 7.

2 CLoubp COMPUTING SERVICES FOR SCIENTIFIC
COMPUTING

In this section, we provide a background to analyzing the
performance of cloud computing services for scientific
computing. We first describe the main characteristics of the
common scientific computing workloads, based on pre-
vious work on analyzing and modeling of workload traces
taken from PPIs [6] and grids [5], [13]. Then, we introduce
the cloud computing services that can be used for scientific

computing, and select four commercial clouds whose
performance we will evaluate empirically.

2.1 Scientific Computing

Job structure and source. PPI workloads are dominated by
parallel jobs [6], while grid workloads are dominated by
small bags-of-tasks [3] and sometimes by small workflows
[14], [15] comprising mostly sequential tasks. Source wise, it
is common for PPI grid workloads to be dominated by a
small number of users. We consider users that submit many
tasks, often grouped into the same submission as BoTs, as
proto-MTC users, in that they will be most likely to migrate
to systems that provide good performance for MTC work-
load execution. We focus in Section 3 on a more rigorous
definition of MTC workloads, and on demonstrating their
presence in recent scientific workloads.

Bottleneck resources. Overall, scientific computing
workloads are highly heterogeneous, and can have either
one of CPU, I/O, memory, and network as the bottleneck
resource. Thus, in Section 4 we investigate the performance
of these individual resources.

Job parallelism. A large majority of the parallel jobs
found in published PPI [16] and grid [13] traces have up to
128 processors [5], [6]. Moreover, the average scientific
cluster size was found to be around 32 nodes [17] and to be
stable over the past five years [18]. Thus, in Section 4 we
look at the the performance of executing parallel applica-
tions of up to 128 processors.

2.2 Four Selected Clouds: Amazon EC2, GoGrid,
ElasticHosts, and Mosso

We identify three categories of cloud computing services
[19], [20]: Infrastructure-as-a-Service (IaaS), that is, raw
infrastructure and associated middleware, Platform-as-a-
Service (PaaS), that is, APIs for developing applications on
an abstract platform, and Software-as-a-Service (SaaS), that
is, support for running software services remotely. Many
clouds already exist, but not all provide virtualization, or
even computing services. The scientific community has not
yet started to adopt PaaS or SaaS solutions, mainly to avoid
porting legacy applications and for lack of the needed
scientific computing services, respectively. Thus, in this
study we are focusing only on IaaS providers. We also focus
only on public clouds, that is, clouds that are not restricted
within an enterprise; such clouds can be used by our target
audience, scientists.

Based on our recent survey of the cloud computing
providers [21], we have selected for this work four IaaS
clouds. The reason for this selection is threefold. First, not
all the clouds on the market are still accepting clients;
FlexiScale puts new customers on a waiting list for over two
weeks due to system overload. Second, not all the clouds on
the market are large enough to accommodate requests for
even 16 or 32 coallocated resources. Third, our selection
already covers a wide range of quantitative and qualitative
cloud characteristics, as summarized in Table 1 and our
cloud survey [21], respectively. We describe in the follow-
ing Amazon EC2; the other three, GoGrid (GG), Elasti-
cHosts (EH), and Mosso, are IaaS clouds with provisioning,
billing, and availability and performance guarantees similar
to Amazon EC2’s.



IOSUP ET AL.: PERFORMANCE ANALYSIS OF CLOUD COMPUTING SERVICES FOR MANY-TASKS SCIENTIFIC COMPUTING 933

TABLE 1
The Resource Characteristics for the Instance Types Offered by
the Four Selected Clouds

Cores | RAM | Archi. Disk Cost
Name (ECUs) [GB] [bit] [GB] [$/h]
Amazon EC2
m1l.small 1(1) 1.7 32 160 0.1
ml.large 2 (4) 7.5 64 850 0.4
m1.xlarge 4 (8) 15.0 64 1,690 0.8
cl.medium 2 (5) 1.7 32 350 0.2
cl.xlarge 8 (20) 7.0 64 1,690 0.8
GoGrid (GG)
GG.small 1 1.0 32 60 0.19
GG.large 1 1.0 64 60 0.19
GG.xlarge 3 4.0 64 240 0.76
Elastic Hosts (EH)
EH.small 1 1.0 32 30 | £0.042
EH.large 1 4.0 64 30 | £0.09
Mosso
Mosso.small 4 1.0 64 40 0.06
Mosso.large 4 4.0 64 160 0.24

The Amazon Elastic Computing Cloud is an IaaS cloud
computing service that opens Amazon’s large computing
infrastructure to its users. The service is elastic in the sense
thatitenables the user to extend or shrink its infrastructure by
launching or terminating new virtual machines (instances).
The user can use any of the instance types currently available
on offer, the characteristics and cost of the five instance types
available in June 2009 are summarized in Table 1. An ECU is
the equivalent CPU power of a 1.0-1.2 GHz 2007 Opteron or
Xeon processor. The theoretical peak performance can be
computed for different instances from the ECU definition: a
1.1 GHz 2007 Opteron can perform 4 flops per cycle at full
pipeline, which means at peak performance one ECU equals
4.4 gigaflops per second (GFLOPS).

To create an infrastructure from EC2 resources, the user
specifies the instance type and the VM image; the user can
specify any VM image previously registered with Amazon,
including Amazon'’s or the user’s own. Once the VM image
has been transparently deployed on a physical machine (the
resource status is running), the instance is booted; at the end
of the boot process the resource status becomes installed.
The installed resource can be used as a regular computing
node immediately after the booting process has finished,
via an ssh connection. A maximum of 20 instances can be
used concurrently by regular users by default; an applica-
tion can be made to increase this limit, but the process
involves an Amazon representative. Amazon EC2 abides by
a Service Level Agreement (SLA) in which the user is
compensated if the resources are not available for acquisi-
tion at least 99.95 percent of the time. The security of the
Amazon services has been investigated elsewhere [10].

3 MTC PRESENCE IN SCIENTIFIC COMPUTING
WORKLOADS

An important assumption of this work is that the existing
scientific workloads already include Many Task Computing
users, that is, of users that employ loosely coupled
applications comprising many tasks to achieve their
scientific goals. In this section, we verify this assumption

TABLE 2

The Characteristics of the Workload Traces
Trace 1D, Trace System
Source (Trace ID Time Number of Size Load
in Archive) [mo.] | Jobs | Users | Sites | CPUs [%]
Grid Workloads Archive [13], 6 traces
1. DAS-2 (1) 18 | 1.1IM 333 5 0.4K 15+
2. RAL (6) 12 | 0.2M 208 1 0.8K 85+
3. GLOW (7) 3| 02M 18 1 1.6K 60+
4. Grid3 (8) 18 | 1.3M 19 29 3.5K -
5. SharcNet (10) 13 | 1.1M 412 10 6.8K -
6. LCG (11) 1| 02M 216 | 200+ | 24.4K -
Parallel Workloads Archive [16], 4 traces
7. CTC SP2 (6) 11 | 0.1M 679 1 0.4K 66
8. SDSC SP2 (9) 24 | 0.IM 437 1 0.1K 83
9. LANLO2K (10) 51 0.1M 337 1 2.0K 64
10. SDSC DS (19) 13 | 0.1M 460 1 1.7K 63

through a detailed investigation of workload traces taken
from real scientific computing environments.

3.1 Method and Experimental Setup

MTC workloads may comprise tens of thousands to
hundreds of thousands of tasks and BoTs [4], and a typical
period may be one year or the whole trace. Our method for
identifying proto-MTC users—users with a pronounced
MTC-like workload, which are potential MTC users in the
future—in existing system workloads is based on the
identification of users with many submitted tasks and/or
bags-of-tasks in the workload traces taken from real
scientific computing infrastructures. We define an MTC
user to be a user that has submitted at least J jobs and at
least B bags-of-tasks. The user part of our definition serves
as a coupling between jobs, under the assumption that a
user submits jobs for execution toward an arbitrary but
meaningful goal. The jobs part ensures that we focus on
high-volume users; these users are likely to need new
scheduling techniques for good system performance. The
bag-of-tasks part ensures that task submission occurs
within a short period of time; this submission pattern raises
new challenges in the area of task scheduling and manage-
ment [4]. Ideally, it should be possible to use a unique pair
of values for J and B across different systems.

To investigate the presence of an MTC component in
existing scientific computing infrastructures we analyze
ten workload traces. Table 2 summarizes the character-
istics of the ten traces; see [13], [16] for more details about
each trace. The ID of the trace indicates the system from
which it was taken. The traces have been collected from a
wide variety of grids and parallel production environ-
ments. The traces precede the existence of MTC tools;
thus, the presence of an MTC component in these traces
indicates the existence of proto-MTC users, who will be
likely to use today’s MTC-friendly environments.

To identify MTC users, we first formulate the identifica-
tion criterion by selecting values for J, B. If B > 1, we first
identify the BoTs in the trace using the method that we
introduced in our previous work [22], that is, we use the
BoT identification information when it is present in the trace,
and identify BoTs as groups of tasks submitted by the same
user at and during short time intervals, otherwise. (We have
investigated the effect of the time frame in the identification
of BoTs in our previous work [22].) Then, we eliminate the
users that have not submitted at least B BoTs. Last, from the



934

w
=)
S

Number of Users -

N
%
o

X

N
[
S

@
i<}

(a)

o
S

Number of Users

wu
=]

=)

o
S

1000
5000
10000

BoT Count

N
a
=]

Number of Users -

N
o
S

w
o

(b)

o
S

Number of Users

wn
=}

o

=3
S

1000
5000
10000

BoT Count

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.22, NO.6, JUNE 2011

250

Number of Users - -

200 [

o
o

o
S}

Number of Users

[
o

o

o o (=3
3 8 8 8 8 8 8
- o (=3 i=3 (=3 (=3 (=3
— wn o (=] [=3 (=3
— ~ al o
Task Count
150
Number of Users -
o
£100
o
=
o
2
£ 50
=
4
0
(=3 o [=3 o o o
o o (=3 o (=3 o 8
- o (=3 o o o o
— 2] o o o (=3
— ~N wn o

Task Count

Fig. 1. Number of MTC users for the DAS-2 trace (a), and the San Diego Supercomputer Center (SDSC) SP2 trace (b) when considering only the
submitted BoT count criterion (leff), and only submitted task count criterion (right).

remaining users we select the users that have submitted at
least J tasks.

3.2 Results

The number of MTC users decreases quickly with the
increase of J and B. Fig. 1 shows the results for our analysis
where we use the number of submitted BoTs (left), and the
number of submitted tasks (right) as criteria for identifying
MTC users for the DAS-2 (top) and SDSC SP2 (bottom)
traces. As expected, the number of MTC users identified in
the workload traces decreases as the number of submitted
BoTs/tasks increases. The number of MTC users identified
in the trace decreases much faster in the SDSC trace than in
the DAS-2 trace with the increase of the number of BoTs/
tasks. In addition, since there are not many MTC users for
large number of BoTs/tasks in PPI, we see evidence that
there is more MTC activity in grids than in PPL
Expectedly, there is more MTC-like activity in grids
than in PPIs. To compare the MTC-like activity of grids and
PPIs we analyze for each trace the percentage of MTC jobs
from the total number of jobs, and the percentage of CPU
time consumed by MTC jobs from the total CPU time
consumption recorded in the trace. Table 3 presents the
results for various simple and complex criteria for all traces.
We use “number of BoTs submitted > 100” and “number of
jobs submitted > 1,000” as the simple criteria, and “number
of BoTs submitted > 1,000 & number of tasks submitted
>10,000” as the complex criterion. Even for the simple
criteria, we observe that for PPIs, except for the LANL-O2K
trace, there are no MTC jobs for large values of B (the
number of BoTs). As the number of BoTs and tasks
increases, the percentage of MTC jobs and their consumed
CPU time decrease for both PPI and grids, as expected.
However, for the Grid3 and GLOW traces the MTC activity
is highly present even for large values of J and B. It turns
out that the complex criterion additionally selects mostly
users who submit many single-node tasks (not shown).
Since this type of proto-MTC workload has the potential to
execute well in any environment, including clouds, we

select and use this complex criterion for the remainder of
this work.

4 CLouD PERFORMANCE EVALUATION

In this section, we present an empirical performance
evaluation of cloud computing services. Toward this end,
we run microbenchmarks and application kernels typical
for scientific computing on cloud computing resources, and
compare whenever possible the obtained results to the
theoretical peak performance and/or the performance of
other scientific computing systems.

41 Method

Our method stems from the traditional system benchmark-
ing. Saavedra and Smith [23] have shown that benchmark-
ing the performance of various system components with a
wide variety of microbenchmarks and application kernels
can provide a first order estimate of that system’s
performance. Similarly, in this section we evaluate various
components of the four clouds introduced in Section 2.2.

TABLE 3
The Percentage of MTC Jobs, and the CPU Time Consumed by
These Jobs from the Total Number of Jobs and Consumed CPU
Time for All Traces, with Various Simple and Complex Criteria
for Identifying MTC Users

Simple criteria Complex criterion
Jobs > 10,000 &

BoTs = 100 Tasks = 1,000 BoTs = 1,000

Jobs | CPUT Jobs | CPUT Jobs CPUT

Trace ID [%] [%] [%] [%] [%] [%]

DAS-2 90 65 95 73 57 26
RAL 81 78 98 94 33 28
GLOW 95 75 99 91 83 69
Grid3 100 97 100 97 97 95
SharcNet 40 35 95 85 15 9
LCG 61 39 87 61 0 0
CTC SpP2 16 13 18 14 0 0
SDSC SP2 13 93 25 6 0 0
LANL O2 66 14 73 18 34 6
SDSC DS 29 7 44 18 0 0

CPUT stands for Total CPU Time.



IOSUP ET AL.: PERFORMANCE ANALYSIS OF CLOUD COMPUTING SERVICES FOR MANY-TASKS SCIENTIFIC COMPUTING 935

TABLE 4
The Benchmarks Used for Cloud Performance Evaluation

Type | Suite/Benchmark Resource Unit

SI LMbench/all [24] Many Many
SI Bonnie/all [25], [26] Disk MBps
SI CacheBench/all [27] Memory MBps
MI HPCC/HPL [28], [29] CPU GFLOPS
MI HPCC/DGEMM [30] CPU GFLOPS
MI HPCC/STREAM [30] Memory GBps
MI HPCC/RandomAccess [31] | Network MUPS
MI HPCC/be ¢ (lat.,bw.) [32] Comm. Ms, GBps

B, FLOP, U, and PS stand for bytes, floating point operations, updates,
and per second, respectively.

However, our method is not a straightforward application
of Saavedra and Smith’s method. Instead, we add a cloud-
specific component, select several benchmarks for a
comprehensive platform-independent evaluation, and focus
on metrics specific to large-scale systems (such as efficiency
and variability).

Cloud-specific evaluation. An attractive promise of
clouds is that they can always provide resources on
demand, without additional waiting time [20]. However,
since the load of other large-scale systems varies over time
due to submission patterns [5], [6] we want to investigate if
large clouds can indeed bypass this problem. To this end,
one or more instances of the same instance type are
repeatedly acquired and released during a few minutes;
the resource acquisition requests follow a Poisson process
with arrival rate A = 1571

Infrastructure-agnostic evaluation. There currently is no
single accepted benchmark for scientific computing at large-
scale. To address this issue, we use several traditional
benchmark suites comprising microbenchmarks and (scien-
tific) application kernels. We further design two types of
test workloads: SI-run one or more single-process jobs on a
single instance (possibly with multiple cores), and MI-run a
single multiprocess job on multiple instances. The SI
workloads execute in turn one of the LMbench [33], Bonnie
[34], and CacheBench [35] benchmark suites. The MI work-
loads execute the HPC Challenge Benchmark (HPCC) [28]
scientific computing benchmark suite. The characteristics of
the used benchmarks and the mapping to the test work-
loads are summarized in Table 4; we refer to the bench-
marks’ references for more details.

Performance metrics. We use the performance metrics
defined by the benchmarks presented in Table 4. We also
define and use the HPL efficiency of a virtual cluster based
on the instance type 7T as the ratio between the HPL
benchmark performance of the real cluster and the peak
theoretical performance of a same-sized T-cluster, ex-
pressed as a percentage. Job execution at large-scale often
leads to performance variability. To address this problem,
in this work we report not only the average performance,
but also the variability of the results.

4.2 Experimental Setup

We now describe the experimental setup in which we use
the performance evaluation method presented earlier.
Performance Analysis Tool. We have recently [36]
extended the GrenchMark [37] large-scale distributed
testing framework with new features which allow it to test

TABLE 5

The VM Images Used in Our Experiments
VM image OS, MPI Archi Benchmarks
EC2/ami-2bb65342 | FCé6 32bit SI
EC2/ami-36ffla5f FC6 64bit SI
EC2/ami-3e836657 | FC6, MPI 32bit MI
EC2/ami-e813{681 FC6, MPI 64bit MI
GG/server; RHEL 5.1, MPI | 32&64bit | SI&MI
EH/server; Knoppix 5.3.1 32bit SI
EH/servers Ubuntu 8.10 64bit SI
Mosso/servery Ubuntu 8.10 32&64bit | SI

cloud computing infrastructures. The framework was
already able to generate and submit both real and synthetic
workloads to grids, clusters, clouds, and other large-scale
distributed environments. For this work, we have added to
GrenchMark the ability to execute and analyze the bench-
marks described in the previous section.

Environment. We perform our measurements on homo-
geneous virtual environments built from virtual resources
belonging to one of the instance types described in Table 1;
the used VM images are summarized in Table 5. The
experimental environments comprise from 1 to 128 cores.
Except for the use of internal IP addresses, described below,
we have used in all our experiments the standard
configurations provided by the cloud. Due to our choice
of benchmarks, our Single-Job results can be readily
compared with the benchmarking results made public for
many other scientific computing systems, and in particular
by the HPCC effort [38].

MPI library and network. The VM images used for the
HPCC benchmarks also have a working preconfigured MPI
based on the mpich2-1.0.5 [39] implementation. For the
MI (parallel) experiments, the network selection can be
critical for achieving good results. Amazon EC2 and GoGrid,
the two clouds for which we have performed MI experiments,
use internal IP addresses (IPs), that is, the IPs accessible only
within the cloud, to optimize the data transfers between
closely-located instances. (This also allows the clouds to
better shape the traffic and to reduce the number of Internet-
accessible IPs, and in turn to reduce the cloud’s operational
costs.) EC2 and GoGrid give strong incentives to their
customers to use internal IP addresses, in that the network
traffic between internal IPs is free, while the traffic to or from
the Internet IPs is not. We have used only the internal IP
addresses in our experiments with MI workloads.

Optimizations, tuning. The benchmarks were compiled
using GNU C/C++ 4.1 with the -03 -funroll-loops
command-line arguments. We did not use any additional
architecture- or instance-dependent optimizations. For the
HPL benchmark, the performance results depend on two
main factors: the Basic Linear Algebra Subprogram (BLAS)
[40] library, and the problem size. We used in our
experiments the GotoBLAS [41] library, which is one of
the best portable solutions freely available to scientists.
Searching for the problem size that can deliver peak
performance is an extensive (and costly) process. Instead,
we used a free analytical tool [42] to find for each system the
problem sizes that can deliver results close to the peak
performance; based on the tool advice we have used values
from 13,000 to 110,000 for N, the size (order) of the
coefficient matrix A [28], [43].



936 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.22, NO.6, JUNE 2011

883 881 685

Quartiles ———
Median ——
180 Mean o 7]
Outliers o

200

160

140

120

100

Duration [s]

40 F

HE——e
i
I3
i
e
g

20 “*‘ff% ® S
ol vy L L L R
T35E% TS5HE5ES TP85E5ESL TBLES
225§ 282533 2883% iffgcs
eeEgfc EEfgEv EEfgEv EEgEs

) ° ) °

Total Time for VM Install Time for VM Boot Time for  Total Time for

Res. Acquisition Res. Acquisition Res. Acquisition Res. Release

Fig. 2. Resource acquisition and release overheads for acquiring single
EC2 instances.

4.3 Results

The experimental results of the Amazon EC2 performance
evaluation are presented in the following.

4.3.1 Resource Acquisition and Release

We study two resource acquisition and release scenarios:
for single instances, and for multiple instances allocated at
once.

Single instances. We first repeat 20 times for each instance
type a resource acquisition followed by a release as soon as
the resource status becomes installed (see Section 2.2). Fig. 2
shows the overheads associated with resource acquisition
and release in EC2. The total resource acquisition time (Total)
is the sum of the Install and Boot times. The Release time is the
time taken to release the resource back to EC2; after it is
released the resource stops being charged by Amazon. The
c1.” instances are surprisingly easy to obtain; in contrast, the
ml.” instances have for the resource acquisition time higher
expectation (63-90 s compared to around 63 s) and variability
(much larger boxes). With the exception of the occasional
outlier, both the VM Boot and Release times are stable and
represent about a quarter of Total each. Table 6 presents basic
statistics for single resource allocation and release. Overall,
Amazon EC2 has one order of magnitude lower single
resource allocation and release durations than GoGrid.
From the EC2 resources, the ml.small and ml.large
instances have higher average allocation duration, and
exhibit outliers comparable to those encountered for GoGrid.
The resource acquisition time of GoGrid resources is
highly variable; here, GoGrid behaves similarly to grids [5]
and unlike the promise of clouds.

Multiple instances. We investigate next the perfor-
mance of requesting the acquisition of multiple resources
(2, 4, 8, 16, and 20) at the same time; a scenario common for
creating homogeneous virtual clusters. When resources
are requested in bulk, we record acquisition and release
times for each resource in the request, separately. Fig. 3
shows the basic statistical properties of the times recorded
for cl.xlarge instances. The expectation and the
variance are both higher for multiple instances than for
a single instance.

TABLE 6
Statistics for Single Resource Allocation/Release

Instance Res. Allocation Res. Release

Type Min Avg | Max | Min | Avg | Max
ml.small 69 82 126 18 21 23
m1.large 50 90 883 17 20 686
ml.xlarge 57 64 91 17 18 25
cl.medium 60 65 72 17 20 22
cl.xlarge 49 65 90 17 18 20
GG.large 240 540 900 180 | 210 240
GG.xlarge 180 | 1,209 | 3,600 120 | 192 300

4.3.2 Single-Machine Benchmarks

In this set of experiments, we measure the raw performance
of the CPU, I/O, and memory hierarchy using the Single-
Instance benchmarks listed in Section 4.1. We run each
benchmark 10 times and report the average results.
Compute performance. We assess the computational
performance of each instance type using the entire
LMbench suite. The performance of int and int64 opera-
tions, and of the float and double-precision float operations
is depicted in Figs. 4a and 4b, respectively. The GOPS
recorded for the floating point and double-precision float
operations is six to eight times lower than the theoretical
maximum of ECU (4.4 GOPS). A potential reason for this
situation is the overrun or thrashing of the memory caches
by the working sets of other applications sharing the same
physical machines; a study independent from ours [44]
identifies the working set size as a key parameter to
consider when placing and migrating applications on
virtualized servers. This situation occurs especially when
the physical machines are shared among users that are
unaware of each other; a previous study [45] has found that
even instances of the same user may be located on the same
physical machine. The performance evaluation results also
indicate that the double-precision float performance of the
cl.” instances, arguably the most important for scientific
computing, is mixed: excellent addition but poor multi-
plication capabilities. Thus, as many scientific computing
applications use heavily both of these operations, the user is
faced with the difficult problem of selecting between two

120
Quartiles —— |
l l Median —3 |

R ol
RSI0LA

Sup!
60 L:‘

40
20 ﬁrL? 'é“?’@

2
L=
= 4
UH&
T T TR S R S £

2 4 8 16 20 2 4 8 16 20 2 4 8 16 20 2 4 8 16 20

Instance Count Instance Count Instance Count Instance Count
Total Time for VM Install Time for VM Boot Time for  Total Time for

Res. Acquisition Res. Acquisition Res. Acquisition Res. Release

.

— g

Duration [s]

o

Fig. 3. Single-instance resource acquisition and release overheads
when acquiring multiple c1.xlarge instances at the same time.



IOSUP ET AL.: PERFORMANCE ANALYSIS OF CLOUD COMPUTING SERVICES FOR MANY-TASKS SCIENTIFIC COMPUTING 937

0.8

Performance [GOPS]

s

c1.medium

m1.small m1.large m1.xlarge
Instance Type

INT-mul

c1.xlarge

INT-bit —— INT-add =0

INT64-bit wmmmm  INT64-mul c=—3

Performance [GOPS]

xlarge c1.medium
Instance Type

FLOAT-add —— FLOAT-bogo DOUBLE-mul =1
FLOAT-mul c=0 DOUBLE-add msssm DOUBLE-bogo =—2

m1.large

1 — —

0.8

0.6

04 | B3

Performance [GOPS]

GG.small

Instance Type
INT-mul

EH.small EH.large GG.large

INT-bit —— INT-add =0

0.2 4| &

Performance [GOPS]

L

GG.xlarge  Mosso.small Mosso.large

INT64-bit wmmmm  INT64-mul c=—3

GGsmall  GGlarge  GGuxlarge Mosso.small Mosso.large
Instance Type

FLOAT-add —— FLOAT-bogo DOUBLE-mul c==1
FLOAT-mul c=0 DOUBLE-add msssm DOUBLE-bogo =—2

EH.small EH.large

Fig. 4. LMbench results (a) for the EC2 instances, and (b) for the other instances. Each row depicts the performance of 32 and 64-bit integer
operations in giga-operations per second (GOPS) (leff), and of floating operations with single and double precision (right).

wrong choices. Finally, several double and float operations
take longer on cl.medium than on ml.small. For the
other instances, EH.* and Mosso.* instances have similar
performance for both integer and floating point operations.
GG.* instances have the best float and double-precision
performance, and good performance for integer operations,
which suggests the existence of better hardware support for
these operations on these instances.

I/O performance. We assess in two steps the 1/O
performance of each instance type with the Bonnie bench-
marking suite. The first step is to determine the smallest file
size that invalidates the memory-based I/O cache, by
running the Bonnie suite for thirteen file sizes in the range
1,024 Kilo-binary byte (KiB) to 40 GiB. The results of this
preliminary step have been summarized in a technical report
[46, pp. 11-12]; we only summarize them here. For all
instance types, a performance drop begins with the 100 MiB
test file and ends at 2 GiB, indicating a capacity of the
memory-based disk cache of 4-5 GiB (twice 2 GiB). Thus, the
results obtained for the file sizes above 5 GiB correspond to
the real I/O performance of the system; lower file sizes
would be served by the system with a combination of
memory and disk operations. We analyze the I/O perfor-
mance obtained for files sizes above 5 GiB in the second step;
Table 7 summarizes the results. We find that the I/O
performance indicated by Amazon EC2 (see Table 1)
corresponds to the achieved performance for random I/0
operations (column 'Rand. Input’ in Table 7). The *.xlarge
instance types have the best I/O performance from all
instance types. For the sequential operations more typical to
scientific computing all Amazon EC2 instance types have in
general better performance when compared with similar modern
commodity systems, such as the systems described in the last
three rows in Table 7; EC2 may be using better hardware,
which is affordable due to economies of scale [20].

4.3.3 Multimachine Benchmarks

In this set of experiments, we measure the performance
delivered by homogeneous clusters formed with Amazon

EC2 and GoGrid instances when running the Single-Job-
Multimachine benchmarks. For these tests we execute 5 times
the HPCC benchmark on homogeneous clusters of 1-16 (1-8)
instances on EC2 (GoGrid), and present the average results.

HPL performance. The performance achieved for the HPL
benchmark on various virtual clusters based on the
ml.small and cl.xlarge instance types is depicted in
Fig. 5. For the m1.small resources one node was able to
achieve a performance of 1.96 GFLOPS, which is 44.54 percent
from the peak performance advertised by Amazon. Then, the
performance increased to up to 27.8 GFLOPS for 16 nodes,
while the efficiency decreased slowly to 39.4 percent.
The results for a single c1.xlarge instance are better: the
achieved 49.97 GFLOPS represent 56.78 percent from the
advertised peak performance. However, while the perfor-
mance scales when running up to 16 instances to 425.82
GFLOPS, the efficiency decreases to only 30.24 percent. The
HPL performance loss from one to 16 instances can, therefore,
be expressed as 53.26 percent which results in rather bad
qualification for HPC applications and their need for fast

TABLE 7

The 1/O of Clouds versus 2002 [25] and 2007 [26] Systems
Seq. Output Seq. Input Rand.
Instance Char | Block | ReWr | Char | Block | Input
Type [MB/s] [MB/s] [MB/s] [MB/s] [MB/s] [Seek/s]
ml.small 223 60.2 33.3 25.9 73.5 744
ml.large 50.9 64.3 24.4 35.9 63.2 124.3
ml.xlarge 57.0 87.8 33.3 41.2 74.5 387.9
cl.medium 49.1 58.7 32.8 47.4 74.9 724
cl.xlarge 64.8 87.8 30.0 45.0 74.5 373.9
GG.small 11.4 10.7 9.2 29.2 40.24 39.8
GG large 17.0 175 16.0 34.1 97.5 29.0
GG.xlarge 80.7 | 136.9 92.6 | 79.26 | 369.15 157.5
EH.large 7.1 7.1 7.1 27.9 35.7 177.9
Mosso.sm 41.0 | 102.7 | 43.88 321 130.6 122.6
Mosso.lg 40.3 | 115.1 55.3 41.3 165.5 176.7
02 Ext3 12.2 38.7 257 12.7 173.7 -
’02 RAID5 14.4 14.3 12.2 13.5 73.0 -
‘07 RAID5 30.9 40.6 29.0 419 112.7 192.9




938

internode communication. We have obtained similar results
the GG. large and GG . x1large instances, as shown in Fig. 5.
For GG.large instances, the efficiency decreases quicker
than for EC2 instances, down to 47.33 percent while achieving
45.44 GFLOPS on eight instances. The GG.xlarge per-
formed even poorer in our tests. We further investigate the
performance of the HPL benchmark for different instance
types; Table 8 summarizes the results. The efficiency results
presented in Fig. 5 and Table 8 place clouds below existing
environments for scientific computing, for which the achieved
performance is 60-70 percent of the theoretical peak even for
demanding real applications [47], [48], [49].

HPCC performance. To obtain the performance of virtual
EC2 and GoGrid clusters we run the HPCC benchmarks on
unit clusters comprising a single instance, and on 128-core
clusters comprising 16 c1.xlarge instances. Table 9 sum-
marizes the obtained results and, for comparison, results
published by HPCC for four modern and similarly-sized
HPC clusters [38]. For HPL, only the performance of the
cl.xlarge is comparable to that of an HPC system.
However, for STREAM, and RandomAccess the performance
of the EC2 clusters is similar or better than the performance of
the HPC clusters. We attribute this mixed behavior mainly to

500

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.22, NO.6, JUNE 2011

TABLE 8
HPL Performance and Cost Comparison for Various EC2 and
GoGrid Instance Types

Peak GFLOPS | GFLOPS
Name Perf. | GFLOPS /Unit /%1
ml.small 44 2.0 2.0 19.6
m1.large 17.6 7.1 1.8 17.9
m1.xlarge 35.2 114 14 14.2
cl.medium | 22.0 3.9 0.8 19.6
cl.xlarge 88.0 50.0 2.5 62.5
GG.large 12.0 8.8 8.8 46.4
GG.xlarge 36.0 28.1 7.0 37.0

the network characteristics: first, the EC2 platform has much
higher latency, which has an important negative impact on
the performance of the HPL benchmark; second, the network
is shared among different users, a situation which often leads
to severe performance degradation [50]. In particular, this
relatively low network performance means that the ratio
between the theoretical peak performance and achieved HPL
performance increases with the number of instances, making
the virtual EC2 clusters poorly scalable. Thus, for scientific
computing applications similar to HPL the virtual EC2
clusters canlead to an order of magnitude lower performance

Performance [GFLOPS]

100

75

50 4

Efficiency [%

25 4

Number of Nodes

mi.small C— cl.xlarge E==a GG.1gig =3 GG.4gig

Fig. 5. The HPL (LINPACK) performance of virtual clusters formed with EC2 m1

instances. (left) Throughput. (right) Efficiency.

4
Number o

cl.xlarge E==a

mi.small —

.small, EC2 cl.xlarge, GoGrid large, and GoGrid xlarge

TABLE 9
The HPCC Performance for Various Platforms
Cores or |[Peak Perf.| HPL HPL DGEMM  |STREAM [RandomAccess| Latency [Bandwidth

Provider, System Capacity |[GFLOPS]|[GFLOPS] N [GFLOPS] | [GBps] [MUPs] [us] [GBps]
EC2, 1T x ml.small 1 4.40 1.96 13,312 2.62 3.49 11.60 - -
EC2, 1 x m1.large 2 17.60 7.15 28,032 6.83 2.38 54.35 20.48 0.70
EC2, 1 x ml.xlarge 4 35.20 11.38 39,552 8.52 3.47 168.64 17.87 0.92
EC2, 1 x cl.medium 2 22.00 - 13,312 11.85 3.84 46.73 13.92 2.07
EC2, 1 x cl.xlarge 8 88.00 51.58 27,392 44.05 15.65 249.66 14.19 1.49
EC2, 2 x cl.xlarge 16 176.00 84.63 38,656 34.59 15.65 223.54 19.31 1.10
EC2, 4 x cl.xlarge 32 352.00 138.08 54,784 27.74 15.77 280.38 25.38 1.10
EC2, 8 x cl.xlarge 64 704.00 252.34 77,440 3.58 15.89 250.40 35.93 0.97
EC2, 16 x cl.xlarge 128 | 1,408.00 425.82 | 109,568 0.23 16.38 207.06 45.20 0.75
EC2, 16 x m1l.small 16 70.40 27.80 53,376 4.36 11.95 77.83 68.24 0.10
GoGrid, 1 x GG large 1 12.00 8.805 10,240 10.01 2.88 17.91 - -
GoGrid, 4 x GG.large 4 48.00 2497 20,608 10.34 20.17 278.80 | 110.11 0.06
GoGrid, 8 x GG large 8 96.00 45.436 29,184 10.65 20.17 351.68 | 131.13 0.07
GoGrid, 1 x GG.xlarge 3 36.00 28.144 20,608 10.82 45.71 293.30 16.96 0.97
GoGrid, 4 x GG.xlarge 12 144.00 40.03 41,344 11.31 19.95 307.64 62.20 0.24
GoGrid, 8 x GG.xlarge 24 288.00 48.686 58,496 18.00 20.17 524.33 55.54 1.33
HPCC-227, TopSpin/Cisco 16 102.40 55.23 81,920 4.88 2.95 10.25 6.81 0.66
HPCC-224, TopSpin/Cisco 128 819.20 442.04 | 231,680 4.88 2.95 10.25 8.25 0.68
HPCC-286, Intel Endeavor 16 179.20 153.25 60,000 10.50 5.18 87.61 1.23 1.96
HPCC-289, Intel Endeavor 128 | 1,433.60 | 1,220.61 | 170,000 10.56 5.17 448.31 2.78 3.47

HPCC-x is the system with the HPCC ID z [38]. The machines HPCC-224 and HPCC-227, and HPCC-286 and HPCC-289 are of brand TopSpin/

Cisco and by Intel Endeavor, respectively. Smaller values are better for the Latency column and worse for the other columns.



IOSUP ET AL.: PERFORMANCE ANALYSIS OF CLOUD COMPUTING SERVICES FOR MANY-TASKS SCIENTIFIC COMPUTING 939

&' 50000 T T

o Range ——

o Median =

S 40000f Mean ¢ [

8 30000 m

g

r ]

£ 20000 AL el LJ H -

[e] -+

T 10000 *

o 0 L 2SS [;J Q -
28210215220225 28210215220225 28210215220225 28210215220225
m1.xlarge GG.xlarge EH.smdl Mosso.larg

Working Set Sizes per Instance Type

Fig. 6. Performance stability of cloud instance types with the
CacheBench benchmark with Rd-Mod-Wr operations.

for large system sizes (1,024 cores and higher). An alternative
explanation may be the working set size of HPL, which would
agree with the findings of another study on resource
virtualization [44]. The performance of the GoGrid clusters
with the single core instances is as expected, but we observe
scalability problems with the 3 core GG . x1arge instances. In
comparison with previously reported results, the DGEMM
performance of m1. large (c1.medium) instances is similar
to that of Altix4700 (ICE) [29], and the memory bandwidth of
Cray X1 (2003) is several times faster than that of the fastest
cloud resource currently available [30].

4.3.4 Performance Stability

An important question related to clouds is Is the performance
stable? (Are our results repeatable?) Previous work on
virtualization has shown that many virtualization packages
deliver the same performance under identical tests for
virtual machines running in an isolated environment [51].
However, it is unclear if this holds for virtual machines
running in a large-scale cloud (shared) environment.

To get a first picture of the side effects caused by the
sharing with other users the same physical resource, we have
assessed the stability of different clouds by running the
LMBench (computation and OS) and CacheBench (I/0)
benchmarks multiple times on the same type of virtual
resources. For these experiments we have used m1.xlarge,
GG.xlarge, EH.small, and Mosso.large resources.
Fig. 6 summarizes the results for one example benchmark
from the CacheBench suite, Rd-Mod-Wr. The GG . large and
EH.small types have important differences between the
min, mean, and max performance even for medium working
set sizes, such as 10'°B. The best performer in terms of
computation, GG.xlarge, is unstable; this makes cloud
vendor selection an even more difficult problem. We have
performed a longer-term investigation in other work [52].

5 CLouDS VERSUS OTHER SCIENTIFIC COMPUTING
INFRASTRUCTURES

In this section, we present a comparison between clouds
and other scientific computing infrastructures using both
complete workloads, and MTC workloads extracted from
the complete workloads.

5.1 Method

We use trace-based simulation to compare clouds with
scientific computing infrastructures. To this end, we first
extract the performance characteristics from long-term
workload traces of scientific computing infrastructures; we

call these infrastructures source environments. Then, we
compare these characteristics with those of a cloud execution.

System model. We define two performance models of
clouds, which differ by the factor that jobs are slowed
down. The cloud with source-like performance is a theoretical
cloud environment that comprises the same resources as the
source environment. In this cloud model, the runtimes of
jobs executed in the cloud are equal to those recorded in the
source environment’s workload traces (no slowdown). This
model is akin to having a grid being converted into a cloud
of identical performance and thus it is useful for assessing
the theoretical performance of future and more mature
clouds. However, as we have shown in Section 4, in real
clouds performance is below the theoretical peak, and for
parallel jobs the achieved efficiency is lower than that
achieved in grids. Thus, we introduce the second model, the
clouds with real performance, in which the runtimes of jobs
executed in the cloud are extended by a factor, which we
call the slowdown factor, derived from the empirical
evaluation presented in Section 4. The system equivalence
between clouds and source environments is assumed in this
model, and ensured in practice by the complete system
virtualization [53] employed by all the clouds investigated
in this work.

Job execution model. For job execution, we assume
exclusive resource use: for each job in the trace, the
necessary resources are acquired from the cloud, then
released after the job has been executed. We relax this
assumption in Section 5.3.4.

System workloads. To compare the performance of
clouds with other infrastructures, we use both complete
workloads, and MTC workloads extracted from the com-
plete workloads using the method described in Section 3.1.
Finally, we evaluate the performance and the cost of
executing MTC workloads in clouds with real performance
for various slowdown factors.

Performance metrics. We measure the performance of all
environments using the three traditional metrics [7]: wait time
(WT), response time (ReT), and bounded slowdown (BSD)—the
ratio between the job response time in the real versus an
exclusively—used environment, with a bound that elimi-
nates the bias toward short jobs. The BSD is expressed as
BSD = max(1, ReT /max(10, ReT — WT)), where 10 is the
bound that eliminates the bias of jobs with runtime below
10 s. We compute for each job the three metrics and report for
a complete workload the average values for these metrics,
AWT, AReT, and ABSD, respectively.

Cost metrics. We report for the two cloud models the
total cost of workload execution, defined as the number of
instance-hours used to complete all the jobs in the work-
load. This value can be converted directly into the cost for
executing the whole workload for $/CPU hour and similar
pricing models, such as Amazon EC2’s.

5.2 Experimental Setup

System setup. We use the DGSIM simulator [18] to analyze
the performance of cloud environments. We have extended
DGSIM with the two cloud models, and used it to simulate
the execution of real scientific computing workloads on
cloud computing infrastructures. To model the slowdown
of jobs when using clouds with real performance, we have



940 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.22, NO.6, JUNE 2011
TABLE 10
The Results of the Comparison between Workload Execution in Source Environments (Grids, PPls, etc.) and in Clouds

Source env. (Grid /PPI) Cloud (real performance) Cloud (source performance)
AWT AReT | ABSD AReT ABSD | Total Cost AReT | ABSD | Total Cost

Trace ID [s] [s] (10s) [s] (10s) [CPU-h,M] [s] (10s) [CPU-h,M]

DAS-2 432 802 11 2,292 2.39 2 450 2 1.19

RAL 13,214 | 27,807 68 131,300 1 40 || 18,837 1 6.39

GLOW 9,162 | 17,643 55 59,448 1 3 8,561 1 0.60

Grid3 - 7,199 - 50,470 3 19 7,279 3 3.60

SharcNet 31,017 | 61,682 242 || 219,212 1 73 || 31,711 1 11.34

LCG - 9,011 - 63,158 1 3 9,091 1 0.62

CTC SP2 25,748 | 37,019 78 75,706 1 2 || 11,351 1 0.30

SDSC SP2 26,705 | 33,388 389 46,818 2 1 6,763 2 0.16

LANL O2K 4,658 9,594 61 37,786 2 1 5,016 2 0.26

SDSC DS 32,271 | 33,807 516 57,065 2 2 6,790 2 0.25

The “” sign denotes missing data in the original traces. For the two Cloud models AWT = 80 s (see text). The total cost for the two Cloud models is

expressed in millions of CPU hours.

used different slowdown factors. Specifically, single-pro-
cessor jobs are slowed down by a factor of 7, which is the
average performance ratio between theoretical and
achieved performance analyzed in Section 4.3.2, and
parallel jobs are slowed down by a factor up to 10
depending on the job size, due to the HPL performance
degradation with job size described in Section 4.3.3. In
Section 5.3.3, we also present the results of our performance
evaluation by using various slowdown factors with the
cloud real performance model.

Workload setup. We use as input workload the ten
workload traces described in Section 3. The traces Grid3
and LCG do not include the job waiting time information;
only for these two traces we set the waiting time for all jobs
to zero, which favors these two grids in comparison with
clouds. The wait time of jobs executed in the cloud (also
their AWT) is set to the resource acquisition and release
time obtained from real measurements (see Section 4.3.1).

Performance analysis tools. We use the Grid Workloads
Archive tools [13] to extract the performance metrics from
the workload traces of grids and PPIs. We extend these tools
to also analyze cloud performance metrics such as cost.

5.3 Results

Our experiments follow four main aspects: performance for
complete and MTC-only workloads, the effect of cloud
performance changes on performance and cost metrics, and
the performance-cost-security trade-off. We present the
experimental results for each main aspect, in turn.

5.3.1 Complete Workloads

We compare the execution in source environments (grids,
PPIs, etc.) and in clouds of the ten workload traces
described in Table 2. Table 10 summarizes the results of
this comparison, on which we comment below.

An order of magnitude better performance is needed
for clouds to be useful for daily scientific computing. The
performance of the cloud with real performance model is
insufficient to make a strong case for clouds replacing
grids and PPIs as a scientific computing infrastructure.
The response time of these clouds is higher than that of
the source environment by a factor of 4-10. In contrast, the
response time of the clouds with source-like performance
is much better, leading in general to significant gains (up to
80 percent faster average job response time) and at worst to

1 percent higher AWT (for traces of Grid3 and LCG, which
are assumed conservatively to always have zero waiting
time!). We conclude that if clouds would offer an order of
magnitude higher performance than the performance
observed in this study, they would form an attractive
alternative for scientific computing, not considering costs.

Price wise, clouds are reasonably cheap for scientific
computing, if the usage and funding scenarios allow it (but
usually they do not). Looking at costs, and assuming the
external operational costs in the cloud to be zero, one million
EC2-hours equate to $100,000. Thus, to execute the total
workload of RAL over one year (12 months) would cost
$4,029,000 on Amazon EC2. Similarly, the total workload of
DAS-2 over one year and a half (18 months) would cost
$166,000 on Amazon EC2. Both these sums are much lower
than the cost of these infrastructures, which includes
resource acquisition, operation, and maintenance. To better
understand the meaning of these sums, consider the scenario
(disadvantageous for the clouds) in which the original
systems would have been sized to accommodate strictly the
average system load, and the operation and maintenance
costs would have been zero. Even in this scenario using
Amazon EC2 is cheaper. We attribute this difference to the
economy of scale discussed in a recent study [20]: the price of
the basic operations in a very large data center can be an order
of magnitude lower than in a grid or data center of regular
size. However, despite the apparent cost saving it is not clear
that the transition to clouds would have been possible for
either of these grids. Under the current performance
exhibited by clouds, the use of EC2 would have resulted in
response times three to four times higher than in the original
system, which would have been in conflict with the mission
of RAL as a production environment. A similar concern can
be formulated for DAS-2. Moreover, DAS-2 is specifically
targeting research in computer science, and its community
would not have been satisfied to use commodity resources
instead of a state-of-the-art environment comprising among
others high-performance lambda networks; other new
resource types, such as GPUs and Cell processors, are
currently available in grids but not in clouds. Looking at
the funding scenario, it is not clear if finance could have been

1. Although we realize the Grid3 and LCG grids do not have zero
waiting time, we follow a conservative approach in which we favor grids
against clouds, as the latter are the new technology.



IOSUP ET AL.: PERFORMANCE ANALYSIS OF CLOUD COMPUTING SERVICES FOR MANY-TASKS SCIENTIFIC COMPUTING

941

TABLE 11
The Results of the Comparison between Workload Execution in Source Environments (Grids, PPlIs, etc.)
and in Clouds with only the MTC Part Extracted from the Complete Workloads

Source env. (Grid/PPI) Cloud (real performance) Cloud (source performance)

AWT AReT | ABSD AReT ABSD | Total Cost AReT | ABSD | Total Cost
Trace ID [s] [s] (10s) [s] (10s) [CPU-h,M] [s] (10s) [CPU-h,M]
DAS-2 70 243 3 776 2 0.65 252 2 0.61
RAL 4,866 | 18,694 24 68,847 1 6.60 || 17,272 1 1.80
GLOW 6,062 | 13,396 41 29,416 1 1.40 7,413 1 0.42
Grid3 - 7,422 - 29,769 4 10.61 7,502 4 3.30
SharcNet 10,387 | 30,092 6 141,510 1 7.10 || 20,182 1 1.09
LANL O2K 635.78 1,715 4 94 2 0.10 1,171 1 <0.01

The LCG, CTC SP2, SDSC SP2, and SDSC DS traces are not presented, as they do not have enough MTC users (the criterion is described in text).

secured for virtual resources; one of the main outcomes of the
long-running EGEE project is the creation of a European Grid
infrastructure. Related concerns have been formulated else-
where [20].

Clouds are now a viable alternative for short deadlines.
A low and steady job wait time leads to much lower
(bounded) slowdown for any cloud model, when compared
to the source environment. The average bounded slowdown
(ABSD, see Section 5.1) observed in real grids and PPIs is for
our traces between 11 and over 500!, but below 3.5 and even
1.5 for the cloud models with low and with high utilization.
The meaning of the ABSD metric is application specific, and
the actual ABSD value may seem to overemphasize the
difference between grids and clouds. However, the pre-
sence of high and unpredictable wait times even for short
jobs, captured here by the high ABSD values, is one of the
major concerns in adopting shared infrastructures such as
grids [5], [54]. We conclude that cloud is already a viable
alternative for scientific computing projects with tight
deadline and few short-running jobs remaining, if the
project has the needed funds.

5.3.2 MTC Part of the Complete Workloads

We evaluate the performance of clouds using only the MTC
workloads extracted from the complete workloads using
the method described in Section 3.1. We assume that a user
is an MTC user if B > 1,000 and J > 10,000; T is considered
to be the duration of the workload trace. Table 11
summarizes the results of our evaluation. The results are
similar to the results obtained for complete workloads, in
the previous section. We observe that the response time of
clouds with real performance is higher than that of grids/
PPIs by a factor of 2-5. Hence, although the cost of using

E20 1

® =
E 2
by T
Q O g e =1
o SR N ] 2
c — O
810 b 05
7]

2 S
& 5
@ Avg. Response Time 2
o Avg. Cost -

z0 ‘ ‘ 0

2 3 4 5 6 7
Slowdown Factor

(a)

o
=
N

clouds seems reasonable, significant performance improve-
ment is needed for clouds to be a viable alternative to
grids/PPIs for MTC-based scientific computing. In addi-
tion, similar to results for complete workloads, we observe
low and steady wait times hence lower ABSD, and reduced
time to solution which makes clouds attractive for MTC-
based scientific computing.

5.3.3 The Effect of the Cloud Slowdown Factor on
Performance and Cost

The slowdown factor is the factor by which the job runtime
changes between the source environment and the cloud (see
Section 5.1). In previous sections, we have used a slowdown
factor of 7 for sequential jobs, and 10 for parallel jobs for
modeling clouds with real performance. We now evaluate
the performance of clouds with real performance using only
the MTC workloads with various slowdown factors for both
sequential and parallel jobs. Similar to previous section,
when extracting the MTC workload from complete work-
loads we assume that a user is an MTC user if B > 1,000
and J > 10,000.

Fig. 7 shows the average response time and cost of
clouds with real performance with various slowdown
factors for sequential (Fig. 7a) and parallel (Fig. 7b) jobs
using the DAS-2 trace. As the slowdown factor increases,
we observe a steady but slow increase in cost and response
time for both sequential and parallel jobs. This is expected:
the higher the response time, the longer a cloud resource is
used, increasing the total cost. The sequential jobs dominate
the workload both in number of jobs and in consumed CPU
time, and their average response time increases linearly
with the performance slowdown; thus, improving the

20 1
o =
£ =
= T
3 I D P 5
2 e g
810 05 =
e L — §
o

S I
g Avg. Response Time o
g Avg. Cost -

0 . ?
<<

: : 0
4 5 6 7 8 9 10
Slowdown Factor

(b)

N
w

Fig. 7. Performance and cost of using cloud resources for MTC workloads with various slowdown factors for sequential jobs (a), and parallel jobs

(b) using the DAS-2 trace.



942 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.22, NO.6, JUNE 2011

TABLE 12
Relative Strategy Performance: Resource Bulk Allocation (S2)
versus Resource Acquisition and Release per Job (S1)

Relative Cost DAS-2 | Grid3 | LCG || LANL O2K
2510 100 [%] || 302 [ 115 | 93 9.1
Only performance differences above 5 percent are shown.

performance of clouds for sequential jobs should be the first
priority of cloud providers.

5.3.4 Performance and Security versus Cost

Currently, clouds lease resources but do not offer a resource
management service that can use the leased resources. Thus,
the cloud adopter may use any of the resource management
middleware from grids and PPIs; for a review of grid
middleware we refer to our recent work [55]. We have
already introduced the basic concepts of cloud resource
management in Section 4.2, and explored the potential of a
cloud resource management strategy (strategy S1) for which
resources are acquired and released for each submitted job
in Section 5. This strategy has good security and resource
setup flexibility, but may incur high time and cost over-
heads, as resources that could otherwise have been reused
are released as soon as the job completes. As an alternative,
we investigate now the potential of a cloud resource
management strategy in which resources are allocated in
bulk for all users, and released only when there is no job left
to be served (strategy S2). To compare these two cloud
resource management strategies, we use the experimental
setup described in Section 5.2; Table 12 shows the obtained
results. The maximum relative cost difference between the
strategies is for these traces around 30 percent (the DAS-2
trace); in three cases, around 10 percent of the total cost is to
be gained. Given these cost differences, we raise as a future
research problem optimizing the application execution as a cost-
performance-security trade-off.

6 RELATED WORK

In this section, we review related work from three areas:
clouds, virtualization, and system performance evaluation.
Our work also comprises the first characterization of the
MTC component in existing scientific computing workloads.

Performance evaluation of clouds and virtualized
environments. There has been a recent spur of research
activity in assessing the performance of virtualized re-
sources, in cloud computing environments [9], [10], [11],
[56], [57] and in general [8], [24], [51], [58], [59], [60], [61]. In
contrast to this body of previous work, ours is different in
scope: we perform extensive measurements using general
purpose and high-performance computing benchmarks to
compare several clouds, and we compare clouds with other
environments based on real long-term scientific computing
traces. Our study is also much broader in size: we perform
in this work an evaluation using over 25 individual
benchmarks on over 10 cloud instance types, which is an
order of magnitude larger than previous work (though size
does not simply add to quality).

Performance studies using general purpose benchmarks
have shown that the overhead incurred by virtualization
can be below 5 percent for computation [24], [51] and below
15 percent for networking [24], [58]. Similarly, the

performance loss due to virtualization for parallel I/O
and web server I/O has been shown to be below 30 [62]
and 10 percent [63], [64], respectively. In contrast to these,
our work shows that virtualized resources obtained from
public clouds can have a much lower performance than the
theoretical peak.

Recently, much interest for the use of virtualization has
been shown by the HPC community, spurred by two
seminal studies [8], [65] that find virtualization overhead to
be negligible for compute-intensive HPC kernels and
applications such as the NAS NPB benchmarks; other
studies have investigated virtualization performance for
specific HPC application domains [61], [66], or for mixtures
of Web and HPC workloads running on virtualized
(shared) resources [67]. Our work differs significantly from
these previous approaches in target (clouds as black boxes
versus owned and controllable infrastructure) and in size.
For clouds, the study of performance and cost of executing a
scientific workflow, Montage, in clouds [9] investigates cost
performance trade-offs between clouds and grids, but uses
a single application on a single cloud, and the application
itself is remote from the mainstream HPC scientific
community. Also close to our work is the seminal study
of Amazon S3 [10], which also includes a performance
evaluation of file transfers between Amazon EC2 and S3.
Our work complements this study by analyzing the
performance of Amazon EC2, the other major Amazon
cloud service; we also test more clouds and use scientific
workloads. Several small-scale performance studies of
Amazon EC2 have been recently conducted: the study of
Amazon EC2 performance using the NPB benchmark suite
[11] or selected HPC benchmarks [68], the early compara-
tive study of Eucalyptus and EC2 performance [56], the
study of file transfer performance between Amazon EC2
and S3 [69], etc. An early comparative study of the
DawningCloud and several operational models [12] extends
the comparison method employed for Eucalyptus [56], but
uses job emulation instead of job execution. Our perfor-
mance evaluation results extend and complement these
previous findings, and gives more insights into the
performance of EC2 and other clouds.

Other (early) performance evaluation. Much work has
been put into the evaluation of novel supercomputers [27],
[29], [30], [31], [47], [48] and nontraditional systems [5], [32],
[37], [49], [70] for scientific computing. We share much of
the used methodology with previous work; we see this as
an advantage in that our results are readily comparable
with existing results. The two main differences between this
body of previous work and ours are that we focus on a
different platform (that is, clouds) and that we target a
broader scientific computing community (e.g., also users of
grids and small clusters).

Other cloud work. Recent work [12], [71] has considered
running mixtures of MTC with other workloads in cloud-
like environments. For this direction of research, our
findings can be seen as further motivation and source of
realistic setup parameters.

7 CoNcLUSION AND FUTURE WORK

With the emergence of cloud computing as a paradigm in
which scientific computing can done exclusively on
resources leased only when needed from big data centers,



IOSUP ET AL.: PERFORMANCE ANALYSIS OF CLOUD COMPUTING SERVICES FOR MANY-TASKS SCIENTIFIC COMPUTING 943

e-scientists are faced with a new platform option. However,
the initial target workloads of clouds does not match the
characteristics of MTC-based scientific computing work-
loads. Thus, in this paper we seek to answer the research
question Is the performance of clouds sufficient for MTC-based
scientific computing? To this end, we first investigate the
presence of an MTC component in existing scientific
computing workloads, and find that this presence is
significant both in number of jobs and in resources
consumed. Then, we perform an empirical performance
evaluation of four public computing clouds, including
Amazon EC2, one of the largest commercial clouds
currently in production. Our main finding here is that the
compute performance of the tested clouds is low. Last, we
compare the performance and cost of clouds with those of
scientific computing alternatives such as grids and parallel
production infrastructures. We find that, while current
cloud computing services are insufficient for scientific
computing at large, they may still be a good solution for
the scientists who need resources instantly and temporarily.
We will extend this work with additional analysis of the
other services offered by clouds, and in particular storage and
network; how do they respond to to the combined stress of
workloads with different characteristics and requirements
that the diverse population of cloud users are supposed to
incur in the future? We will also extend the performance
evaluation with other real and synthetic applications, toward
creating a performance database for the scientific community.
Standing the test of time. The usefulness of our
empirical evaluation part of this work (Section 4.3) may
be reduced with the commercialization of new cloud
services. For example, since mid-July 2010 a new commer-
cial compute service by Amazon, the Cluster Compute
instances, is targeted at HPC wusers. The increase in
performance for this new service versus the Amazon
instances tested in our work can be up to a factor of 8.5
[72], which is similar to the performance gap found by our
performance evaluation. The difference in performance for
the Cluster Compute instances cannot be explained only by
the superior resource performance—the compute perfor-
mance of the Cluster Compute instances is, for example,
only a factor of 1.5 times better than that of the best-
performing instance tested in our study. Another possible
contributor may be that the new instance type offers
dedicated infrastructure (that is, compute and network
resources). Thus, these cloud instances are operated in a
“shared-nothing” mode; historically, such clusters tend to
have low utilization [73], which in turn threatens to cancel
out the commercial benefits. Our performance evaluation
results remain representative for clouds that multiplex their
resources among their users, at least until an isolation
technology is able to limit access to compute, memory,
network, and I/O resources with low overhead; recent yet
early attempts in this direction, such as the Linux containers
[74], are promising. Our performance evaluation may also
be indicative, as a cross-section analysis of the offerings
available on the market, for the differences between the
cloud operators present on the market at any given time.

ACKNOWLEDGMENTS

This work is partially funded by the European Union under
grant agreement number 261585/SHIWA Project.

REFERENCES

[1] Amazon, Inc., “Amazon Elastic Compute Cloud (Amazon EC2),”
http://aws.amazon.com/ec2/, Dec. 2008.

[2] GoGrid, “GoGrid Cloud-Server Hosting,” http://www.gogrid.
com, Dec. 2008.

[3] A. Iosup, O.O. Sonmez, S. Anoep, and D.H]J. Epema, “The
Performance of Bags-of-Tasks in Large-Scale Distributed Sys-
tems,” Proc. ACM Int'l Symp. High Performance Distributed
Computing (HPDC), pp. 97-108, 2008.

[4] I Raicu, Z. Zhang, M. Wilde, LT. Foster, P.H. Beckman, K. Iskra,
and B. Clifford, “Toward Loosely Coupled Programming on
Petascale Systems,” Proc. ACM Conf. Supercomputing (SC), p. 22,
2008.

[5] A. Iosup, C. Dumitrescu, D.H.J. Epema, H. Li, and L. Wolters,
“How Are Real Grids Used? The Analysis of Four Grid Traces and
Its Implications,” Proc. IEEE Seventh Int’l Conf. Grid Computing,
Pp- 262-269, 2006.

[6] U. Lublin, D.G. Feitelson, “Workload on Parallel Supercomputers:
Modeling Characteristics of Rigid Jobs,” J. Parallel and Distributed
Computing, vol. 63, no. 11, pp. 1105-1122, 2003.

[71 D.G. Feitelson, L. Rudolph, U. Schwiegelshohn, K.C. Sevcik, and
P. Wong, “Theory and Practice in Parallel Job Scheduling,” Proc.
Job Scheduling Strategies for Parallel Processing (JSSPP), pp. 1-34,
1997.

[8] L. Youseff, R. Wolski, B.C. Gorda, and C. Krintz, “Para-
virtualization for HPC Systems,” Proc. ISPA Workshops,
pp. 474-486, 2006.

[9] E. Deelman, G. Singh, M. Livny, ].B. Berriman, and J. Good, “The
Cost of Doing Science on the Cloud: The Montage Example,” Proc.
IEEE/ACM Supercomputing (SC), p. 50, 2008.

[10] M.R. Palankar, A. lamnitchi, M. Ripeanu, and S. Garfinkel,
“Amazon S3 for Science Grids: A Viable Solution?” Proc. DADC
'08: ACM Int’l Workshop Data-Aware Distributed Computing, pp. 55-
64, 2008.

[11] E. Walker, “Benchmarking Amazon EC2 for HP Scientific
Computing,” Login, vol. 33, no. 5, pp. 18-23, Nov. 2008.

[12] L. Wang, J. Zhan, W. Shi, Y. Liang, L. Yuan, “In Cloud, Do Mtc or
Htc Service Providers Benefit from the Economies of Scale?” Proc.
Second Workshop Many-Task Computing on Grids and Supercomputers
(SC-MTAGS), 2009.

[13] A.Iosup, H. Li, M. Jan, S. Anoep, C. Dumitrescu, L. Wolters, and
D. Epema, “The Grid Workloads Archive,” Future Generation
Computer Systems, vol. 24, no. 7, pp. 672-686, 2008.

[14] D. Thain, J. Bent, A.C. Arpaci-Dusseau, R.H. Arpaci-Dusseau, and
M. Livny, “Pipeline and Batch Sharing in Grid Workloads,” Proc.
IEEE 12th Int’'l Symp. High Performance Distributed Computing
(HPDC), pp. 152-161, 2003.

[15] S. Ostermann, A. Iosup, R. Prodan, T. Fahringer, and D.H.J.
Epema, “On the Characteristics of Grid Workflows,” Proc. Work-
shop Integrated Research in Grid Computing (CGIW), pp. 431-442,
2008.

[16] The Parallel Workloads Archive Team, “The Parallel Workloads
Archive Logs,” http://www.cs.huji.ac.il/labs/parallel/
workload /logs.html, Jan. 2009.

[17] Y.-S. Kee, H. Casanova, and A.A. Chien, “Realistic Modeling and
Svnthesis of Resources for Computational Grids,” Proc. ACM/IEEE
Conf. Supercomputing (5C), p. 54, 2004.

[18] A. Iosup, O.0. Sonmez, and D.H.J. Epema, “DGSim: Comparing
Grid Resource Management Architectures through Trace-Based
Simulation,” Proc. 14th Int’'l Euro-Par Conf. Parallel Processing,
pp- 13-25, 2008.

[19] L. Youseff, M. Butrico, and D. DaSilva, “Towards a Unified
Ontology of Cloud Computing,” Proc. Grid Computing Environ-
ments Workshop (GCE '08), Nov. 2008.

[20] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, RH. Katz, A.
Konwinski, G. Lee, D.A. Patterson, A. Rabkin, I. Stoica, and M.
Zaharia, “Above the Clouds: A Berkeley View of Cloud Comput-
ing,” Technical Report UCB/EECS-2009-28, EECS Dept, Univ. of
California, Berkeley, Feb. 2009.

[21] R. Prodan and S. Ostermann, “A Survey and Taxonomy of
Infrastructure as a Service and Web Hosting Cloud Providers,”
Proc. Int’l Conf. Grid Computing, pp. 1-10, 2009.

[22] A. Iosup, M. Jan, O.O. Sonmez, and D.H.J. Epema, “The
Characteristics and Performance of Groups of Jobs in Grids,”
Proc. Euro-Par, pp. 382-393, 2007.



944

(23]

(24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

[33]
(34]

(35]

(36]

(371

(38]
[39]

(40]

[41]

(42]

[43]

(44]

(45]

[40]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.22, NO.6, JUNE 2011

R.H. Saavedra, A.J. Smith, “Analysis of Benchmark Characteristics
and Benchmark Performance Prediction,” ACM Trans. Computer
Systems, vol. 14, no. 4, pp- 344-384, 1996.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T.L. Harris, A. Ho, R.
Neugebauer, I. Pratt, and A. Warfield, “Xen and the Art of
Virtualization,” Proc. 19th ACM Symp. Operating Systems Principles
(SOSP), pp. 164-177, 2003.

A. Kowalski, “Bonnie—File System Benchmarks,” technical
report, Jefferson Lab, http://cc.jlab.org/docs/scicomp/
benchmark/bonnie.html, Oct. 2002.

M. Babcock, “XEN Benchmarks, Tech. Rep.,” mikebabcock.ca/
linux/xen/, Aug. 2007.

J.S. Vetter, SR. Alam, TH.D. Jr, M.R. Fahey, P.C. Roth, P.H.
Worley, “Early Evaluation of the Cray XT3,” Proc. 20th Int’l Conf.
Parallel and Distributed Processing Symp. (IPDPS), 2006.

P. Luszczek, D.H. Bailey, J. Dongarra, J. Kepner, RF. Lucas, R.
Rabenseifner, and D. Takahashi, “S12—The HPC Challenge
(HPCC) Benchmark Suite,” Proc. ACM Supercomputing Conf. High
Performance Networking and Computing (SC), p. 213, 2006.

S. Saini, D. Talcott, D.C. Jespersen, M.]. Djomehri, H. Jin, and
R. Biswas, “Scientific Application-Based Performance Compar-
ison of SGI Altix 4700, IBM POWER5+, and SGI ICE 8200
Supercomputers,” Proc. IEEE/ACM Conf. Supercomputing (SC),
p- 7, 2008.

T.H. Dunigan, M.R. Fahey, ].B.W. III, and P.H. Worley, “Early
Evaluation of the Cray X1,” Proc. IEEE/ACM Conf. Supercomputing
(8C), p. 18, 2003.

SR. Alam, RF. Barrett, M. Bast, M.R. Fahey, J.A. Kuehn, C.
McCurdy, J. Rogers, P.C. Roth, R. Sankaran, J.S. Vetter, P.H.
Worley, and W. Yu, “Early Evaluation of IBM BlueGene/P,” Proc.
ACM Conf. Supercomputing (SC), p. 23, 2008.

R. Biswas, M.J. Djomehri, R. Hood, H. Jin, C.C. Kiris, and S. Saini,
“An Application-Based Performance Characterization of the
Columbia Supercluster,” Proc. IEEE Conf. Supercomputing (SC),
p- 26, 2005.

L. McVoy and C. Staelin, “LMbench—Tools for Performance
Analysis,” http://www .bitmover.com/Imbench/, Dec. 2008.

T. Bray, “Bonnie,” 1996, http://www.textuality.com/bonnie/,
Dec. 2008.

P.J. Mucci and K.S. London, “Low Level Architectural Character-
ization Benchmarks for Parallel Computers,” Technical Report
UT-CS-98-394, Univ. of Tennessee, 1998.

N. Yigitbasi, A. Iosup, S. Ostermann, and D. Epema, “C-Meter: A
Framework for Performance Analysis of Computing Clouds,”
Proc. IEEE Ninth Int'l Symp. Cluster Computing and the GRID
(CCGRID '09), pp. 472-477, 2009.

A. losup and D.HJ. Epema, “GrenchMark: A Framework for
Analyzing, Testing, and Comparing Grids,” Proc. IEEE Sixth Int’l
Symp. Cluster Computing and the GRID (CCGrid), pp. 313-320, 2006.
The HPCC Team, “HPCChallenge Results,” http:/ /icl.cs.utk.edu/
hpce/hpec_results.cgi, Jan. 2009.

J. Worringen and K. Scholtyssik, “MP-MPICH: User Documenta-
tion & Technical Notes,” June 2002.

J. Dongarra et al., “Basic Linear Algebra Subprograms Technical
Forum Standard,” Int’l. ]. High Performance Applications and
Supercomputing, vol. 16, no. 1, pp. 1-111, 2002.

K. Goto, R.A.v.d. Geijn, “Anatomy of High-Performance Matrix
Multiplication,” ACM Trans. Math. Software, vol. 34, no. 3, pp. 1-25,
2008.

Advanced Clustering Tech., “Linpack Problem Size Analyzer,”
http:/ /www.advancedclustering.com/, Dec. 2008.

J. Dongarra, P. Luszczek, A. Petitet, “The Linpack Benchmark:
Past, Present and Future,” Concurrency and Computation: Practice
and Experience, vol. 15, no. 9, pp. 803-820, 2003.

A. Verma, P. Ahuja, and A. Neogi, “Power-Aware Dynamic
Placement of Hpc Applications,” Proc. ACM 22nd Ann. Int’l Conf.
Supercomputing (ICS), pp. 175-184, 2008.

M. Zaharia, A. Konwinski, A.D. Joseph, R.H. Katz, and I. Stoica,
“Improving Mapreduce Performance in Heterogeneous Environ-
ments,” Proc. Eighth USENIX Conf. Operating Systems Design and
Implementation (OSDI), pp. 29-42, 2008.

S. Ostermann, A. Iosup, N.M. Yigitbasi, R. Prodan, T. Fahringer,
and D. Epema, “An Early Performance Analysis of Cloud
Computing Services for Scientific Computing,” Technical Report
PDS-2008-006, TU Delft, http://www.eecs.berkeley.edu/Pubs/
TechRpts/2009/EECS-2009-28.html, Dec. 2008.

(47]

(48]

(49]

[50]

[51]

(52]

[53]

[54]

[55]

[50]

(571

[58]

[59]

[60]

[01]

[62]

[63]

[64]

[65]

[66]

[67]

F. Petrini, D.J. Kerbyson, and S. Pakin, “The Case of the Missing
Supercomputer Performance: Achieving Optimal Performance on
the 8,192 Processors of ASCI Q,” Proc. IEEE/ACM Conf. Super-
computing (SC), p. 55, 2003.

D.J. Kerbyson, A. Hoisie, H.J. Wasserman, “A Performance
Comparison between the Earth Simulator and Other Terascale
Systems on a Characteristic ASCI Workload,” Concurrency—
Practice and Experience, vol. 17, no. 10, pp. 1219-1238, 2005.

F. Petrini, G. Fossum, ]J. Fernandez, A.L. Varbanescu, M. Kistler,
and M. Perrone, “Multicore Surprises: Lessons Learned from
Optimizing Sweep3D on the Cell Broadband Engine,” Proc. IEEE
Int’l Parallel and Distributed Processing Symp. (IPDPS), pp. 1-10,
2007.

R.H. Arpaci-Dusseau, A.C. Arpaci-Dusseau, A. Vahdat, L.T. Liu,
T.E. Anderson, and D.A. Patterson, “The Interaction of Parallel
and Sequential Workloads on a Network of Workstations,” Proc.
ACM SIGMETRICS Joint Int’l Conf. Measurement and Modeling of
Computer Systems, pp. 267-278, 1995.

B. Clark, T. Deshane, E. Dow, S. Evanchik, M. Finlayson, J. Herne,
and J.N. Matthews, “Xen and the Art of Repeated Research,” Proc.
USENIX Ann. Technical Conf. (ATC), pp. 135-144, 2004.

A. Tosup, N.M. Yigitbasi, and D. Epema, “On the Performance
Variability of Production Cloud Services,” Technical Report PDS-
2010-002, TU Delft, http:/ /pds.twi.tudelft.nl/reports/2010/PDS-
2010-002.pdf. Jan. 2010.

T. Killalea, “Meet the Virts,” Queue, vol. 6, no. 1, pp. 14-18, 2008.
D. Nurmi, R. Wolski, and J. Brevik, “Varq: Virtual Advance
Reservations for Queues,” Proc. ACM 17th Int’'l Symp. High
Performance Distributed Computing (HPDC), pp. 75-86, 2008.

A. Tosup, D.H]J. Epema, T. Tannenbaum, M. Farrellee, and M.
Livny, “Inter-Operating Grids through Delegated Matchmaking,”
Proc. ACM/IEEE Conf. Supercomputing (SC), p. 13, 2007.

D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L.
Youseff, and D. Zagorodnov, “The Eucalyptus Open-Source
Cloud-Computing System,” Technical Report 2008-10, uCSD,
http://eucalyptus.cs.ucsb.edu/, 2008.

B. Quétier, V. Néri, F. Cappello, “Scalability Comparison of Four
Host Virtualization Tools,” J. Grid Computing, vol. 5, pp. 83-98,
2007.

A. Menon, J.R. Santos, Y. Turner, G.J. Janakiraman, and W.
Zwaenepoel, “Diagnosing Performance Overheads in the Xen
Virtual Machine Environment,” Proc. ACM First Int’l Conf. Virtual
Execution Environments (VEE), pp. 13-23, 2005.

N. Sotomayor, K. Keahey, and 1. Foster, “Overhead Matters: A
Model for Virtual Resource Management,” Proc. IEEE First Int’l
Workshop Virtualization Technology in Distributed Technology
(VTDC), pp. 4-11, 2006.

A.B. Nagarajan, F. Mueller, C. Engelmann, and S.L. Scott,
“Proactive Fault Tolerance for HPC with Xen Virtualization,”
Proc. ACM 21st Ann. Int’l Conf. Supercomputing (ICS), pp. 23-32,
2007.

L. Youseff, K. Seymour, H. You, J. Dongarra, and R. Wolski, “The
Impact of Paravirtualized Memory Hierarchy on Linear Algebra
Computational Kernels and Software,” Proc. ACM 17th Int’l Symp.
High Performance Distributed Computing (HPDC), pp. 141-152, 2008.
W. Yu and J.S. Vetter, “Xen-Based HPC: A Parallel 1/O
Perspective,” Proc. IEEE Eighth Int’l Symp. Cluster Computing and
the Grid (CCGrid), pp. 154-161, 2008.

L. Cherkasova and R. Gardner, “Measuring CPU Overhead for 1/
O Processing in the Xen Virtual Machine Monitor,” Proc. USENIX
Ann. Technical Conf. (ATC), pp. 387-390, 2005.

U.F. Minhas, J. Yadav, A. Aboulnaga, and K. Salem, “Database
Systems on Virtual Machines: How Much Do You Lose?” Proc.
IEEE 24th Int’l Conf. Data Eng. (ICDE) Workshops, pp. 35-41, 2008.
W. Huang, J. Liu, B. Abali, and D.K. Panda, “A Case for High
Performance Computing with Virtual Machines,” Proc. ACM 20th
Ann. Int’l Conf. Supercomputing (ICS), pp. 125-134, 2006.

L. Gilbert, J. Tseng, R. Newman, S. Igbal, R. Pepper, O. Celebioglu,
J. Hsieh, and M. Cobban, “Performance Implications of Virtuali-
zation and Hyper-Threading on High Energy Physics Applica-
tions in a Grid Environment,” Proc. IEEE 19th Int’l Parallel and
Distributed Processing Symp. (IPDPS), 2005.

J. Zhan, L. Wang, B. Tu, Y. Li, P. Wang, W. Zhou, and D. Meng,
“Phoenix Cloud: Consolidating Different Computing Loads on
Shared Cluster System for Large Organization,” Proc. First
Workshop Cloud Computing and Its Application (CCA '08) Posters,
pp- 7-11, 2008.



IOSUP ET AL.: PERFORMANCE ANALYSIS OF CLOUD COMPUTING SERVICES FOR MANY-TASKS SCIENTIFIC COMPUTING 945

[68] C. Evangelinos and C.N. Hill, “Cloud Computing for Parallel
Scientific Hpc Applications: Feasibility of Running Coupled
Atmosphere-Ocean Climate Models on Amazons ec2,” Proc. First
Workshop Cloud Computing and Its Application (CCA '08), pp. 1-6,
2008.

[69] M.-E. Bgin, B. Jones, ]. Casey, E. Laure, F. Grey, C. Loomis, and R.
Kubli, “Comparative Study: Grids and Clouds, Evolution or
Revolution?,” CERN” EGEE-II Report, https://edms.cern.ch/
file /925013 /3 /EGEE-Grid-Cloud.pdf, June 2008.

[70] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, and K.A.
Yelick, “The Potential of the Cell Processor for Scientific
Computing,” Proc. ACM Conf. Computing Frontiers, pp. 9-20, 2006.

[71] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A.D. Joseph,
R.H. Katz, S. Shenker, and I. Stoica, “Mesos: A Platform for Fine-
Grained Resource Sharing in the Data Center,” Technical Report
UCB/EECS-2010-87, UCBerkeley, http://www.eecs.berkeley.
edu/Pubs/TechRpts/2010/EECS-2010-87.html, May 2010.

[72] L. Vu, “Berkeley Lab Contributes Expertise to New Amazon Web
Services Offering,” http://www.lbl.gov/cs/Archive/
news071310.html, July 2010.

[73] J.P.Jones and B. Nitzberg, “Scheduling for Parallel Supercomput-
ing: A Historical Perspective of Achievable Utilization,” Proc. Job
Scheduling Strategies for Parallel Processing (JSSPP), pp. 1-16, 1999.

[74] Ixc Linux Containers Team, “Linux Containers Overview,”
http:/ /Ixc.sourceforge.net/, Aug. 2010.

Alexandru losup received the PhD degree in
computer science in 2009 from the Delft
University of Technology (TU Delft), the Nether-
lands. He is currently an assistant professor with
the Parallel and Distributed Systems Group at
TU Delft. He was a visiting scholar at U.Wis-
consin-Madison and U.California-Berkeley in the
summers of 2006 and 2010, respectively. He is
the cofounder of the Grid Workloads, the Peer-
to-Peer Trace, and the Failure Trace Archives,
which prowde open access to workload and resource operation traces
from large-scale distributed computing environments. He is the author of
more than 50 scientific publications and has received several awards
and distinctions, including best paper awards at IEEE CCGrid 2010,
Euro-Par 2009, and IEEE P2P 2006. His research interests are in the
area of distributed computing (keywords: massively multiplayer online
games, grid and cloud computing, peer-to-peer systems, scheduling,
performance evaluation, workload characterization). He is a member of
the IEEE and the IEEE Computer Society.

Simon Ostermann received the Bakk.techn.
and Dipl.-Ing. degrees from the University of
Innsbruck, Austria, in 2006 and 2008, respec-
tively. Since 2008, he is following a doctoral
track in computer science with the Distributed
and Parallel Systems Group at the Institute for
Computer Science, University of Innsbruck. He
is the author of more than 10 journal and
conference publications. His research interests
are in the areas of resource management and
scheduling in the area of grid and cloud computing.

M. Nezih Yigitbasi received the BSc and MSc
degrees from the computer engineering Depart-
ment of the lIstanbul Technical University,
Turkey, in 2006 and 2008, respectively. Since
September 2008, he is following a doctoral track
in computer science within the Parallel and
Distributed Systems Group, Delft University of
Technology. His research interests are in the
areas of resource management, scheduling,
design and performance evaluation of large-
scale distributed systems, in particular grids and clouds. He is a member
of the |IEEE.

Radu Prodan received the PhD degree from the
Vienna University of Technology, Vienna, Aus-
tria, in 2004. He is currently an assistant
professor at the Institute of Computer Science,
University of Innsbruck, Austria. His research in
the area of parallel and distributed systems
comprise programming methods, compiler tech-
nology, performance analysis, and scheduling.
He participated in several national and European
projects. He is currently coordinating three
Austrian projects and was workpackage Leader in the IST-034601
(edutain@grid) and 26185 (SHIWA) projects. He is the author of more
than 70 journal and conference publications and one book. He was the
recipient of an IEEE Best Paper Award. He is a member of the IEEE.

Thomas Fahringer received the PhD degree in
1993 from the Vienna University of Technology.
Between 1990 and 1998, he worked as an
assistant professor at the University of Vienna,
where he was promoted as an associate
professor in 1998. Since 2003, he has been a
full professor of computer science in the Institute
of Computer Science, University of Innsbruck,
Austria. He coordinated the 1ST-034601 edu-
tain@grid project and was involved in numerous
other Austrian and international European projects. He is the author of
more than 100 papers, including three books. He was the recipient of
two best paper awards from the ACM and the IEEE. His main research
interests include’ software architectures, programming paradigms,
compiler technology, performance analysis, and prediction for parallel
and distributed systems. He is a member of the IEEE.

Dick H.J. Epema received the MSc and PhD
degrees in mathematics from Leiden University,
Leiden, the Netherlands, in 1979 and 1983,
respectively. Since 1984, he has been with the
Department of Computer Science of Delft Uni-
versity of Technology, where he is currently an
associate professor in the Parallel and Distrib-
uted Systems Group. During 1987-1988, the fall
of 1991, and the summer of 1998, he was a
visiting scientist at the IBM T.J. Watson Re-
search Center in New York. In the fall of 1992, he was a visiting
professor at the Catholic University of Leuven, Belgium, and in the fall of
2009 he spent a sabbatical at UCSB. He has coauthored more than
70 papers in peer-reviewed conferences and journals, and was a
general cochair of Euro-Par 2009 and IEEE P2P 2010. His research
interests are in the areas of performance analysis, distributed systems,
peer-to-peer systems, and grids. He is a member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.



