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Performance Analysis of Cloud Radio Access

Networks with Distributed Multiple Antenna

Remote Radio Heads
F. A. Khan, H. He Student Member, IEEE, J. Xue Member, IEEE and T. Ratnarajah Senior Member, IEEE

Abstract—In this paper, the performance of cloud radio access
networks (CRANs) where spatially distributed remote radio
heads (RRHs) aid the macro base station (MBS) in transmission
is analysed. In order to reflect a realistic scenario, the MBS and
the RRHs are assumed to be equipped with multiple antennas
and distributed according to a Poisson point process. Both,
the MBS and the RRHs, are assumed to employ maximal
ratio transmission (MRT) or transmit antenna selection (TAS).
Considering downlink transmission, the outage performance of
three schemes is studied; first is the selection transmission (ST)
scheme, in which the MBS or the RRH with the best channel
is selected for transmission. In the second scheme, all the RRHs
participate (ARP) and transmit the signal to the user, whereas
in the third scheme, a minimal number of RRHs, to attain
a desired data-rate, participate in transmission (MRP). Exact
closed-form expression for the outage probability is derived for
the ST scheme. For the ARP and MRP schemes, analytical
approximations of the outage probability are derived which are
tight at high signal-to-noise ratios. In addition, for the MRP
scheme, the minimal number of RRHs required to meet a target
data rate is also calculated which can be useful in characterizing
the system complexity. Furthermore, the derived expressions
are validated through numerical simulation. It is shown that
the average diversity gains of these schemes are independent
of the intensity/number of RRHs and only depend on the
number of antennas on the MBS. Furthermore, the ARP scheme
outperforms the ST scheme when the MBS/RRHs transmit with
maximum power. However, in case of a sum power constraint
and equal power allocation, the ST scheme outperforms the ARP
scheme.

Index Terms—Cloud radio access networks, maximum ratio
transmission, MISO, Poisson point process, stochastic geometry,
transmit antenna selection.

I. INTRODUCTION

Cell densification is one of the key technologies proposed to

improve the capacity and area spectral efficiency of existing

networks [1]. A major drawback of increasing the cell/base

station (BS) density is that the overall interference in the

network also increases resulting in a limited capacity gain [2],

[3]. In addition, deploying more BSs is neither cost efficient

nor power efficient [4].

Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.
F. A. Khan, H. He, J. Xue and T. Ratnarajah are with the School of
Engineering, University of Edinburgh, Edinburgh, UK. Email: {F.Khan, H.He,
J.Xue, T.Ratnarajah}@ed.ac.uk. The corresponding authors are Fahd Ahmed
Khan (fahd.khan@kaust.edu.sa) and Jiang Xue (J.Xue@ed.ac.uk). This work
was supported by the Seventh Framework Programme for Research of the
European Commission under grant number HARP-318489.

Cloud radio access networks (CRANs) have been proposed

as a low-cost and power-efficient solution to meet the increas-

ing capacity demand. In the existing networks, the baseband

units (BBUs), which consume high power, and the radio units

are situated together. The idea in CRANs is to move the

BBUs to a central location/data centre and connect it to the

radio units, also called remote radio heads (RRHs), via optical

fibres [4]. Moving the BBUs to a central location results in

improved power efficiency. In addition, the cost of network

expansion is lowered because only low cost RRHs/BSs need

to be deployed for improving the coverage as well as the

capacity of the network. Furthermore, it has been shown that

through coordinated multipoint processing (CoMP), the overall

interference can be limited. CoMP is very efficient when all

the RRHs are connected with each other and possess the data

information of each other [1], [5]. CoMP can easily be adopted

in CRANs, to reduce the interference and improve the network

capacity.

A. Existing Relevant Work:

When each of the RRH has a single antenna, the CRAN

model becomes similar to the distributed antenna system

(DAS). There have been several studies to analyse the per-

formance of the DAS see [6]–[9] and the references therein.

In [7] it was shown that the average spectrum efficiency per

sector and the cell edge spectrum efficiency in the traditional

system with co-located BS antennas (TS-CBA) is better than

that of a DAS without frequency reuse. However, when the

frequency reuse is considered the DAS outperforms TS-CBA.

In [6], it was shown that DAS reduces inter-cell interference

in a multicell environment and significantly improves capacity

particularly in case of the users near the cell boundaries. In

[8], the cell average ergodic capacity for a DAS in a composite

fading channel model was analysed. An antenna selection

strategy to maximize the energy efficiency under a pre-defined

target rate constraint was proposed in [9]. In [10], it was

shown that, for a CRAN with distributed RRHs with multiple

antennas, the optimal distributed beamforming scheme had a

form of maximum ratio transmission (MRT) at each RRH and

the outage probability and ergodic capacity under Rayleigh

fading channels was also analyzed. A joint strategy to select

the antenna, the regularization factor, and the transmit power

to maximize the average weighted sum-rate was proposed in

[11].

In these previous works, the RRHs were assigned fixed

regular locations. However, in many practical situations, this
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is difficult to do so and the RRHs are located randomly [12]–

[17]. When the RRHs are assumed to be randomly placed, it

can give a reasonable lower bound on the performance of an

actual system. In [12], the authors proposed a low-complexity

power allocation scheme among the distributed transmit an-

tennas. In [13], the antennas were distributed according to a

binomial point process, the users were distributed according

to a Poisson point process (PPP) and a composite fading

channel model was assumed. The authors derived analytical

expressions for the outage performance of only selection trans-

mission, where the antenna with the best channel was selected

to serve the user, under different scenarios. It was shown in

[14], that the DAS yields a higher capacity gain compared

to the TS-CBA, provided the channel state information (CSI)

is available at the transmitter and the receiver. The ergodic

capacity of a multi-cell distributed RRH system, where the

RRH locations were modelled as a spatial PPP was studied in

[15], and it was shown that this system provides better cell-

edge performance and can even provide higher capacity in a

user-centric configuration. In [16], the RRHs were distributed

according to a PPP and a Rayleigh fading channel with a

standard path loss model was assumed. Different from the

work in [12], the outage performance of selection transmission

scheme, in which the macro BS (MBS) or the RRH with the

best channel is selected for transmission, was compared to the

scheme where all the RRHs employ distributed beamforming

and aid in transmission [16]. In addition, the minimal number

of RRHs required to meet a predefined quality of service (QoS)

was also studied. In [17], it was shown that the uplink sum

capacity increases as a result of reduction in the inter-cell

interference of a DAS.

B. Our Contribution:

In [12]–[17], the RRHs were assumed to be equipped with

a single antenna. However, in the proposed CRAN model,

the RRHs will be equipped with multiple antennas. Therefore,

different from the models in [12]–[17], in this work, a more

general and realistic scenario is considered, and we analyze

the performance of a network where several multiple antenna

RRHs are distributed randomly (according to a PPP) over

a circular region and serve the user along with a multiple

antenna macro base station (MBS). To the authors best knowl-

edge, for this network setup, the performance of a CRAN

with multiple antenna RRHs has not been analysed previously.

Having multiple antennas at the MBS and RRHs leads to a new

and more involved analysis compared to the one presented in

[12]–[17] because the distribution of the signal-to-noise ratio

(SNR) from the RRHs to the users is no longer an exponential

distribution1. In addition, in [16] the path loss coefficient was

1The distribution of the large-scale fading gain (LSFG) and the small-
scale fading gain (SSFG) in the case of multiple antenna systems is well
known. The method to obtain the distribution of the received SNR using the
distributions of the LSFG and the SSFG is also straightforward and comes
from basic probability theory and has been reported in many existing works eg
see [12], [13], [16], [18] and references therein. However, to the authors best
knowledge, even with the known fading distributions and the analysis method,
the distribution of the received SNR from the multiple antenna RRHs to the
users has not been reported previously. Moreover, it is more challenging to
obtain the performance expressions for the transmission schemes considered
in this work using the derived distribution of the received SNR.

fixed to 2. However, in this work, the performance is analysed

for arbitrary value of the path loss coefficient which also

results in a more involved analysis.

The performance of this network is studied under the sce-

nario when the MBS and the RRHs have varying complexity.

Specifically, two levels of complexity are considered. The

MBS and RRHs with higher complexity consist of multiple

radio frequency (RF) chains and employ maximum-ratio-

transmission (MRT) whereas the MBS and RRHs with lower

complexity consist of a single RF chain and employ transmit

antenna selection (TAS). Furthermore, three different transmis-

sion schemes are considered; 1) the MBS or the RRH with the

best channel participates in transmission, also called selection

transmission (ST), 2) all the RRHs participate (ARP) and aid

the MBS in transmission and 3) minimal number of RRHs to

attain a desired data-rate participate in transmission (MRP).

Employing more RRHs results in a higher cost in terms of

higher power expenditure and requires more control and data

processing for synchronizing the transmissions. Therefore,

MRT can help improve the power efficiency and reduce the

overhead compared to ARP scheme as was also discussed in

[9], [16]. From among the three schemes considered, ST has

the lowest cost and ARP has the highest cost.

The performance of these schemes is analysed in terms

of outage probability. Exact closed-form expression for the

outage probability is derived for the ST scheme, whereas, a

tight approximation of the outage probability at high signal-

to-noise ratio is obtained for the ARP scheme. In the worst

case scenario, the MRP scheme becomes the same as the ARP

scheme and therefore it has the same outage probability as the

ARP scheme. In addition, in order to quantify the complexity

of the MRP scheme, we also analyze and obtain expressions

for the minimum number of RRHs required to achieve a

certain QoS. These expressions are obtained for two cases,

one in which the RRHs have fixed transmit power and the

other in which the RRHs can adapt power and compensate

the pathloss. Furthermore, the derived expressions are verified

through numerical simulations. Our simulation results show

the effective trade-off between number of RRHs and number

of antennas at each RRH. For example, considering the ARP

scheme with MRT, increasing the number of antennas at

each RRHs is more effective than employing more RRHs, as

increasing the number of RRHs results in a lower transmit

power at the MBS/RRHs and a lower coding gain. In addition,

it is also shown that at high SNR regime, ST, ARP and MRP

achieve a diversity order mT , where mT is the number of

antennas at the MBS, and this diversity order does not depend

on the number/intensity of the RRHs.

The rest of the paper is organized as follows. The system

model is explained in section II. The statistics of the channel

used in the performance analysis of each scheme are derived

in Section III. The analytical expressions for the outage perfor-

mance for the ST and ARP schemes as well as the complexity

analysis of the MRP scheme is presented in Section IV. The

numerical results are presented in Section V. Finally, the main

results are summarized in the concluding Section VI.
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II. SYSTEM MODEL

Consider a network shown in Fig 1, where a user is being

served by a central intelligence unit (can also be termed as

a macro-cell base station (MBS)), at a distance R from the

user, and a group of N RRHs distributed randomly over a

circular region D, of radius R, around the user location2.

The MBS is equipped with mT antennas whereas each RRH

has nT antennas. It is assumed that the location of the

RRHs obey a homogeneous Poisson point process (PPP) with

intensity λRRH , therefore, N , is Poisson distributed, i.e.,

Pr{N RRH in Disc D}= αN

Γ(N+1)
e−α where α = πR2λRRH .

The channel vector between the n-th RRH and the user

U can be written as gn = [gn,1...gn,nT
]
T

, where gn,t is the

channel gain between the t-th antenna of n-th RRH and the

user, (·)T denotes the transpose operator. Assuming Rayleigh

fading channel gn,t ∼ CN (0, µ) where CN (x, y) denotes

complex Gaussian random variable (RV) with mean x and

variance y and µ denotes the mean power of the channel.

Similarly, the channel between the user and the MBS is

denoted as g0, where g0 = [g0,1...g0,mT
]
T

. The distance of the

n-th RRH from the centre is denoted by dn. As the locations

of the RRHs are random, dn is a RV with distribution

fdn (x) =
2x

R2
; 0 ≤ x ≤ R. (1)

Transmission Schemes:

For the system under consideration, three transmission

schemes are studied, namely; 1) selection transmission (ST),

2) all the RRHs participate (ARP) and 3) minimal number of

RRHs participate (MRP). In ST, the MBS or the RRH with

the best channel is selected for transmission whereas in ARP,

all the RRHs transmit to the user3. The ST scheme has lower

2In our analysis, we condition on the location of the user. The MBS at a
distance R and the RRHs within a distance R from the user, serve the user.
In this model, if the user is displaced and comes closer to the MBS, it implies
that R will reduce. As a result the area of the circular region will also reduce.
The converse is also valid. The distribution of the distance of the user from
the RRHs depends on R and thus, it will change when R changes.

3In both these schemes, the MBS also participates in transmission. The
performance expressions derived in this paper are derived for this scenario.
The performance expressions for the scenario in which the MBS does not
transmit, can easily be obtained by substituting mT = 0 in the derived
expressions.

overhead compared to the ARP scheme as it does not require

coordination among the RRHs. However, this lower overhead

is possible at the cost of some performance loss as will be

discussed later.

Using all RRHs in the ARP scheme provides the optimal

reception reliability but at the price of increasing system

complexity. However, in some instances, optimal performance

is not always needed and only a certain data-rate requirement

is to be satisfied. In such cases, it is possible to achieve

the pre-defined data-rate using only a subset of the available

RRHs [9]. Using a minimal number of RRHs is beneficial

as it yields a practical scheme with reduced complexity and

ensuring desired system performance. Thus, in MRP scheme,

the minimal number of RRHs required to meet a pre-defined

data rate are used for transmission. In addition, in case of all

these schemes, it is assumed that the multiple antenna MBS

and RRHs employ MRT or TAS for transmission of the signal.

In this sequel we analyse the performance of these trans-

mission schemes in terms of outage probability. In the next

section, we derive the required statistics of the channel for

analysing the outage probability.

III. FINDING STATISTICS OF THE CHANNEL

A. Statistics of SNR for MRT

When MRT is employed at the MBS and the RRHs, the

received signal-to-noise ratio (SNR) from the n-th RRH to

the user can be given as [16]

γn =
P

N0

(

1

1 + dv
n

)

‖gn‖
2 (2)

where P is the transmit power at the MBS and each RRH,

N0 denotes the noise power at the user, term δn = (1 + dvn)
denotes the pathloss, v is the path loss coefficient, and ‖·‖
denotes the 2-norm4. When N RRHs transmit using MRT, the

overall SNR at the user is given as

γ =
N
∑

n=1

γn =
P

N0

N
∑

n=1

(

1

1 + dv
n

)

‖gn‖
2
. (3)

Similarly, the SNR of the MBS can be given as [16]

γ0 =
P

N0

(

1

1 + Rv

)

‖g0‖
2
. (4)

When the MBS and the N RRHs transmit using MRT, the

overall SNR at the user is given as

γMBS =

N
∑

n=0

γn =
P

N0

N
∑

n=0

(

1

1 + dv
n

)

‖gn‖
2
= γ0 + γ (5)

where d0 = R. In order to analyse the performance of this

scheme, the statistics of γMBS and γ, such as the cumulative

distribution function (CDF) and the probability distribution

function (PDF), are required. For deriving the statistics of

γMBS and γ, the statistics of γn are required. Therefore, the

CDF γn is given by following Proposition.

4In deriving (2), it is assumed that the transmitted signal vector is

x = P
g
H
n

|gn|
s, where s is the transmitted symbol having mean zero and unit

variance. Therefore, the average transmit power is E[‖x‖2] = P , where E[·]
is the expectation operator. Moreover, in this paper, it is assumed that the
MBS and the RRHs employ equal power allocation and, therefore, transmit
with the same power P .
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Fγn (Φ) = 1 −

nT −1
∑

i=0

i
∑

j=0

(i

j

) 2

Γ (i + 1) vR2
e
−

N0Φ
Pµ

(

N0Φ

Pµ

)i−
(

j+ 2
v

)

ζ

(

j +
2

v
,
N0Φ

Pµ
R

v

)

(6)

Proposition 1. When all the RRHs transmit using MRT, the

CDF of the SNR of the n-th RRH received at the user, denoted

by γn, is given in (6).

Proof: See Appendix A.

The CDF in (6) is obtained in closed-form and is given

in terms of incomplete Gamma function which can be easily

evaluated using existing mathematical packages. In addition,

the obtained CDF is valid for arbitrary value of the pathloss

exponent, v, unlike [16] in which the pathloss exponent was

assumed fixed i.e. v = 2. Therefore, this expression in (6)

is more general and the CDF for the scenario considered in

[16] can be obtained by substituting nT = 1 and v = 2. By

substituting, Φ = 2R − 1 in (6), where R denotes the data-

rate, the outage probability for the n-th RRH can be obtained.

Furthermore, the PDF of the SNR can be easily obtained by

taking the derivative of (6) w.r.t. Φ.5

It is not trivial to obtain the statistics of γ using the CDF

derived in (6). Therefore, we derive an approximation of the

CDF of γn, using which one can obtain the statistics of γ. The

approximate CDF of γn is given in following Proposition.

Proposition 2. When all the RRHs transmit using MRT, the

CDF of the SNR of the n-th RRH received at the user, denoted

by γn, can be approximated as

Fγn (Φ) ≈

K
∑

p=0

Ξp

(

N0Φ

Pµ

)nT +p

(7)

where the infinite series is truncated to K + 1
terms, K is any positive integer and Ξp =
∑nT−1

i=0

∑i
j=0

∑

u=l+k=nT +p−i

2(ij)(−1)u+1(Rv)k+i

v(k+j+ 2
v )Γ(i+1)Γ(l+1)Γ(k+1)

.

Proof: See Appendix B.

It can be noted that the CDF in (7) is a polynomial function

and has been limited to K + 1 terms. As K → ∞, the

approximation becomes closer to the exact CDF given in

(6). Furthermore, this approximation in (7) is tight at high

SNRs6. Our simulation results show that even for, K ≤ 10, the

simulation results match the analytical results at high SNRs.

Moreover, the approximate PDF of the SNR can be easily

obtained by taking the derivative of (7) w.r.t. Φ. In addition,

using (7), the approximate CDF of γ can be derived and is

given in following Proposition.

5Note that using the CDF and PDF expressions derived in this work, the
expressions for the moment-generating-function (MGF) of the SNR as well
as symbol error rate (SER) performance can be obtained for the system under
consideration. However, it is omitted due to space limitation.

6High SNR implies that z = N0Φ

Pµ
is very small i.e. z ≈ 0. The CDF in

(7), Fγn (Φ) ≈
∑K

p=0 Ξp (z)nT +p, is thus, a summation of powers of z.

When z is very small, eg. in the high SNR regime, it implies zb ≪ za ≤ z

where a and b are any positive integers and b > a. Therefore, in this case,
the summation result is only influenced by lower powers and the terms with
higher powers have minimal contribution and can be neglected. Therefore, the
CDF in (7) approximates the CDF at high SNR accurately. However, at low
SNRs, i.e. large z, this approximation might not be accurate.

Proposition 3. When N RRHs transmit using MRT, the CDF

of the overall SNR received at the user, denoted by γ, can be

approximated as

Fγ (Φ) ≈
∑

IN

κIN

Γ
(

NnT + ξIN + 1
)

(

N0Φ

Pµ

)NnT +ξIN (8)

where
∑

IN
is shorthand notation of

∑K
i1=0

∑K
i2=0 ...

∑K
iN=0

and ξIN =
∑N

l=1 il and κIN =
∏N

l=1 ΞilΓ (nT + il + 1).

Proof: See Appendix C.

The approximation given in (8) closely approximates the

exact CDF at high SNRs. The CDF is in form of a polynomial

function and can be easily implemented in existing mathe-

matical packages. For a CRAN system with N participating

RRHs, the CDF in (8) can be used to obtain the approximate

outage probability. By substituting, Φ = 2R − 1 in (8), the

approximate outage probability at the user can be obtained

when N RRHs transmit using MRT. The approximate PDF of

γ can be easily obtained by taking the derivative of (8) w.r.t.

Φ.

Diversity Order: (8) is in form of a polynomial function

and at high SNRs, it can be approximated by its lowest order

term, which is obtained by taking ξIN = 0 and (8) can be

approximated as

Fγ (Φ) ≈ F
∞
γ (Φ) =

(Ξ0Γ (nT + 1))N

Γ (NnT + 1)

(

N0Φ

Pµ

)NnT

. (9)

Using (9), it can be easily shown that the diversity gain7

achieved when N RRHs transmit using MRT is NnT . When

N is a RV, the diversity gain is different as will be shown in

Section IV.

B. Statistics of SNR for TAS

In case of TAS, the MBS and the RRHs transmit using the

antenna providing the highest SNR. The SNR from the n-th

RRH can be given as

Υn =
P

N0

max
t

{(

1

1 + dv
n

)

|gn,t|
2

}

(10)

where 1 ≤ t ≤ nT . When N RRHs transmit using the best

antenna, the overall SNR at the user is given as

Υ =
P

N0

N
∑

n=1

{

max
t

{(

1

1 + dv
n

)

|gn,t|
2

}}

. (11)

Similarly, the SNR of the MBS can be given as [16]

Υ0 =
P

N0
max

t

{(

1

1 + Rv

)

|g0,t|
2

}

. (12)

When the MBS and N RRHs transmit after selecting the best

antenna, the overall SNR at the user is given as

ΥMBS =
P

N0

N
∑

n=0

{

max
t

{(

1

1 + dv
n

)

|gn,t|
2

}}

= Υ0 + Υ (13)

7Diversity gain can be obtained as d = limN0
P

→0

log
(

F
(

N0
P

))

log
(

N0
P

) where

F (·) denotes the CDF.
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where d0 = R. Similar to the case of MRT, in order to analyse

the performance of this scheme, the statistics of ΥMBS and

Υ, such as the CDF and PDF, are required. For deriving the

statistics of ΥMBS and Υ, the statistics of Υn are required.

Therefore, the CDF of Υn is obtained and is given in following

Proposition.

Proposition 4. When all the RRHs transmit using TAS, the

CDF of the SNR of the n-th RRH received at the user, denoted

by Υn, is given in (14).

Proof: See Appendix D.

Similar to the expression in case of MRT, the CDF in (14)

is obtained in closed-form and is given in terms of incomplete

Gamma function which can be easily evaluated using existing

mathematical packages. In addition, the obtained CDF is valid

for arbitrary value of the pathloss exponent, v. By substituting,

Φ = 2R − 1 in (14) the outage probability for the n-th RRH

can be obtained. Furthermore, the PDF of the SNR can be

easily obtained by taking the derivative of (14).

Again, in this case, it is not trivial to obtain the statistics

of Υ using the CDF derived in (14). Therefore, we derive an

approximation of the CDF of Υn, using which one can obtain

the statistics of Υ. The approximate CDF of Υn is given in

following Proposition.

Proposition 5. When all the RRHs transmit using TAS, the

CDF of the SNR of the n-th RRH received at the user, denoted

by Υn, can be approximated as

FΥn (Φ) ≈

K
∑

i=0

χi

(

N0Φ

Pµ

)nT +i

(15)

where χi =
∑nT

t=1

∑

u=k+l=nT +i

(
nT

t

) 2(−1)u+tRvktu

vΓ(l+1)Γ(k+1)(k+ 2
v )

and the infinite series is truncated to K + 1 terms.

Proof: Proof follows similar steps to the proof of Propo-

sition 2 and thus has been omitted due to space limitation.

Similar to MRT scheme, the CDF in (15) is a polynomial

function and has been limited to K + 1 terms. As K → ∞,

the approximation converges to the exact CDF. Furthermore,

this approximation in (15) is tight at high SNRs. Again,

the approximate PDF of the SNR can be easily obtained by

taking the derivative of (15) w.r.t. Φ. Furthermore, using (15),

the approximate CDF of Υ can be derived and is given in

following Proposition.

Proposition 6. When N RRHs transmit using TAS, the CDF

of the overall SNR received at the user, denoted by Υ, can be

approximated as

FΥ (Φ) ≈
∑

IN

κIN

Γ
(

NnT + ξIN + 1
)

(

N0Φ

Pµ

)NnT +ξIN (16)

where
∑

IN
is shorthand notation of

∑K
i1=0

∑K
i2=0 ...

∑K
iN=0

and ξIN =
∑N

l=1 il and κIN =
∏N

l=1 χilΓ (nT + il + 1).

Proof: Proof follows similar steps to the proof of Propo-

sition 3 and thus has been omitted due to space limitation.

Again, in this case, the CDF given in (16) is a polynomial

function which is tight at high SNRs. The approximate PDF

of Υ can be easily obtained by taking the derivative of (16)

w.r.t. Φ. By substituting, Φ = 2R−1 in (16), the approximate

outage probability at the user can be obtained when all the

RRHs transmit using TAS.

Diversity Order: Again, in this case, (16) is in form of a

polynomial function and at high SNRs it can be approximated

by its lowest order term, which is obtained by taking ξIN = 0
and (16) can be approximated as

FΥ (Φ) ≈ F
∞
Υ (Φ) =

(χ0Γ (nT + 1))N

Γ (NnT + 1)

(

N0Φ

Pµ

)NnT

. (17)

Using (17), it can be easily shown that the diversity gain

achieved when N RRHs transmit using TAS is NnT .

IV. PERFORMANCE ANALYSIS

A. ST Scheme

In this scheme, the MBS or the RRH with the best channel

is selected for transmission. Therefore, the outage event occurs

when the channels of both the MBS and the best RRH are in

outage.

When the MBS and N RRHs transmit using MRT, the

outage probability can be given as

PMRT,ST (Φ|N) =
(

Fγ0 (Φ)
)

(Fγn (Φ))N (18)

where Fγ0 (y) = 1
Γ(mT )ζ

(

mT ,
y
βµ

)

and β = P
N0(1+Rv) . As

N is a RV, the overall outage probability can be given as

PMRT,ST (Φ) =

∞
∑

N=0

(

Fγ0 (Φ)
)

(Fγn (Φ))
N αN

Γ (N + 1)
e
−α

. (19)

Similarly, when the MBS and N RRHs transmit using TAS,

the outage probability can be given as

PTAS,ST (Φ|N) =
(

FΥ0 (Φ)
)

(FΥn (Φ))
N (20)

where FΥ0 (Φ) = 1+
∑mT

t=1 (−1)t
(
mT

t

)
e−

Φ
βµ

t. As N is a RV,

the overall outage probability can be given as

PTAS,ST (Φ) =

∞
∑

N=0

(

FΥ0 (Φ)
)

(FΥn (Φ))N
αN

Γ (N + 1)
e
−α

. (21)

(19) and (21) give the average probability of outage of the

system with Poisson distributed RRHs.

Diversity Order:

1) Number of RRHs is N : In the case of MRT at the

MBS/RRHs, at high SNRs, (7) can be approximated as

F
∞
γn

(Φ) ≈ Ξ0

(

N0Φ

Pµ

)nT

(22)

and Fγ0 (Φ) = 1
Γ(mT )ζ

(

mT ,
ΦN0(1+Rv)

µP

)

≈ F∞
γ0

(Φ) =
ΦmT (1+Rv)mT

Γ(mT )mTµmT

(
N0

P

)mT
. When the MBS and N RRHs trans-

mit using MRT, at high SNRs the outage probability can be

approximated as

P
∞
MRT,ST (Φ|N) ≈

(

F
∞
γ0

(Φ)
)(

F
∞
γn

(Φ)
)N

=
ΦmT +NnT (1 + Rv)mT ΞN

0

µmT +NnT Γ (mT )mT

(

N0

P

)mT +NnT

.

(23)

Using (23), it can be easily shown that, when N RRHs are

present and the MBS/RRHs employ MRT, the diversity gain

achieved by ST scheme is (NnT +mT ).
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FΥn (Φ) = 1 +
2

v

nT
∑

t=1

(−1)
t
(nT

t

)

e
−

N0t
Pµ

Φ
(

R
v N0t

Pµ
Φ

)− 2
v
ζ

(

2

v
,
N0t

Pµ
ΦR

v

)

(14)

Similarly, when the MBS/RRHs employ TAS, at high SNRs

the outage probability of the ST scheme can be approximated

as

P∞
TAS,ST (Φ|N) ≈

(

F
∞
Υ0

(Φ)
)(

F
∞
Υn

(Φ)
)N

=
ΦmT +NnT (1 + Rv)mT χN

0

µmT +NnT

(

N0

P

)mT +NnT

.

(24)

Using (24), it can be easily shown that, when N RRHs are

present and the MBS/RRHs employ TAS, the diversity gain

achieved by ST scheme is (NnT +mT ).

2) Number of RRHs is random: At high SNRs, using (23),

(19) can be approximated as

P∞
MRT,ST (Φ) = Gγ (0)

(

N0

P

)mT

e
−α

+ Gγ (1)
αe−α

Γ (2)

(

N0

P

)mT +nT

+ . . . ≈ Gγ (0)

(

N0

P

)mT

e
−α

(25)

where Gγ (N) =
ΦmT +NnT (1+Rv)mT ΞN

0

µmT +NnT Γ(mT )mT
. Using (25), it can be

easily shown that, when the number of RRHs is random and

the MBS/RRHs employ MRT, the diversity gain achieved by

ST scheme is mT
8.

Similar derivations can be done for ST scheme,

where the MBS/RRHs employ TAS, which will yields

the expression of outage probability at high SNR, as

PTAS,ST ≈ GΥ (0)
(
N0

P

)mT
e−α where, GΥ (N) =

ΦmT +NnT (1+Rv)mT χN
0

µmT +NnT
. Again using this expression, it can be

easily shown that, when the number of RRHs is random and

the MBS/RRHs employ TAS, the diversity gain achieved by

ST scheme is mT .

This shows that the diversity order of the ST scheme is mT

which is the number of antennas on the MBS. This indicates

that the diversity order can be increased by increasing mT and

vice versa. Furthermore, it can be deduced that the parameters

of the RRHs do not affect the diversity order. For example, by

varying the intensity λRRH or the number of antennas, nT ,

the diversity order cannot be varied. However, (25) and the

corresponding expression in the case of TAS involves the term

e−α where α depends on λRRH . This means that the intensity

of the RRHs, λRRH , does impact the outage probability. For

example, a larger λRRH implies a larger α and thus, a lower

outage probability.

B. ARP Scheme

In this scheme, all the RRHs are selected for transmission.

Therefore, the outage event will occur if the overall SNR from

the MBS and the RRHs is in outage.

When the MBS and N RRHs transmit using MRT, the

outage probability can be given as

PMRT,ARP (Φ|N) = Pr{γ + γ0 < Φ} = Pr{γ < Φ − γ0}. (26)

8If the MBS does not participate in transmission, it can be shown, that the
average diversity gain achieved is nT .

PMRT,ARP (Φ) can be expressed as

PMRT,ARP (Φ|N) =

∫ Φ

0

Fγ (Φ − γ0) fγ0 (γ0) dγ0. (27)

Substituting Fγ (·) and fγ0 (·), applying the binomial theorem

and solving the resulting integral, yields the outage probability

expression given in (28), where µβ = Pµ
N0(1+Rv) and µα =

P
N0

µ. The overall outage probability can be given as

PMRT,ARP (Φ) =

∞
∑

N=0

PMRT,ARP (Φ|N)
αN

Γ (N + 1)
e
−α

. (29)

Similarly, when the MBS and N RRHs transmit using TAS,

the outage probability can be given as

PTAS,ARP (Φ|N) =

∫

Φ

0

FΥ (Φ − x) fΥ0 (x) dx. (30)

Again, substituting FΥ (·) and fΥ0 (·), and solving the re-

sulting integral using [19, eq. (3.381.1)] gives the outage

probability expression in (31). The overall outage probability

is given as

PTAS,ARP (Φ) =
∞
∑

N=0

PTAS,ARP (Φ|N)
αN

Γ (N + 1)
e
−α

. (32)

Diversity Order: For this scheme, the probability of outage

can be upper bounded by the outage probability of the ST

scheme. This implies that the diversity order achieved by ARP

scheme is also (NnT +mT ) when N RRHs serve the user

along with the MBS, and is mT when random number of

RRHs serve the user.

C. MRP Scheme

In this scheme, only a subset of the available RRHs is

employed to meet a specified data-rate requirement. Using

this scheme, a minimal number of RRHs are used, which

is beneficial as it yields a practical scheme with reduced

complexity and ensuring desired system performance. The

outage probability of this scheme will be same as that of the

MRT scheme, because the outage event will only occur when

the overall SNR from the MBS and all the RRHs is in outage.

Therefore, in this section, we derive expression for the average

number of RRHs that are required to meet a pre-defined data

rate. This expression is beneficial as it gives information to the

network operators about the minimal average number of RRHs

that are needed to be activated to achieve a certain data-rate

requirement.

We consider the same network of Fig. 1. However, for

mathematical tractability, the MBS is not considered in this

case and N ≥ 2 9. Assuming that the SNR for each RRH

is denoted as γi where i ∈ [1, . . . , N ]. All SNRs are ordered

as γ(N) ≥ γ(N−1) ≥ . . . ≥ γ(1). The subset of RRHs that

is minimally sufficient to meet a pre-defined data rate should

correspond to the S largest SNRs. Without loss of generality,

9Note that, when N = 1, the single RRH must always transmit and it
determines the outage performance.
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PMRT,ARP (Φ|N) =
∑

IN

NnT+ξIN
∑

l=0

(NnT + ξIN
l

)

(

1

µα

)NnT +ξIN
(

1

µβ

)−l κIN
(−1)l Φ

NnT +ξIN
−l

ζ
(

mT + l, Φ
µβ

)

Γ (mT ) Γ
(

NnT + ξIN + 1
) (28)

PTAS,ARP (Φ|N) =
∑

IN

mT
∑

t=1

(mT

t

)

(

1

µα

)NnT+ξIN κIN
(−1)t e

− t
µη

Φ

Γ
(

NnT + ξIN + 1
)

(

−
t

µη

)−NnT −ξIN
ζ

(

NnT + ξIN + 1,−Φ
t

µη

)

(31)

denote θN,n =
∑n

i=1 γ(N−i+1), the averaged minimal number

of RRHs to meet a pre-defined data rate is given as [16]

n̄N =

N
∑

n=1

n · Pr(S = n|N) (33)

where

Pr(S = n|N) =











1 − FθN,1
(ǫ) ; n = 1

FθN,n−1
(ǫ)− FθN,n

(ǫ) ; 2 ≤ n ≤ N − 1

FθN,N−1
(ǫ) ; n = N.

(34)

From (33) and (34) it is clear that in order to obtain the average

minimal number of RRHs required, the CDF of θN,n needs

to be derived for the MRT and TAS based systems. In the

following we derive the CDF of θN,n for both the MRT and

TAS based systems. The CDF of θN,n is also beneficial in

obtaining the outage performance when n RRHs with the best

channels are selected for transmission.

1) MRT With Fixed Transmit Power:

In case of the MRT scheme, we denote the SNR for each

RRH as γ̄n = Un, the ordered SNRs are expressed as γ̄(N) ≥
γ̄(N−1) ≥ . . . ≥ γ̄(1) and θ̄N,n =

∑n
i=1 γ̄(N−i+1).

Proposition 7. The approximate CDF of the sum of n largest

SNRs in the case of MRT, denoted by θ̄N,n, is given in (35),

where
∑

J is shorthand notation of
∑K

j1=0 ...
∑K

jN−n−1=0,

κj =
∏N−n−1

l=1 Ξjl , κk = (nT + k) Ξk and ξj =
∑N−n−1

l=1 jl,
∑

M is shorthand notation of
∑nT+i1−1

m1=0 ...
∑nT+in−1

mn=0 , ξm =
∑n

l=1 ml, κm,i =
∏n

l=1 Γ(nT+il)
∏

n
l=1 Γ(ml+1) ,

∑

I is shorthand notation

of
∑K

i1=0 ...
∑nT

tn=1 and κi =
∏n

l=1 (nT + il) Ξil and ξi =
∑n

l=1 il.

Proof: See Appendix E.

Proposition 7 gives a tight approximation of the CDF of

the sum of n largest SNRs, in the high SNR regime. By

substituting (35) into (34) and substituting ǫ = N0Φ
P

the PDF

of S can be obtained. Substituting the resulting PDF of S
into (33) gives the expression for averaged minimal number

of RRHs to meet a pre-defined data rate in case of MRT.

2) TAS With Fixed Transmit Power:

In case of the TAS scheme, we denote the SNR for each RRH

as Ῡi = Hn, the ordered SNRs are expressed as Ῡ(N) ≥
Ῡ(N−1) ≥ . . . ≥ Ῡ(1) and Θ̄N,n =

∑n
i=1 Ῡ(N−i+1).

Proposition 8. The approximate CDF of the sum of n largest

SNRs in the case of TAS, denoted by Θ̄N,n, is given in (36),

where
∑

J is shorthand notation of
∑K

j1=0 ...
∑K

jN−n−1=0,

κj =
∏N−n−1

l=1 χjl , κk = (nT + k)χk, ξj =
∑N−n−1

l=1 jl,
∑

J is shorthand notation of
∑K

j1=0 ...
∑K

jN−n−1=0, κj =
∏N−n−1

l=1 χjl , κk = (nT + k)χk and ξj =
∑N−n−1

l=1 jl.

Proof: Proof follows similar steps to the proof of Propo-

sition 7 and thus has been omitted due to space limitation.

Similar to the case of MRT, (36) gives a tight approximation

of the CDF of the sum of n largest SNRs in the high SNR

regime and by substituting (36) into (34) and substituting ǫ =
N0Φ
P

, the PDF of S in case of TAS is obtained. Substituting the

resulting PDF of S into (33) gives the expression for averaged

minimal number of RRHs to meet a pre-defined data rate for

TAS based system.

So far we have considered the scenario in which each RRH

transmits with power P . Now we consider the special case in

which the RRHs are able to adapt their transmit power. There

exist multiple schemes for power adaptation, however, in this

work, for a tractable analysis, we consider a scheme in which

the power is adjusted such that the pathloss is compensated.

Therefore, in this case, the transmit power of the n-th RRH

will be Pn = (1 + dvn). Note that, the transmit power is

dependent on the distance of the RRH from the user and,

therefore, it is different for different RRHs. Moreover, in this

case, the SNR at the user will only depend on the channel

fading gain. For this power allocation scheme, the outage

performance of ST and ARP schemes has been extensively

studied in literature. However, to the best of the authors

knowledge, the CDF of the SNR for the MRP scheme has

not been reported before.

3) MRT With Adaptive Transmit Power:

If each RRH possesses the ability to adapt its power, then

the pathloss can be compensated by varying the transmit power

inversely to the pathloss. In this scenario, the received SNR

only depends on the channel fading gain. In case of the MRT

scheme with adaptive power, we denote the SNR for the n-

th RRH as γ̂n = ‖gn‖
2

N0
, the ordered SNRs are expressed as

γ̂(N) ≥ γ̂(N−1) ≥ . . . ≥ γ̂(1) and θ̂N,n =
∑n

i=1 γ̂(N−i+1).

Proposition 9. The exact CDF of the sum of n

largest SNRs in the case of MRT with adaptive

transmit power, denoted by θ̂N,n, is given in (37),

where m = 1 + nnT − ξm + (ξm + nT + ξj),
p = 1 + nnT − ξm + (ξm + nT + ξj), b̄N =





0, 1, 1, ..., 1
︸ ︷︷ ︸

nnT−ξm

, 1 +
(j + 1)

n
, 1 +

(j + 1)

n
, ..., 1 +

(j + 1)

n
︸ ︷︷ ︸

(ξm+nT+ξj)







,

aN = {}, bD = {}, āD = b̄N + 1 =
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Fθ̄N,n
(y) ≈

∑

I

∑

M

∑

J

K
∑

k=0

N !κiκm,iκkκj

(N − n − 1)!(n)!n((N−n)nT +ξm+ξj+k)

Γ ((N − n)nT + ξm + ξj + k)

Γ (NnT + ξj + ξi + k + 1)

(

y

µ

)NnT +ξi+ξj+k

(35)

FΘ̄N,n
(y) =

∑

I

∑

M

∑

J

K
∑

k=0

N !κiκm,iκkκj

(N − n − 1)!(n)!n((N−n)nT +ξm+ξj+k)

Γ ((N − n)nT + ξm + ξj + k)

Γ (NnT + ξj + ξi + k + 1)

(

y

µ

)NnT +ξi+ξj+k

(36)

F
θ̂N,n

(y) =
∑

M

N−n−1
∑

j=0

∑

I

κI

(N − n − 1

j

) (−1)j N !n−(ξm+nT +ξj)Γ (ξm + nT + ξj)κm

Γ (nT ) (N − n − 1)!(n)!
G

m,n
p,q

(

e
−y

, µ

∣

∣

∣

∣

aN , āD

b̄N , bD

)

(37)







1, 2, 2, ..., 2
︸ ︷︷ ︸

nnT−ξm

, 2 +
(j + 1)

n
, 2 +

(j + 1)

n
, ..., 2 +

(j + 1)

n
︸ ︷︷ ︸

(ξm+nT+ξj)







,

∑

I =
∑nT−1

i1=0 ...
∑nT−1

ij=0 , κI =
∏j

o=1
1

Γ(io+1) ,

ξj =
∑j

o=1 io,
∑

M =
∑nT−1

m1=0 ...
∑nT−1

mn=0, ξm =
∑n

i=1 mi

and κm = 1
∏

n
i=1 Γ(mi+1) .

Proof: See Appendix F.

Unlike the case of MRT with fixed transmit power, (37)

is an exact and accurate expression of the CDF of the sum

of n largest SNRs from the RRHs. By substituting (37) into

(34), one can obtain the PDF of S and ǫ = N0Φ in case of

MRT. Substituting the resulting PDF of S into (33) gives the

expression for averaged minimal number of RRHs to meet

a pre-defined data rate for MRT based system with adaptive

power.
4) TAS With Adaptive Transmit Power:

Similarly, in case of the TAS scheme with adaptive power, we

denote the SNR for the n-th RRH as Υ̂i = Gn = maxt |gi,t|
2
,

the ordered SNRs are expressed as Υ̂(N) ≥ Υ̂(N−1) ≥ . . . ≥

Υ̂(1) and Θ̂N,n =
∑n

i=1 Υ̂(N−i+1).

Proposition 10. The exact CDF of the sum of n largest SNRs

in the case of TAS with adaptive transmit power, denoted

by Θ̂N,n, is given in (38), where m = n + 2, p = n +

2,b̄N =






0, m

n
+ ξl

n
+ ξt

n
, t1, t2, ..., tn
︸ ︷︷ ︸

n






, aN = {}, bD = {},

āD =






1, m

n
+ ξl

n
+ ξt

n
+ 1, t1 + 1, t2 + 1, ..., tn + 1

︸ ︷︷ ︸

n






=

b̄N + 1,
∑

T =
∑nT

t1=1 ...
∑nT

tn=1, κt =
∏n

i=1 (−1)
ti+1 (nT

ti

)
ti

and ξt =
∑n

i=1 ti,
∑

L =
∑nT

l=0 ...
∑nT

lN−n−1=0, κl =
∏N−n−1

i=1 (−1)
li
(
nT

li

)
, ξl =

∑N−n−1
i=1 li and κm =

(−1)
m+1 (nT

m

)
m.

Proof: Proof follows similar steps to the proof of Propo-

sition 9 and thus has been omitted due to space limitation.

Similarly, for the case of TAS with adaptive transmit power,

(38) is an exact and accurate expression of the CDF of the sum

of n largest SNRs from the RRHs and by substituting (38) into

(34) one can obtain the PDF of S and ǫ = N0Φ in case of

TAS. Substituting the resulting PDF of S into (33) gives the

expression for averaged minimal number of RRHs to meet

a pre-defined data rate for TAS based system with adaptive

power.

V. NUMERICAL RESULTS

In this section, numerical simulation results are shown to

corroborate the derived analytical results. In the simulations,

we assume a macro-cell with radius R = 1000m, average

channel power µ = 1 and N0 = 10−6. The parameters are

fixed unless stated. The intensity can be expressed as λRRH =
Λ

πR2 , where Λ is any integer, and it implies that the average

number of RRHs in a region of πR2 is Λ. The performance of

two practical power allocation schemes is examined; 1) there

is a maximum power constraint on each MBS and RRH in

the network and 2) there is a total power constraint on the

MBS and RRHs in the network. In order to analyse the best

performance offered by the first scheme, the MBS and RRHs

are assumed to transmit with same maximum power P . In

case of the second scheme, for demonstration purposes, the

total power, PT , is equally distributed among the MBS and

the RRHs10. Furthermore, in order to get insights on whether

collocated antennas are better or distributed antennas, N and

nT are chosen such that the total number of antennas on the

RRHs is same.

In all the figures (except Fig. 8), the blue dashed-dot lines

indicate the results obtained via Monte-Carlo simulations and

the remaining lines/curves are plotted using the expressions

derived in this paper and depict the analytical results. Specif-

ically, the black dashed lines denote the analytical results for

the ARP scheme, the black solid lines indicate the analytical

results for the ST scheme and the maroon dotted lines denote

the asymptotic results for each scheme. In Fig. 8, the simula-

tion results are indicated by green squares and the lines/curves

are plotted using the expressions derived in this paper.

First we consider the scenario in which there is an individual

power constraint on each MBS and RRH in the network. In this

case, the MBS and RRHs are assumed to transmit with same

maximum power P . Fig. 2 and Fig. 3 show the probability

of outage of both the ST and ARP schemes with varying the

transmit power, P , when the MBS/RRHs employ MRT and

TAS, respectively. The simulation results are shown when N

10Note that other power allocation schemes can also be considered.
However, in this work, for corroboration of our results, we presented the
performance of these sub-optimal power allocation policies. The derivation of
the optimal power allocation policy will be considered in a future work.
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FΘ̂N,n
(y) =

N !

(N − n − 1)!(n)!

∑

T

∑

L

nT
∑

m=1

κt

n
κlκmG

m,n
p,q

(

e
−y

, µ

∣

∣

∣

∣

aN , āD

b̄N , bD

)

(38)
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Fig. 2. Probability of outage for ST and ARP schemes with varying transmit
power for a fixed number of RRHs with MRT where v = 3 and R = 1.
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Fig. 3. Probability of outage for ST and ARP schemes with varying transmit
power for a fixed number of RRHs with TAS where v = 3 and R = 1.

RRHs are serving the user in the region11. The performances

of ST and ARP schemes are compared for different antenna

allocations. It can be seen that the outage probability of both

schemes decrease with increasing transmit power and the ARP

scheme has lower outage probability compared to the ST

scheme. It is worth noting that the ARP scheme gives better

performance but at a cost of higher system complexity. In

addition, the outage probability decreases as the number of

antennas increases, i.e. more antennas or more RRHs provide

more diversity and array gain and thus, result in a lower outage

11Note that, in the network, the number of RRHs, N , is random, However,
here for the purpose of analysis, we show the performance of the network
when N RRHs are transmitting to the user. Later, we will show the overall
average performance of the network when the number of RRHs is random.
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Fig. 4. Probability of outage for ST and ARP schemes with varying transmit
power for N RRHs with MRT where N is a Poisson RV, v = 2 and R = 1.

probability. For the ARP scheme, with a fixed number of total

transmitting antennas (i.e. NnT +mT = 7), the system with

(N,nT ,mT ) = (2, 3, 1) gives lower outage probability com-

pared to the system with (N,nT ,mT ) = (2, 2, 3), implying

that it is better to distribute antennas on the RRHs rather

than collocating them on the MBS. Distributing antennas

on the RRHs diversifies the path loss and therefore gives

better performance. The system with (N,nT ,mT ) = (3, 2, 1)
gives lower outage probability compared to the system with

(N,nT ,mT ) = (2, 3, 1), since increasing N implies an

increase in the overall transmission power as well as it

diversifies the path loss resulting in improved performance.

However, for the ST scheme with MRT, comparing the system

having (N,nT ,mT ) = (3, 2, 1) with the system having

(N,nT ,mT ) = (2, 3, 1), the system with larger nT gives

lower outage probability which suggests that for ST with MRT,

fewer RRHs with more antennas gives better performance due

to a higher coding gain. Whereas, for the ST scheme with

TAS, diversifying the pathloss, i.e. employing more RRHs with

fewer antennas gives larger coding gain and thus, improved

performance. It can be observed from Fig. 2 and Fig. 3 that the

analytical results for ST match the simulation results exactly.

Whereas the analytical results for the ARP scheme and the

asymptotic results match well with the simulation results at

high SNRs12.

The probability of outage with varying transmit power for

the system with random N and R = 1 BPCU is shown in Fig.

4 for MBS/RRHs with MRT. Again in this case, the MBS and

RRHs are assumed to transmit with maximum transmit power

P . It can be observed that, at low SNRs the ARP scheme

12This match is good at high SNRs, because as was discussed in footnote
3, the approximation used in the derivations is accurate in the high SNR
regime. At low SNRs, this approximation is not accurate and therefore, there
is mismatch between analytical and simulation results.
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Fig. 5. Probability of outage for ST and ARP schemes with varying total
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R = 1.
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Fig. 6. Probability of outage for ST and ARP schemes with varying total
transmit power for a fixed number of RRHs with TAS where v = 3 and
R = 1.

performs better compared to the ST scheme. However, at high

SNRs both schemes give similar performance, implying that

in actual networks it might be better to adopt the ST scheme

due to its lower complexity. In addition, Fig. 4 also shows that

when nT is fixed, a larger density λRRH can provide a better

outage performance and increasing the number of antennas at

the MBS, mT , gives significant performance gain and also a

higher diversity gain as was discussed previously. It can be

observed from Fig. 4 that the analytical results for ST match

the simulation results exactly. Whereas the analytical results

for the ARP scheme and the asymptotic results match well

with the simulation results at high SNRs.

Next, we consider the scenario in which there is a total

power constraint on the network and the total power, PT ,

is equally distributed among the MBS and the RRHs. In

case of the ST scheme, as only the MBS/RRH with the best

channel is selected for transmission, all transmission power
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Fig. 7. Probability of outage for ST and ARP schemes with varying total
transmit power for N RRHs with MRT where N is Poisson RV, v = 2 and
R = 1.

will be allocated to it. Whereas, for the ARP scheme, when

N RRHs aid the MBS in transmission, the power allocated

to each MBS/RRH is P = PT

N+1 . Fig. 5 and Fig. 6 show the

probability of outage of both the ST and ARP schemes with

varying the total transmit power, PT , when the MBS/RRHs

employ MRT and TAS, respectively. Again, the performances

of ST and ARP schemes are compared for different antenna

allocations. The outage probability decreases with increasing

the total transmit power or the total number of antennas.

However, due to a total power constraint and equal power

allocation policy, the ST scheme performs better compared to

the ARP scheme. This was not the case in Fig. 2 and Fig. 3,

where ARP outperformed ST scheme because each additional

RRH increased the overall system power. By employing other

power allocation schemes, the performance of ARP can be

improved. However, deriving the optimal power allocation

policy for ARP scheme will be considered in a future work.

Furthermore, for the ARP scheme with MRT, comparing the

system with (N,nT ,mT ) = (3, 2, 1) with the system with

(N,nT ,mT ) = (2, 3, 1), the system with higher N gives

higher outage probability, as increasing N results in a lower

transmit power at the MBS/RRHs and a lower coding gain.

However, for the ARP scheme with TAS, increasing N gives

higher coding gain that is sufficient to overcome the lower

transmit power and thus, give better outage performance.

Moreover, for the ST scheme, the outage performance is the

same as that in Fig. 2 and Fig. 3. It can be observed from

Fig. 5 and Fig. 6 that the analytical results for ST match the

simulation results exactly. Whereas the analytical results for

the ARP scheme and the asymptotic results match well with

the simulation results at high SNRs.

The probability of outage with varying total transmit power,

PT , for the system with random N and R = 1 BPCU is shown

in Fig. 7 for MBS/RRHs with MRT. Similar to Fig. 4, it can be

observed in Fig. 7 that at high SNRs both schemes give similar

performance. Furthermore, the performance can be improved

by increasing the density of the RRHs or increasing the
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Fig. 8. The averaged minimal number n̄N to meet a pre-defined data-rate
with adaptive transmit power at the RRHs where N = 5.

number of antennas at the MBS/RRHs. Similarly, the diversity

gain of the system can be increased only by increasing the

number of antennas at the MBS. It can be observed from Fig.

7 that the analytical results for ST match the simulation results

exactly. Whereas the analytical results for the ARP scheme and

the asymptotic results match well with the simulation results

at high SNRs.

Next we consider the scenario, where the RRHs transmit

with adaptive transmit power and compensates the path loss.

In Fig. 8, the averaged minimal numbers of RRHs, with

adaptive power policy, to meet different pre-defined data rates

are plotted against mean channel power µ, where N = 5. It

can be observed from Fig. 8, for a fixed data rate, the minimal

number of RRHs required decreases with increase in SNR and

vice versa. When the SNR is fixed, more RRHs are needed to

meet a higher data rate. Furthermore, using MRT fewer RRHs

need to be employed to achieve a certain target rate compared

to TAS. This happens because MRT offers higher array gain

compared to TAS. It can be observed that the analytical results

match the simulation results quite well.

VI. CONCLUSION

In this work, the downlink performance of CRAN with

randomly distributed multiple antenna RRHs was investigated.

The MBS and the RRHs were assumed to employ MRT or TAS

for transmission. For this system, the performance of three

downlink protocols, namely, ST, ARP and MRP were analysed

and the analytical expressions for the outage probability were

obtained. Furthermore, for the MRP scheme, the minimal

number of RRHs required to meet a pre-defined data rate

was also studied. The derived analytical expressions were

validated through numerical simulations. Our results showed,

that in the case of power constraint per MBS/RRHs, the ARP

scheme outperformed the ST scheme, whereas in case of the

sum power constraint, the ST scheme outperformed the ARP

scheme. In addition, at high SNRs, the diversity could only

be improved by increasing the number of antennas employed

on the MBS. On increasing the density of the RRHs, the

outage probability was reduced, but the diversity order was

not impacted.

VII. APPENDIX

A. Statistics of SNR from n-th RRH

The CDF of γn can be obtained as

Fγn (Φ) = Pr

{

P

N0

(

1

1 + dv
n

)

‖gn‖
2
< Φ

}

= Pr

{

P

N0

Un < Φ

}

(39)

where Un =
(

1
1+dv

n

)

‖gn‖
2
. In order to obtain the CDF

of Un, first we need to find the statistics of ‖gn‖
2

=
∑nT

t=1 |gn,t|
2
. gn,t is CN (0, µ), therefore, |gn,t|

2
is an ex-

ponential RV with mean µ and ‖gn‖
2

=
∑nT

t=1 |gn,t|
2
,

is thus, Erlang distributed. The PDF of ‖gn‖
2

is given

as f‖gn‖2 (y)=
1

µnT Γ(nT )
ynT −1e

−
y
µ and the CDF of ‖gn‖

2

is F‖gn‖2(y)=
1

Γ(nT )
ζ(nT ,

y
µ )=

(

1−
∑nT −1

i=0
1

Γ(i+1)
e
−

y
µ ( y

µ )
i
)

where

ζ(·, ·) denotes the lower incomplete Gamma function [19, Eq.

(8.350.1)] and Γ(·) is the Gamma function [19, Eq. (8.310.1)].

The CDF of Un =
(

1
1+dv

n

)

‖gn‖
2

can be derived using the

statistics of ‖gn‖
2

as

FUn (y) =

∫

R

0

F‖gn‖2

(

y
(

1 + x
v))

fdn (x)dx. (40)

Substituting the CDF of ‖gn‖
2

and the PDF in (1) into (40)

and doing some simplification yields

FUn (y) = 1 −

nT −1
∑

i=0

e
−

y
µ

Γ (i+ 1)

(

y

µ

)i 2

R2

∫

R

0

xe
−

y
µ

xv
(

1 + x
v)i

dx.

(41)

Using the binomial theorem, doing some simplification yields

and making change of variable z = xv yields

FUn (y) = 1−

nT −1
∑

i=0

i
∑

j=0

(i

j

) e
−

y
µ

Γ (i + 1)

(

y

µ

)i 2

vR2

∫

Rv

0

z
j−
(

1− 2
v

)

e
−

y
µ

z
dz

(42)

which can be expressed in terms of lower incomplete gamma

function as

FUn (y) = 1−

nT −1
∑

i=0

i
∑

j=0

(i

j

) 2e
−

y
µ

Γ (i + 1) vR2

(

y

µ

)i−
(

j+ 2
v

)

ζ

(

j +
2

v
,
y

µ
R

v

)

.

(43)

Finally the CDF of γn can be obtained by substituting y =
N0

P
Φ in (43) to yield (6).

B. Approximation of Statistics of SNR from n-th RRH

The CDF of Un is given as FUn (y)=1−
∑nT −1

i=0

∑i
j=0 (

i
j)

2
Γ(i+1)vR2 e

−
y
µ ( y

µ )
i−(j+ 2

v )ζ(j+ 2
v
,
y
µ
Rv).

Replacing the lower incomplete Gamma function and

the exponential function with its series representation in [19,

eq. (8.354.1) and eq. (1.211.1)] yields

FUn (y) =1 −

nT −1
∑

i=0

i
∑

j=0

(i

j

) 2

Γ (i + 1) v

(

∞
∑

l=0

(−1)l

Γ (l + 1)

(

y

µ

)l
)

×

(

∞
∑

k=0

(−1)k

Γ (k + 1)
(

k + j + 2
v

)

(

y

µ
R

v

)k+i
)

.

(44)

After rearranging the terms and doing some simplification,

(44) can be expressed as

FUn (y) = 1 +

nT −1
∑

i=0

i
∑

j=0

∞
∑

l=0

∞
∑

k=0

2
(

i
j

)

(−1)l+k+1 (Rv)k+i
(

y
µ

)k+i+l

v
(

k + j + 2
v

)

Γ (i + 1)Γ (l + 1)Γ (k + 1)
.

(45)
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In the above series representation, the terms with power of y

less than nT are zero, therefore FUn
(y) can be expressed as

FUn (y) =

nT −1
∑

i=0

i
∑

j=0

∑

u=l+k≥nT −i

2v−1
(i
j

)

(−1)u+1 (Rv)k+i
(

y
µ

)u+i

(

k + j + 2
v

)

Γ (i + 1)Γ (l + 1)Γ (k + 1)

(46)

which can be compactly expressed as

FUn (y) = Ξ0

(

y

µ

)nT

+Ξ1

(

y

µ

)nT +1

+ ...+ΞK

(

y

µ

)nT +K

. . . (47)

where Ξp=
∑nT −1

i=0

∑i
j=0

∑

u=l+k=nT +p−i

2v−1(ij)(−1)u+1(Rv)k+i

(k+j+ 2
v )Γ(i+1)Γ(l+1)Γ(k+1)

.

Limiting to K + 1 terms, and approximation of FUn
(y) is

obtained as

FUn (y) ≈

K
∑

p=0

Ξp

(

y

µ

)nT +p

. (48)

Again the approximate CDF of γn can be obtained by substi-

tuting y = N0

P
Φ in (48) to yield (7).

C. Statistics of overall SNR when all RRHs transmit

We need to find statistics of γ =
∑N

n=1 γn = P
N0

∑N
n=1 Un.

Unfortunately, it is not trivial to obtain the statistics of γ.

However, the approximate statistics of γ can be derived using

the approximation of the CDF of γn. First step is to obtain

the statistics of T =
∑N

n=1 Un. Using the MGF approach to

obtain the distribution of T . The idea is to obtain the CDF of

T can be obtained by taking the inverse Laplace transform of

the MGF of T . The MGF of Un can be obtained as

MUn (s) = s

∫ ∞

0

e
−sx

FUn (x) dx. (49)

Substituting the CDF from (48) into (49) and solving the

resulting integration yields the MGF as

MUn (s) =
K
∑

i=0

Ξi

(

1

µ

)nT +i Γ (nT + i+ 1)

snT +i
. (50)

As the channel is assumed to be i.i.d., the MGF of T =
∑N

n=1 Un can be obtained as

MT (s) =

(

K
∑

i=0

Ξi

(

1

µ

)nT +i Γ (nT + i + 1)

snT +i

)N

. (51)

Representing the product of sum in terms of sum of products

yields

MT (s) =
K
∑

i1=0

K
∑

i2=0

...

K
∑

iN=0

N
∏

l=1

Ξil

(

1

µ

)nT +il Γ (nT + il + 1)

snT +il
(52)

which can be compactly expressed as

MT (s) =
∑

IN

κIN

(

1

µ

)NnT +ξIN
s
−NnT −ξIN (53)

where
∑

IN
is shorthand notation of

∑K
i1=0

∑K
i2=0 ...

∑K
iN=0

and ξIN =
∑N

l=1 il and κIN =
∏N

l=1 ΞilΓ (nT + il + 1).
Finally, the CDF of T can be obtained by taking inverse

Laplace Transform of
MT (s)

s
to yield

FT (y) =
∑

IN

κIN

Γ
(

NnT + ξIN + 1
)

(

1

µ

)NnT+ξIN
y
NnT+ξIN . (54)

The CDF of γ can be obtained by substituting y = N0

P
Φ in

(54) to yield (8).

D. Statistics of SNR from n-th RRH

The CDF of Υn can be obtained as

FΥn (Φ) = Pr

{

P

N0

(

1

1 + dv
n

)

max
t

{

|gn,t|
2
}

< Φ

}

= Pr

{

P

N0
Hn < Φ

}

(55)

where Hn =
(

1
1+dv

n

)

maxt

{

|gn,t|
2
}

. In order to obtain

the CDF of Hn, first we need to find the statistics of

Gn = maxt

{

|gn,t|
2
}

. The CDF of Gn = maxt |gn,t|
2

can

be obtained as

FGn (y) =

(

F
|gn,t|

2

(

y

µ

))nT

= 1 +

nT
∑

t=1

(−1)t
(nT

t

)

e
−

y
µ

t (56)

and the PDF of Gn can be obtained as

fGn (y) = −

nT
∑

t=1

(−1)
t
(nT

t

) t

µ
e
−

y
µ

t
. (57)

Given dn, the CDF of Hn =
(

1
1+dv

n

)

Gn is

FHn|dn (y|dn) = 1 +

nT
∑

t=1

(−1)
t
(nT

t

)

e
−

y
µ (1+dvn)t. (58)

The CDF of Hn can be obtained by averaging the CDF over

the PDF of dn as

FHn (y) = 1 +
2

R2

nT
∑

t=1

(−1)t
(nT

t

)

∫

R

0

xe
−

y
µ (1+xv)t

dx. (59)

Substituting z = xv and then x = y
µ
tz yields

FHn (y) = 1 +
2

R2v

nT
∑

t=1

(−1)t
(nT

t

)

e
−

y
µ

t
∫ y

µ
tRv

0

(

x
y
µ

t

) 2
v
−1

y
µ
t

e
−x

dx.

(60)

The above integral can be expressed in terms of lower incom-

plete Gamma function to yield

FHn (y) = 1 +
2

v

nT
∑

t=1

(−1)t
(nT

t

)

e
−

y
µ

t
(

R
v y

µ
t

)− 2
v
ζ

(

2

v
,
y

µ
tR

v

)

.

(61)

Finally the CDF of Υn can be obtained by substituting y =
N0

P
Φ in (61) to yield (14).

E. CDF of θ̄N,n

Conditioned on the (n+ 1)-th largest order statistics, the n

largest order statistics are i.i.d [20]. Therefore, conditioned on

the (n+ 1)-th largest order statistic, the Laplace transform of

the n-th largest order statistic is

Mγ̄(n) (s) =
1

1 − Fγ̄n (y)

∫

∞

y

e
−sz

fγ̄n (z) dz. (62)

Substituting the approximate PDF of γ̄n yields

Mγ̄(n) (s) =

K
∑

i=0

(

1

µ

)nT +i (nT + i)

1 − Fγ̄n (y)
Ξis

−(nT +i)Γ (nT + i, sy) .

(63)

The Laplace transform of the PDF of the sum of n largest

order statistics is

Mθ̄N,n
(s) =

∫ ∞

0

fγ̄(N−n) (y)

(1 − Fγ̄n (y))n
×

(

K
∑

i=0

(

1

µ

)nT +i

(nT + i) Ξis
−(nT +i)Γ (nT + i, sy)

)n

dy.

(64)
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Expressing the product of sum as the sum of products yields

Mθ̄N,n
(s) =

∑

I

κi

(

1

µ

)nT n+ξi

s
−(nT n+ξi)×

∫

∞

0

n
∏

l=1

Γ (nT + il, sy)
fγ̄(N−n) (y)

(1 − Fγ̄n (y))n
dy

(65)

where
∑

I is shorthand notation of
∑K

i1=0 ...
∑nT

tn=1 and

κi =
∏n

l=1 (nT + il) Ξil and ξi =
∑n

l=1 il. Using summation

representation of Γ (n+ 1, x) = Γ (n+ 1) e−x
∑n

m=0
xm

Γ(m+1)
yields

Mθ̄N,n
(s) =

∑

I

κi

(

1

µ

)nT n+ξi

s
−(nT n+ξi)

(

n
∏

l=1

Γ (nT + il)

)

×

∫

∞

0

e
−nsy





n
∏

l=1

nT +il−1
∑

m=0

(sy)m

Γ (m + 1)





fγ̄(N−n) (y)

(1 − Fγ̄n (y))n
dy.

(66)

Again expressing the product of sum as the sum of products

yields

Mθ̄N,n
(s) =

∑

I

∑

M

κiκm,i

(

1

µ

)nT n+ξi

s
−(nT n+ξi−ξm)

×

∫ ∞

0

e
−nsy

y
ξm

fγ̄(N−n) (y)

(1 − Fγ̄n (y))n
dy

(67)

where
∑

M is shorthand notation of
∑nT+i1−1

m1=0 ...
∑nT+in−1

mn=0 ,

ξm =
∑n

l=1 ml and κm,i =
∏n

l=1 Γ(nT+il)
∏

n
l=1 Γ(ml+1) . Substituting PDF

fγ̄(N−n) (y) yields

Mθ̄N,n
(s) =

N !

(N − n − 1)!(n)!

∑

I

∑

M

κiκm,i

(

1

µ

)nT n+ξi

×

s
−(nT n+ξi−ξm)

∫ ∞

0

e
−nsy

y
ξmFγ̄n (y)N−n−1

fγ̄n (y)dy.

(68)

Substituting the CDF Fγ̄n
(y) and PDF fγ̄n

(y) and simplifying

yields

Mθ̄N,n
(s) =

∑

I

∑

M

N !κiκm,i

(N − n − 1)!(n)!

(

1

µ

)nT n+ξi

s
−(nT n+ξi−ξm)×

∫

∞

0

e
−nsy

y
ξm





K
∑

j=0

Ξj

(

y

µ

)nT +j





N−n−1
K
∑

k=0

(nT + k)
Ξky

nT +k−1

µnT +k
dy.

(69)

Expressing the product of sum as the sum of products and

simplifying yields (71).

Mθ̄N,n
(s) =

∑

I

∑

M

∑

J

K
∑

k=0

N !κiκm,iκkκj

(N − n − 1)!(n)!

(

1

µ

)ξi+NnT+ξj+k

s
−(nT n+ξi−ξm)

∫ ∞

0

e
−nsy

y
(N−n)nT +ξm+ξj+k−1

dy

(70)

where
∑

J is shorthand notation of
∑K

j1=0 ...
∑K

jN−n−1=0,

κj =
∏N−n−1

l=1 Ξjl , κk = (nT + k) Ξk and ξj =
∑N−n−1

l=1 jl.

Solving the integral and taking the inverse Laplace Transform

of (71) yields the CDF in (35).

F. CDF of θ̂N,n

Conditioned on the (n+ 1)-th largest order statistics, the n

largest order statistics are i.i.d [20]. Therefore, conditioned on

the (n+ 1)-th largest order statistic, the Laplace transform of

the n-th largest order statistic is

Mγ̂(n) (s) =
1

1 − Fγ̂n (y)

∫

∞

y

e
−sz

fγ̂n (z) dz. (72)

The PDF of γ̂n = ‖gn‖
2

is given as

fγ̂n (y) =
1

µnT Γ (nT )
y
nT −1

e
−

y
µ (73)

and the CDF of γ̂n is

Fγ̂n (y) =
1

Γ (nT )
ζ

(

nT ,
y

µ

)

=



1 −

nT −1
∑

i=0

1

Γ (i + 1)
e
−

y
µ

(

y

µ

)i



 .

(74)

Following a similar procedure as before, the Laplace transform

of the order statistic is obtained as

Mγ̂(n) (s) =

(

1

1 − Fγ̂n (y)

)

(

s + 1
µ

)−nT

µnT Γ (nT )
Γ

(

nT ,

(

s +
1

µ

)

y

)

. (75)

The Laplace transform of sum of largest order statistics is

M
θ̂N,n

(s) =

(

1

µnT Γ (nT )

)n

×

∫ ∞

0

(

s +
1

µ

)−nnT
(

Γ

(

nT ,

(

s +
1

µ

)

y

))n fγ̂(N−n) (y)

(1 − Fγ̂n (y))n
dy.

(76)

Substituting the PDF of fγ̂(N−n) (y) yields

M
θ̂N,n

(s) =

(

1

µnT Γ (nT )

)n N !

(N − n − 1)!(n)!

(

s +
1

µ

)−nnT

×

∫ ∞

0

(

Γ

(

nT ,

(

s +
1

µ

)

y

))n

Fγ̂n (y)N−n−1
fγ̂n (y)dy.

(77)

Substituting the CDF Fγ̂n
(y) and PDF fγ̂n

(y) and simplifying

yields

M
θ̂N,n

(s) =

(

1
µnT Γ(nT )

)n

N !

(N − n − 1)!(n)!

(

s +
1

µ

)−nnT

×

∫ ∞

0

Γ (nT )n e
−
(

s+ 1
µ

)

ny





nT −1
∑

m=0

((

s + 1
µ

)

y
)m

Γ (m + 1)





n

×



1 −

nT −1
∑

i=0

1

Γ (i+ 1)
e
−

y
µ

(

y

µ

)i





N−n−1

1

µnT Γ (nT )
y
nT −1

e
−

y
µ dy.

(78)

Expressing product of sum as sum of products yields

M
θ̂N,n

(s) =

(

1

µnT

)n 1

µnT Γ (nT )

N !

(N − n − 1)!(n)!

(

s +
1

µ

)−nnT

×

∫ ∞

0

e
−
(

s+ 1
µ

)

ny

(

∑

M

κm

((

s +
1

µ

)

y

)ξm
)

×

N−n−1
∑

j=0

(N − n − 1

j

)

(−1)j





nT −1
∑

i=0

e
−

y
µ

Γ (i+ 1)

(

y

µ

)i





j

y
nT −1

e
−

y
µ dy

(79)

where
∑

M =
∑nT−1

m1=0 ...
∑nT−1

mn=0, ξm =
∑n

i=1 mi and

κm = 1
∏

n
i=1 Γ(mi+1) . Again expressing product of sum as

sum of products yields (80), where
∑

I =
∑nT−1

i1=0 ...
∑nT−1

ij=0 ,

κI =
∏j

o=1
1

Γ(io+1) and ξj =
∑j

o=1 io. Rearranging terms

and solving the resulting integral yields (81). Representing

M
θ̂N,n

(s) in terms of Gamma functions yields (82). The CDF

can be obtained by taking the inverse Laplace transform of
µ
µs
MS (s) which is given as

F
θ̂N,n

(y) =
∑

M

N−n−1
∑

j=0

∑

I

κI

(N − n − 1

j

)

×

(−1)j N !n−(ξm+nT +ξj)Γ (ξm + nT + ξj)κm

Γ (nT ) (N − n − 1)!(n)!
×

µ

2πι

∫

γ+iT

γ−iT

∏m
k=1 Γ

(

µs + b̄N (k)
)

∏p
k=1 Γ (µs + āD (k))

e
sy

ds

(83)
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Mθ̄N,n
(s) =

∑

I

∑

M

∑

J

K
∑

k=0

N !κiκm,iκkκjΓ ((N − n)nT + ξm + ξj + k)

(N − n − 1)!(n)!n((N−n)nT +ξm+ξj+k)

(

1

µ

)NnT+ξi+ξj+k

s
−(NnT +ξj+ξi+k) (71)

M
θ̂N,n

(s) =

(

1

µnT

)n 1

µnT Γ (nT )

N !

(N − n − 1)!(n)!

∑

M

N−n−1
∑

j=0

(N − n − 1

j

)

(−1)
j
κm×

(

s +
1

µ

)−nnT +ξm
∫ ∞

0

y
ξme

−
(

s+ 1
µ

)

ny∑

I

κIe
−

y
µ

j
(

y

µ

)ξj

y
nT −1

e
−

y
µ dy

(80)

M
θ̂N,n

(s) =
∑

M

N−n−1
∑

j=0

∑

I

(N − n − 1

j

) κI (−1)j N !Γ (ξm + nT + ξj) κm

Γ (nT ) (N − n − 1)!(n)!n(ξm+nT +ξj)
(µs + 1)

−nnT +ξm

(

µs +
1

n
(n + j + 1)

)−(ξm+nT +ξj)
(81)

M
θ̂N,n

(s) =
∑

M

N−n−1
∑

j=0

∑

I

κI

(N − n − 1

j

) (−1)j N !n−(ξm+nT +ξj)Γ (ξm + nT + ξj)κm

Γ (nT ) (N − n − 1)!(n)!

×
Γ (µs + 1)nnT −ξm Γ

(

µs + 1 + 1
n
(j + 1)

)(ξm+nT +ξj)

Γ (µs + 1 + 1)nnT −ξm Γ
(

µs + 1 + 1
n
(j + 1) + 1

)(ξm+nT +ξj)

(82)

where m = 1 + nnT − ξm + (ξm + nT + ξj),
p = 1 + nnT − ξm + (ξm + nT + ξj), b̄N =





0, 1, 1, ..., 1
︸ ︷︷ ︸

nnT−ξm

, 1 +
(j + 1)

n
, 1 +

(j + 1)

n
, ..., 1 +

(j + 1)

n
︸ ︷︷ ︸

(ξm+nT+ξj)







and āD = b̄N + 1 =





1, 2, 2, ..., 2
︸ ︷︷ ︸

nnT−ξm

, 2 +
(j + 1)

n
, 2 +

(j + 1)

n
, ..., 2 +

(j + 1)

n
︸ ︷︷ ︸

(ξm+nT+ξj)







.

The CDF in (83) can finally be represented in terms of

Meijer-G function as (37).
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