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Performance Analysis of Cloud Radio Access
Networks with Distributed Multiple Antenna
Remote Radio Heads

F. A. Khan, H. He Student Member, IEEE, J. Xue Member, IEEE and T. Ratnarajah Senior Member, IEEE

Abstract—In this paper, the performance of cloud radio access
networks (CRANs) where spatially distributed remote radio
heads (RRHs) aid the macro base station (MBS) in transmission
is analysed. In order to reflect a realistic scenario, the MBS and
the RRHs are assumed to be equipped with multiple antennas
and distributed according to a Poisson point process. Both,
the MBS and the RRHs, are assumed to employ maximal
ratio transmission (MRT) or transmit antenna selection (TAS).
Considering downlink transmission, the outage performance of
three schemes is studied; first is the selection transmission (ST)
scheme, in which the MBS or the RRH with the best channel
is selected for transmission. In the second scheme, all the RRHs
participate (ARP) and transmit the signal to the user, whereas
in the third scheme, a minimal number of RRHs, to attain
a desired data-rate, participate in transmission (MRP). Exact
closed-form expression for the outage probability is derived for
the ST scheme. For the ARP and MRP schemes, analytical
approximations of the outage probability are derived which are
tight at high signal-to-noise ratios. In addition, for the MRP
scheme, the minimal number of RRHs required to meet a target
data rate is also calculated which can be useful in characterizing
the system complexity. Furthermore, the derived expressions
are validated through numerical simulation. It is shown that
the average diversity gains of these schemes are independent
of the intensity/number of RRHs and only depend on the
number of antennas on the MBS. Furthermore, the ARP scheme
outperforms the ST scheme when the MBS/RRHs transmit with
maximum power. However, in case of a sum power constraint
and equal power allocation, the ST scheme outperforms the ARP
scheme.

Index Terms—Cloud radio access networks, maximum ratio
transmission, MISO, Poisson point process, stochastic geometry,
transmit antenna selection.

I. INTRODUCTION

Cell densification is one of the key technologies proposed to
improve the capacity and area spectral efficiency of existing
networks [1]. A major drawback of increasing the cell/base
station (BS) density is that the overall interference in the
network also increases resulting in a limited capacity gain [2],
[3]. In addition, deploying more BSs is neither cost efficient
nor power efficient [4].
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Cloud radio access networks (CRANs) have been proposed
as a low-cost and power-efficient solution to meet the increas-
ing capacity demand. In the existing networks, the baseband
units (BBUs), which consume high power, and the radio units
are situated together. The idea in CRANSs is to move the
BBUs to a central location/data centre and connect it to the
radio units, also called remote radio heads (RRHs), via optical
fibres [4]. Moving the BBUs to a central location results in
improved power efficiency. In addition, the cost of network
expansion is lowered because only low cost RRHs/BSs need
to be deployed for improving the coverage as well as the
capacity of the network. Furthermore, it has been shown that
through coordinated multipoint processing (CoMP), the overall
interference can be limited. CoMP is very efficient when all
the RRHs are connected with each other and possess the data
information of each other [1], [S]. CoOMP can easily be adopted
in CRANS, to reduce the interference and improve the network
capacity.

A. Existing Relevant Work:

When each of the RRH has a single antenna, the CRAN
model becomes similar to the distributed antenna system
(DAS). There have been several studies to analyse the per-
formance of the DAS see [6]-[9] and the references therein.
In [7] it was shown that the average spectrum efficiency per
sector and the cell edge spectrum efficiency in the traditional
system with co-located BS antennas (TS-CBA) is better than
that of a DAS without frequency reuse. However, when the
frequency reuse is considered the DAS outperforms TS-CBA.
In [6], it was shown that DAS reduces inter-cell interference
in a multicell environment and significantly improves capacity
particularly in case of the users near the cell boundaries. In
[8], the cell average ergodic capacity for a DAS in a composite
fading channel model was analysed. An antenna selection
strategy to maximize the energy efficiency under a pre-defined
target rate constraint was proposed in [9]. In [10], it was
shown that, for a CRAN with distributed RRHs with multiple
antennas, the optimal distributed beamforming scheme had a
form of maximum ratio transmission (MRT) at each RRH and
the outage probability and ergodic capacity under Rayleigh
fading channels was also analyzed. A joint strategy to select
the antenna, the regularization factor, and the transmit power
to maximize the average weighted sum-rate was proposed in
[11].

In these previous works, the RRHs were assigned fixed
regular locations. However, in many practical situations, this



is difficult to do so and the RRHs are located randomly [12]—
[17]. When the RRHs are assumed to be randomly placed, it
can give a reasonable lower bound on the performance of an
actual system. In [12], the authors proposed a low-complexity
power allocation scheme among the distributed transmit an-
tennas. In [13], the antennas were distributed according to a
binomial point process, the users were distributed according
to a Poisson point process (PPP) and a composite fading
channel model was assumed. The authors derived analytical
expressions for the outage performance of only selection trans-
mission, where the antenna with the best channel was selected
to serve the user, under different scenarios. It was shown in
[14], that the DAS yields a higher capacity gain compared
to the TS-CBA, provided the channel state information (CSI)
is available at the transmitter and the receiver. The ergodic
capacity of a multi-cell distributed RRH system, where the
RRH locations were modelled as a spatial PPP was studied in
[15], and it was shown that this system provides better cell-
edge performance and can even provide higher capacity in a
user-centric configuration. In [16], the RRHs were distributed
according to a PPP and a Rayleigh fading channel with a
standard path loss model was assumed. Different from the
work in [12], the outage performance of selection transmission
scheme, in which the macro BS (MBS) or the RRH with the
best channel is selected for transmission, was compared to the
scheme where all the RRHs employ distributed beamforming
and aid in transmission [16]. In addition, the minimal number
of RRHs required to meet a predefined quality of service (QoS)
was also studied. In [17], it was shown that the uplink sum
capacity increases as a result of reduction in the inter-cell
interference of a DAS.

B. Our Contribution:

In [12]-[17], the RRHs were assumed to be equipped with
a single antenna. However, in the proposed CRAN model,
the RRHs will be equipped with multiple antennas. Therefore,
different from the models in [12]-[17], in this work, a more
general and realistic scenario is considered, and we analyze
the performance of a network where several multiple antenna
RRHs are distributed randomly (according to a PPP) over
a circular region and serve the user along with a multiple
antenna macro base station (MBS). To the authors best knowl-
edge, for this network setup, the performance of a CRAN
with multiple antenna RRHs has not been analysed previously.
Having multiple antennas at the MBS and RRHs leads to a new
and more involved analysis compared to the one presented in
[12]-[17] because the distribution of the signal-to-noise ratio
(SNR) from the RRHs to the users is no longer an exponential
distribution!. In addition, in [16] the path loss coefficient was

IThe distribution of the large-scale fading gain (LSFG) and the small-
scale fading gain (SSFG) in the case of multiple antenna systems is well
known. The method to obtain the distribution of the received SNR using the
distributions of the LSFG and the SSFG is also straightforward and comes
from basic probability theory and has been reported in many existing works eg
see [12], [13], [16], [18] and references therein. However, to the authors best
knowledge, even with the known fading distributions and the analysis method,
the distribution of the received SNR from the multiple antenna RRHs to the
users has not been reported previously. Moreover, it is more challenging to
obtain the performance expressions for the transmission schemes considered
in this work using the derived distribution of the received SNR.

fixed to 2. However, in this work, the performance is analysed
for arbitrary value of the path loss coefficient which also
results in a more involved analysis.

The performance of this network is studied under the sce-
nario when the MBS and the RRHs have varying complexity.
Specifically, two levels of complexity are considered. The
MBS and RRHs with higher complexity consist of multiple
radio frequency (RF) chains and employ maximum-ratio-
transmission (MRT) whereas the MBS and RRHs with lower
complexity consist of a single RF chain and employ transmit
antenna selection (TAS). Furthermore, three different transmis-
sion schemes are considered; 1) the MBS or the RRH with the
best channel participates in transmission, also called selection
transmission (ST), 2) all the RRHs participate (ARP) and aid
the MBS in transmission and 3) minimal number of RRHs to
attain a desired data-rate participate in transmission (MRP).
Employing more RRHs results in a higher cost in terms of
higher power expenditure and requires more control and data
processing for synchronizing the transmissions. Therefore,
MRT can help improve the power efficiency and reduce the
overhead compared to ARP scheme as was also discussed in
[9], [16]. From among the three schemes considered, ST has
the lowest cost and ARP has the highest cost.

The performance of these schemes is analysed in terms
of outage probability. Exact closed-form expression for the
outage probability is derived for the ST scheme, whereas, a
tight approximation of the outage probability at high signal-
to-noise ratio is obtained for the ARP scheme. In the worst
case scenario, the MRP scheme becomes the same as the ARP
scheme and therefore it has the same outage probability as the
ARP scheme. In addition, in order to quantify the complexity
of the MRP scheme, we also analyze and obtain expressions
for the minimum number of RRHs required to achieve a
certain QoS. These expressions are obtained for two cases,
one in which the RRHs have fixed transmit power and the
other in which the RRHs can adapt power and compensate
the pathloss. Furthermore, the derived expressions are verified
through numerical simulations. Our simulation results show
the effective trade-off between number of RRHs and number
of antennas at each RRH. For example, considering the ARP
scheme with MRT, increasing the number of antennas at
each RRHs is more effective than employing more RRHs, as
increasing the number of RRHs results in a lower transmit
power at the MBS/RRHs and a lower coding gain. In addition,
it is also shown that at high SNR regime, ST, ARP and MRP
achieve a diversity order mp, where my is the number of
antennas at the MBS, and this diversity order does not depend
on the number/intensity of the RRHs.

The rest of the paper is organized as follows. The system
model is explained in section II. The statistics of the channel
used in the performance analysis of each scheme are derived
in Section III. The analytical expressions for the outage perfor-
mance for the ST and ARP schemes as well as the complexity
analysis of the MRP scheme is presented in Section IV. The
numerical results are presented in Section V. Finally, the main
results are summarized in the concluding Section VI.
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II. SYSTEM MODEL

Consider a network shown in Fig 1, where a user is being
served by a central intelligence unit (can also be termed as
a macro-cell base station (MBS)), at a distance R from the
user, and a group of N RRHs distributed randomly over a
circular region D, of radius R, around the user location?.
The MBS is equipped with mr antennas whereas each RRH
has nr antennas. It is assumed that the location of the
RRHs obey a homogeneous Poisson point process (PPP) with
intensity Agprp, therefore, IV, is Poisson distributed, i.e.,
Pr{N RRH in Disc D}=&ygye~* Where o = TR*ArRp.

The channel vector between the n-th RRH and the user
U can be written as g, = [gn,l...g,wT]T, where g, ¢ is the
channel 7gain between the ¢-th antenna of n-th RRH and the
user, (-)° denotes the transpose operator. Assuming Rayleigh
fading channel g, ; ~ CN (0,u) where CN (z,y) denotes
complex Gaussian random variable (RV) with mean z and
variance y and u denotes the mean power of the channel.
Similarly, the channel between the user and the MBS is
denoted as g,, where go = [goyl...goymT]T. The distance of the
n-th RRH from the centre is denoted by d,,. As the locations

of the RRHs are random, d,, is a RV with distribution
fdn(z>:% ;0<z <R (D

Transmission Schemes:

For the system under consideration, three transmission
schemes are studied, namely; 1) selection transmission (ST),
2) all the RRHs participate (ARP) and 3) minimal number of
RRHs participate (MRP). In ST, the MBS or the RRH with
the best channel is selected for transmission whereas in ARP,
all the RRHs transmit to the user’. The ST scheme has lower

2In our analysis, we condition on the location of the user. The MBS at a
distance R and the RRHs within a distance R from the user, serve the user.
In this model, if the user is displaced and comes closer to the MBS, it implies
that R will reduce. As a result the area of the circular region will also reduce.
The converse is also valid. The distribution of the distance of the user from
the RRHs depends on R and thus, it will change when R changes.

3In both these schemes, the MBS also participates in transmission. The
performance expressions derived in this paper are derived for this scenario.
The performance expressions for the scenario in which the MBS does not
transmit, can easily be obtained by substituting m7 = 0 in the derived
expressions.

overhead compared to the ARP scheme as it does not require
coordination among the RRHs. However, this lower overhead
is possible at the cost of some performance loss as will be
discussed later.

Using all RRHs in the ARP scheme provides the optimal
reception reliability but at the price of increasing system
complexity. However, in some instances, optimal performance
is not always needed and only a certain data-rate requirement
is to be satisfied. In such cases, it is possible to achieve
the pre-defined data-rate using only a subset of the available
RRHs [9]. Using a minimal number of RRHs is beneficial
as it yields a practical scheme with reduced complexity and
ensuring desired system performance. Thus, in MRP scheme,
the minimal number of RRHs required to meet a pre-defined
data rate are used for transmission. In addition, in case of all
these schemes, it is assumed that the multiple antenna MBS
and RRHs employ MRT or TAS for transmission of the signal.

In this sequel we analyse the performance of these trans-
mission schemes in terms of outage probability. In the next
section, we derive the required statistics of the channel for
analysing the outage probability.

III. FINDING STATISTICS OF THE CHANNEL
A. Statistics of SNR for MRT
When MRT is employed at the MBS and the RRHs, the
received signal-to-noise ratio (SNR) from the n-th RRH to
the user can be given as [16]

B P( 1
TNy \Tray

)l @)

where P is the transmit power at the MBS and each RRH,
Ny denotes the noise power at the user, term 6,, = (1 + dY)
denotes the pathloss, v is the path loss coefficient, and ||-||
denotes the 2-norm*. When N RRHs transmit using MRT, the
overall SNR at the user is given as

N N
1= = e 3 () el 3)
Similarly, the SNR of the MBS can be given as [16]
_r 1 2
0= (757 ) ol @)

When the MBS and the N RRHs transmit using MRT, the
overall SNR at the user is given as

N 1

N P
YMBS = Z Yn = F{) Z (m) ||gnH2 =7 +7 (5)

n=0 n=0

where dp = R. In order to analyse the performance of this
scheme, the statistics of v3/ps and -, such as the cumulative
distribution function (CDF) and the probability distribution
function (PDF), are required. For deriving the statistics of
Yy s and 7, the statistics of v, are required. Therefore, the
CDF #, is given by following Proposition.

“In deriving (2), it is assumed that the transmitted signal vector is
H
X = P—‘gg” 155 where s is the transmitted symbol having mean zero and unit
n
variance. Therefore, the average transmit power is E[[|x]|%] = P, where E[.]
is the expectation operator. Moreover, in this paper, it is assumed that the
MBS and the RRHs employ equal power allocation and, therefore, transmit
with the same power P.
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Proposition 1. When all the RRHs transmit using MRT, the
CDF of the SNR of the n-th RRH received at the user, denoted
by vn, is given in (6).

Proof: See Appendix A. ]

The CDF in (6) is obtained in closed-form and is given
in terms of incomplete Gamma function which can be easily
evaluated using existing mathematical packages. In addition,
the obtained CDF is valid for arbitrary value of the pathloss
exponent, v, unlike [16] in which the pathloss exponent was
assumed fixed i.e. v = 2. Therefore, this expression in (6)
is more general and the CDF for the scenario considered in
[16] can be obtained by substituting n = 1 and v = 2. By
substituting, ® = 2R _ 1 in (6), where R denotes the data-
rate, the outage probability for the n-th RRH can be obtained.
Furthermore, the PDF of the SNR can be easily obtained by
taking the derivative of (6) w.r.t. ®.

It is not trivial to obtain the statistics of v using the CDF
derived in (6). Therefore, we derive an approximation of the
CDF of ~,,, using which one can obtain the statistics of . The
approximate CDF of +,, is given in following Proposition.

Proposition 2. When all the RRHs transmit using MRT, the
CDF of the SNR of the n-th RRH received at the user, denoted
by vy, can be approximated as

K
_ No®\ nTtp
P @ x> s, (1) )
p=0
where the infinite series is truncated to K + 1
terms, K is any positive integer and =, =

np—1 2(5) (=D TR
ZL =0 Z] OZu I+k=nr+p— L’U(k+]+ ) (+ DT+ DT (1)

Proof: See Appendix B. [ |
It can be noted that the CDF in (7) is a polynomial function
and has been limited to K + 1 terms. As K — oo, the
approximation becomes closer to the exact CDF given in
(6). Furthermore, this approximation in (7) is tight at high
SNRs®. Our simulation results show that even for, K < 10, the
simulation results match the analytical results at high SNRs.
Moreover, the approximate PDF of the SNR can be easily
obtained by taking the derivative of (7) w.r.t. ®. In addition,
using (7), the approximate CDF of « can be derived and is
given in following Proposition.

SNote that using the CDF and PDF expressions derived in this work, the
expressions for the moment-generating-function (MGF) of the SNR as well
as symbol error rate (SER) performance can be obtained for the system under
consideration. However, it is omitted due to space limitation.

SHigh SNR implies that = = 592 is very small i.e. 2 ~ 0. The CDF in
), Fy,, (@) =~ 21}7{:0 Ep (2)"TTP, is thus, a summation of powers of z.
When z is very small, eg. in the high SNR regime, it implies 2* < 2% < z
where a and b are any positive integers and b > a. Therefore, in this case,
the summation result is only influenced by lower powers and the terms with
higher powers have minimal contribution and can be neglected. Therefore, the
CDF in (7) approximates the CDF at high SNR accurately. However, at low
SNRs, i.e. large z, this approximation might not be accurate.

@ (N0<1>>i*(ﬂ'+%) X <j+ 2, No‘PR/U) (6)
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Proposition 3. When N RRHs transmit using MRT, the CDF
of the overall SNR received at the user, denoted by v, can be
approximated as

P
Fo (®) ~ - N 0
7 (®) IXN:F(NTLT-F&N-FI)

COEC

where ), is shorthand notation of Zfzo Zgzo Zﬁ,:o
N . N = ;
and &y =YL, 4 and xpy = [];_; Ei,T (np + 4+ 1).

Proof: See Appendix C. [ ]

The approximation given in (8) closely approximates the
exact CDF at high SNRs. The CDF is in form of a polynomial
function and can be easily implemented in existing mathe-
matical packages. For a CRAN system with /N participating
RRHs, the CDF in (8) can be used to obtain the approximate
outage probability. By substituting, ® = 2% — 1 in (8), the
approximate outage probability at the user can be obtained
when N RRHs transmit using MRT. The approximate PDF of
~ can be easily obtained by taking the derivative of (8) w.r.t.
.

Diversity Order: (8) is in form of a polynomial function
and at high SNRs, it can be approximated by its lowest order
term, which is obtained by taking &7, = 0 and (8) can be
approximated as
(Bol (nr + 1))

By (@) ~ I'(Nnr +1)

FX(®) =

(NU<I>>N"T' )

Pp

Using (9), it can be easily shown that the diversity gain’
achieved when N RRHs transmit using MRT is Nnp. When
N is a RV, the diversity gain is different as will be shown in
Section IV.

B. Statistics of SNR for TAS

In case of TAS, the MBS and the RRHs transmit using the
antenna providing the highest SNR. The SNR from the n-th
RRH can be given as

v P 1 2
n—N—OmtaX Tdﬁ \9n,t|

where 1 < t < np. When N RRHs transmit using the best
antenna, the overall SNR at the user is given as

(10)

LB o
Similarly, the SNR of the MBS can be given as [16]
to = - max{ (157 ) oo} (12)

When the MBS and N RRHs transmit after selecting the best
antenna, the overall SNR at the user is given as

r X 1 R
TMBS=N—O7;){YU?X{(1+dz>\gn,t| }}=T0+T (13)
log( F No
"Diversity gain can be obtained as d = lim No M where
P

F (-) denotes the CDF.



where dyp = R. Similar to the case of MRT, in order to analyse
the performance of this scheme, the statistics of Y ;55 and
T, such as the CDF and PDF, are required. For deriving the
statistics of Ypsps and Y, the statistics of Y,, are required.
Therefore, the CDF of T, is obtained and is given in following
Proposition.

Proposition 4. When all the RRHs transmit using TAS, the
CDF of the SNR of the n-th RRH received at the user, denoted
by Y, is given in (14).

Proof: See Appendix D. ]
Similar to the expression in case of MRT, the CDF in (14)
is obtained in closed-form and is given in terms of incomplete
Gamma function which can be easily evaluated using existing
mathematical packages. In addition, the obtained CDF is valid
for arbitrary value of the pathloss exponent, v. By substituting,
® = 2R — 1 in (14) the outage probability for the n-th RRH
can be obtained. Furthermore, the PDF of the SNR can be
easily obtained by taking the derivative of (14).

Again, in this case, it is not trivial to obtain the statistics
of Y using the CDF derived in (14). Therefore, we derive an
approximation of the CDF of Y, using which one can obtain
the statistics of Y. The approximate CDF of Y,, is given in
following Proposition.

Proposition 5. When all the RRHs transmit using TAS, the
CDF of the SNR of the n-th RRH received at the user, denoted
by Y, can be approximated as

5)

K i
No(b np+i
FPr, (®)=> xi ( )
i=0 PH

- n : 2(—1)utt RVF ¢
where xi = 320 Dusktizngti (") oD (DT (k+1) (k+2)

and the infinite series is truncated to K + 1 terms.

Proof: Proof follows similar steps to the proof of Propo-
sition 2 and thus has been omitted due to space limitation.
|
Similar to MRT scheme, the CDF in (15) is a polynomial
function and has been limited to X + 1 terms. As K — oo,
the approximation converges to the exact CDF. Furthermore,
this approximation in (15) is tight at high SNRs. Again,
the approximate PDF of the SNR can be easily obtained by
taking the derivative of (15) w.r.t. ®. Furthermore, using (15),
the approximate CDF of Y can be derived and is given in
following Proposition.

Proposition 6. When N RRHs transmit using TAS, the CDF
of the overall SNR received at the user, denoted by Y, can be
approximated as

KIy (NU<I>>NnT+£1N

I (Nnp + &y +1) Py (16)

Fr(®) =~

In
where ) is shorthand notation of Zf:o Zg:o ey
and €1 = S, i and K1y = [1)) xa D (g + i + 1),

Proof: Proof follows similar steps to the proof of Propo-
sition 3 and thus has been omitted due to space limitation.
|

Again, in this case, the CDF given in (16) is a polynomial
function which is tight at high SNRs. The approximate PDF

K
in=0

of Y can be easily obtained by taking the derivative of (16)
w.r.t. ®. By substituting, ® = 2% — 1 in (16), the approximate
outage probability at the user can be obtained when all the
RRHs transmit using TAS.

Diversity Order: Again, in this case, (16) is in form of a
polynomial function and at high SNRs it can be approximated
by its lowest order term, which is obtained by taking &7, =0
and (16) can be approximated as

o (@) = 5 () = QT LT (M08 T

I'(Nnr+1) Pu a7

Using (17), it can be easily shown that the diversity gain
achieved when N RRHs transmit using TAS is Nnz.

IV. PERFORMANCE ANALYSIS
A. ST Scheme

In this scheme, the MBS or the RRH with the best channel
is selected for transmission. Therefore, the outage event occurs
when the channels of both the MBS and the best RRH are in
outage.

When the MBS and N RRHs transmit using MRT, the
outage probability can be given as

Prmrr,sT (PIN) = (Fyg (®)) (Fy, @)™ (18)

1 P
where F’Yo (y) = WC (mT, Bilt) and 6 = W As
N is a RV, the overall outage probability can be given as

19)

o a® —a
Pumrr,sT (P) = Nz::() (Fyo () (Fy, (@)™ rN+1)°

Similarly, when the MBS and N RRHs transmit using TAS,
the outage probability can be given as

Pras,st (BIN) = (Fry (2)) (Fr, (@)Y (20)

where Fr, (@) = 1+ Y70 (=1)° (”;T)e_ﬁ%t. As N is a RV,
the overall outage probability can be given as

oo

Pras,st (®) = Z (Frq (@) (Fr, @)™

N=0

o e
TN+ D° 21

(19) and (21) give the average probability of outage of the
system with Poisson distributed RRHs.

Diversity Order:

1) Number of RRHs is N: In the case of MRT at the
MBS/RRHs, at high SNRs, (7) can be approximated as

P @)~ () (22)
®No(1+R" o
and F,, (@) = ﬁC (mTa %) ~ F’Yo (@) =

% (%)MT. When the MBS and N RRHs trans-

mit using MRT, at high SNRs the outage probability can be
approximated as

N
Piirrst (@IN) ~ (F55 (@) (B3 (@)
_ ®7ILT+N7LT (1 + Rv)mT E(J)\f <N0>m,T+NnT
pumTHNYTT (mp) mp ’

(23)

P

Using (23), it can be easily shown that, when N RRHs are
present and the MBS/RRHs employ MRT, the diversity gain
achieved by ST scheme is (Nnp + mr).
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Similarly, when the MBS/RRHs employ TAS, at high SNRs
the outage probability of the ST scheme can be approximated
as

oo oo oo N
Pias.sr (@IN) ~ (F75 (@) (FE, (@)
emTTNT (1 4 RU)y™T X(J)V (N0>mT+NnT
- o ,

(24)

M T NAT

Using (24), it can be easily shown that, when N RRHs are
present and the MBS/RRHs employ TAS, the diversity gain
achieved by ST scheme is (Nng + mr).

2) Number of RRHs is random: At high SNRs, using (23),
(19) can be approximated as

o N TILT —a
PyMERT, ST (®) =G4 (0) (%) €

+9, (1) % (%)WMT bomg 0 () e

(25)

mp+Nn vymp =N
where G, (N) = L #2;+NZ(TI;£LT) T:“" . Using (25), it can be

easily shown that, when the number of RRHs is random and
the MBS/RRHs employ MRT, the diversity gain achieved by
ST scheme is m5.

Similar derivations can be done for ST scheme,
where the MBS/RRHs employ TAS, which will yields
the expression of outage probability at high SNR, as
Prasst ~ Gy (0) (%)mT e”® where, Gr(N) =

emT+NnT (14 grymT N . . . . .
t,,,LT(JV,LT) X0 Again using this expression, it can be

easily shown that, when the number of RRHs is random and
the MBS/RRHs employ TAS, the diversity gain achieved by
ST scheme is my.

This shows that the diversity order of the ST scheme is mp
which is the number of antennas on the MBS. This indicates
that the diversity order can be increased by increasing m¢ and
vice versa. Furthermore, it can be deduced that the parameters
of the RRHs do not affect the diversity order. For example, by
varying the intensity Arprz or the number of antennas, nrp,
the diversity order cannot be varied. However, (25) and the
corresponding expression in the case of TAS involves the term
e~ “ where a depends on Arprr. This means that the intensity
of the RRHs, Arprp, does impact the outage probability. For
example, a larger Agpry implies a larger o and thus, a lower
outage probability.

B. ARP Scheme

In this scheme, all the RRHs are selected for transmission.
Therefore, the outage event will occur if the overall SNR from
the MBS and the RRHs is in outage.

When the MBS and N RRHs transmit using MRT, the
outage probability can be given as

Prmrr,ArP (P|N) = Pr{y+v < ®} = Pr{y < ® —y0}. (26)

81f the MBS does not participate in transmission, it can be shown, that the
average diversity gain achieved is n.

Pu v’ Ppu (14)
Prrr,Arp (P) can be expressed as
PumRrT,ARP (P|N) = /0@ F,y (@ = 70) frg (70) dvo- 27

Substituting F, (-) and f,, (), applying the binomial theorem
and solving the resulting integral, yields the outage probability
expression given in (28), where ug = m and p, =
]\%u. The overall outage probability can be given as

e 1)

PumrT,ARP () = Z Prmrr,ARP (P|N) me

N=0
Similarly, when the MBS and N RRHs transmit using TAS,
the outage probability can be given as

Pras.anp (B|N) = /q’ Fr (& — x) fr, («) de. (30)
0

Again, substituting Fy (-) and fy, (-), and solving the re-
sulting integral using [19, eq. (3.381.1)] gives the outage
probability expression in (31). The overall outage probability
is given as

Pras,arp (®) = Z Pras,arp (P|N) . (32)

«

— TN+ 1)

Diversity Order: For this scheme, the probability of outage
can be upper bounded by the outage probability of the ST
scheme. This implies that the diversity order achieved by ARP
scheme is also (Nngp +myp) when N RRHs serve the user
along with the MBS, and is m7y when random number of
RRHs serve the user.

C. MRP Scheme

In this scheme, only a subset of the available RRHs is
employed to meet a specified data-rate requirement. Using
this scheme, a minimal number of RRHs are used, which
is beneficial as it yields a practical scheme with reduced
complexity and ensuring desired system performance. The
outage probability of this scheme will be same as that of the
MRT scheme, because the outage event will only occur when
the overall SNR from the MBS and all the RRHs is in outage.
Therefore, in this section, we derive expression for the average
number of RRHs that are required to meet a pre-defined data
rate. This expression is beneficial as it gives information to the
network operators about the minimal average number of RRHs
that are needed to be activated to achieve a certain data-rate
requirement.

We consider the same network of Fig. 1. However, for
mathematical tractability, the MBS is not considered in this
case and N > 2 9. Assuming that the SNR for each RRH
is denoted as v; where ¢ € [1,..., N]. All SNRs are ordered
as YNy = YN-1) = --- = Y- The subset of RRHs that
is minimally sufficient to meet a pre-defined data rate should
correspond to the S largest SNRs. Without loss of generality,

9Note that, when N = 1, the single RRH must always transmit and it
determines the outage performance.
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denote Oy, = D1 Y(N—i+1), the averaged minimal number
of RRHs to meet a pre-defined data rate is given as [16]

N
in =Y n-Pr(S=n|N) (33)
where
17F9N,1(5) in=1
Pr(S=n|N)= 1 Foy . (€)= Fop () ;2<n<N-1 (34)
Fon N1 (€) ;n= N.

From (33) and (34) it is clear that in order to obtain the average
minimal number of RRHs required, the CDF of 6y , needs
to be derived for the MRT and TAS based systems. In the
following we derive the CDF of 6y, for both the MRT and
TAS based systems. The CDF of 6y ,, is also beneficial in
obtaining the outage performance when n RRHs with the best
channels are selected for transmission.

1) MRT With Fixed Transmit Power:
In case of the MRT scheme, we denote the SNR for each
RRH as ¥, = U,, the ordered SNRs are expressed as () >

AN-1) = - =Fay and Oy = D0 F(N—it1)-

Proposition 7. The approximate CDF of the sum of n largest
SNRs in the case of MRT, denoted by Oy, is given in (35),

where XJ:VJ islshorthand notation of 35 _ ”'Zf}({]\f—n—%l:o’
-1 - Znel
75 = 11i1=1 S, o= (np+k)Zkand & = le% I

. . nr+ip—1 nr—+in _
s is shorthand notation of 3 * T LY T, Gy =
oy >, is shorthand notation

_ IIjY; D(nrti)
K =
ofnzil':() >y and g = ]2y (nr 4+ 01) By and & =

%m,i - Hszl F(ml-i-l) ’
1=14

Proof: See Appendix E. ]

Proposition 7 gives a tight approximation of the CDF of
the sum of n largest SNRs, in the high SNR regime. By
substituting (35) into (34) and substituting € = Ng,‘b the PDF
of § can be obtained. Substituting the resulting PDF of S
into (33) gives the expression for averaged minimal number
of RRHs to meet a pre-defined data rate in case of MRT.

2) TAS With Fixed Transmit Power:
In case of the TAS scheme, we denote the SNR for each RRH
as Y; = H,, the ordered SNRs are expressed as T(N) >
T(N—l) > ... > T(l) and @N,n = Z?:l T(N—’H—l)-
Proposition 8. The approximate CDF of the sum of n largest

SNRs in the case of TAS, denoted by Oy ., is given in (36),
where ) ; is shorthand notation of > _ LYK

N-n—1 Rono”
—n— —n—1 .
K’j = =1 ij R = (nT +K‘I'€) Xk> SJK: =1 s
>, is shorthand notation of 35 _o.-D 5 o Kj =

N—-n—1
=1

—n—1

Xji bk = (ne+k)xi and & =>,_1" " Ji.

Proof: Proof follows similar steps to the proof of Propo-
sition 7 and thus has been omitted due to space limitation.
|

Similar to the case of MRT, (36) gives a tight approximation
of the CDF of the sum of n largest SNRs in the high SNR
regime and by substituting (36) into (34) and substituting € =
NI‘;‘I’, the PDF of S in case of TAS is obtained. Substituting the
resulting PDF of S into (33) gives the expression for averaged
minimal number of RRHs to meet a pre-defined data rate for

TAS based system.

So far we have considered the scenario in which each RRH
transmits with power P. Now we consider the special case in
which the RRHs are able to adapt their transmit power. There
exist multiple schemes for power adaptation, however, in this
work, for a tractable analysis, we consider a scheme in which
the power is adjusted such that the pathloss is compensated.
Therefore, in this case, the transmit power of the n-th RRH
will be P, = (1+4d2). Note that, the transmit power is
dependent on the distance of the RRH from the user and,
therefore, it is different for different RRHs. Moreover, in this
case, the SNR at the user will only depend on the channel
fading gain. For this power allocation scheme, the outage
performance of ST and ARP schemes has been extensively
studied in literature. However, to the best of the authors
knowledge, the CDF of the SNR for the MRP scheme has
not been reported before.

3) MRT With Adaptive Transmit Power:

If each RRH possesses the ability to adapt its power, then
the pathloss can be compensated by varying the transmit power
inversely to the pathloss. In this scenario, the received SNR
only depends on the channel fading gain. In case of the MRT
scheme with adaptive power, we denote the SNR for the n-
th RRH as 4, = %, the ordered SNRs are expressed as

Yy = YN-1) = --- > Hq1) and Onm =31, V(N —it1)-

Proposition 9. The exact CDF of the sum of n

largest SNRs in the case of MRT with adaptive

transmit power, denoted by Oy, is given in (37),

where m = 1 + nnr — &+ (§n +nr +E),

p = 14+ nnp — & + Em+nr+§) by =
j+1 j+1 j+1

011, 11480 GFD o G+D
n n n
nnr—E&m (Emtnr+e;) ]
ayn = {} bp = {} ap = by + 1 =
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Fon, 0 =2333

N—-n—1

(35)
k=0 (N —n —1)!(n)ln
NlKikm, iKKkj T((N—=—n)nr +&mn+& +E) (g)N”T*ﬁi*sﬁrk (36)
7 =0 (N —n — D) n((V=mnr+emtg+k)  T(Nnp +& + & +k+1) W
—n—1\ (— l)J Nln~ (57”+"T+§7)F(fm+nT+‘£J)"¢m m,n —y an, a
Fonn =22 2 Z"”( ) T (nr) (N —n — Dl(n)! . (e | bu. bp ) 37)

M j=0 I

Lzzwwzz+U:1Xz+ozlxmg+ﬁj:” ,
= em (Em+nr+Es) _
> = ZZT:Ol TP k= =1 TG
& = Yomvio o = Yot Xl o fn = Xy mi
and RKm = m
Proof: See Appendix F. ]

Unlike the case of MRT with fixed transmit power, (37)
is an exact and accurate expression of the CDF of the sum
of n largest SNRs from the RRHs. By substituting (37) into
(34), one can obtain the PDF of S and ¢ = Ny® in case of
MRT. Substituting the resulting PDF of S into (33) gives the
expression for averaged minimal number of RRHs to meet
a pre-defined data rate for MRT based system with adaptive
power.

4) TAS With Adaptive Transmit Power:

Similarly, in case of the TAS scheme with adaptive power, we
denote the SNR for the n-th RRH as YZ =G, = maxy |gi 2,
the ordered SNRs are expressed as Y(N) > T(N,l) > ... >

'T(l) and éN,n = 2221 T(N—z‘ﬂ).

Proposition 10. The exact CDF of the sum of n largest SNRs
in the case of TAS with adaptive transmit power, denoted

by Onp, is given in (38), where m = n +2, p = n+
Q:BN = a% +3 El + Ez’tlatQa---;tn ,» AN = {}’ bp = {}’
—_——
n
ap = (L2 +8 4 & 41+ 1+ 1t + 1y =
l_) nn ti+1 (np
N+1L Y= t1 1° Zt =1 Ft = [T, (1) (tq,)ti

and & = Y7 |t ZL = 3 e o K
A o D (i I zjiln Yoand Ry =
)™ ()m.

m
Proof: Proof follows similar steps to the proof of Propo-
sition 9 and thus has been omitted due to space limitation.
|
Similarly, for the case of TAS with adaptive transmit power,
(38) is an exact and accurate expression of the CDF of the sum
of n largest SNRs from the RRHs and by substituting (38) into
(34) one can obtain the PDF of & and € = Ny® in case of
TAS. Substituting the resulting PDF of S into (33) gives the
expression for averaged minimal number of RRHs to meet
a pre-defined data rate for TAS based system with adaptive

power.

V. NUMERICAL RESULTS

In this section, numerical simulation results are shown to
corroborate the derived analytical results. In the simulations,
we assume a macro-cell with radius R = 1000m, average
channel power ;1 = 1 and Ng = 1076, The parameters are
fixed unless stated. The intensity can be expressed as Arry =
ﬁ, where A is any integer, and it implies that the average
number of RRHs in a region of 7R? is A. The performance of
two practical power allocation schemes is examined; 1) there
is a maximum power constraint on each MBS and RRH in
the network and 2) there is a total power constraint on the
MBS and RRHs in the network. In order to analyse the best
performance offered by the first scheme, the MBS and RRHs
are assumed to transmit with same maximum power P. In
case of the second scheme, for demonstration purposes, the
total power, Pr, is equally distributed among the MBS and
the RRHs'. Furthermore, in order to get insights on whether
collocated antennas are better or distributed antennas, /N and
nr are chosen such that the total number of antennas on the
RRHs is same.

In all the figures (except Fig. 8), the blue dashed-dot lines
indicate the results obtained via Monte-Carlo simulations and
the remaining lines/curves are plotted using the expressions
derived in this paper and depict the analytical results. Specif-
ically, the black dashed lines denote the analytical results for
the ARP scheme, the black solid lines indicate the analytical
results for the ST scheme and the maroon dotted lines denote
the asymptotic results for each scheme. In Fig. 8, the simula-
tion results are indicated by green squares and the lines/curves
are plotted using the expressions derived in this paper.

First we consider the scenario in which there is an individual
power constraint on each MBS and RRH in the network. In this
case, the MBS and RRHs are assumed to transmit with same
maximum power P. Fig. 2 and Fig. 3 show the probability
of outage of both the ST and ARP schemes with varying the
transmit power, P, when the MBS/RRHs employ MRT and
TAS, respectively. The simulation results are shown when N

10Note that other power allocation schemes can also be considered.
However, in this work, for corroboration of our results, we presented the
performance of these sub-optimal power allocation policies. The derivation of
the optimal power allocation policy will be considered in a future work.
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Fig. 2. Probability of outage for ST and ARP schemes with varying transmit
power for a fixed number of RRHs with MRT where v = 3 and R = 1.
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Fig. 3. Probability of outage for ST and ARP schemes with varying transmit

power for a fixed number of RRHs with TAS where v = 3 and R = 1.

RRHs are serving the user in the region!!. The performances

of ST and ARP schemes are compared for different antenna
allocations. It can be seen that the outage probability of both
schemes decrease with increasing transmit power and the ARP
scheme has lower outage probability compared to the ST
scheme. It is worth noting that the ARP scheme gives better
performance but at a cost of higher system complexity. In
addition, the outage probability decreases as the number of
antennas increases, i.e. more antennas or more RRHs provide
more diversity and array gain and thus, result in a lower outage

HNote that, in the network, the number of RRHs, N, is random, However,
here for the purpose of analysis, we show the performance of the network
when N RRHs are transmitting to the user. Later, we will show the overall
average performance of the network when the number of RRHs is random.

(38)
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Fig. 4. Probability of outage for ST and ARP schemes with varying transmit
power for N RRHs with MRT where N is a Poisson RV, v = 2 and R = 1.

probability. For the ARP scheme, with a fixed number of total
transmitting antennas (i.e. Nnp + mp = 7), the system with
(N, nr,mr) = (2,3,1) gives lower outage probability com-
pared to the system with (N,np, mp) = (2,2,3), implying
that it is better to distribute antennas on the RRHs rather
than collocating them on the MBS. Distributing antennas
on the RRHs diversifies the path loss and therefore gives
better performance. The system with (N, ny, mr) = (3,2,1)
gives lower outage probability compared to the system with
(N,np,mr) = (2,3,1), since increasing N implies an
increase in the overall transmission power as well as it
diversifies the path loss resulting in improved performance.
However, for the ST scheme with MRT, comparing the system
having (N,np,mr) = (3,2,1) with the system having
(N,np,mr) = (2,3,1), the system with larger np gives
lower outage probability which suggests that for ST with MRT,
fewer RRHs with more antennas gives better performance due
to a higher coding gain. Whereas, for the ST scheme with
TAS, diversifying the pathloss, i.e. employing more RRHs with
fewer antennas gives larger coding gain and thus, improved
performance. It can be observed from Fig. 2 and Fig. 3 that the
analytical results for ST match the simulation results exactly.
Whereas the analytical results for the ARP scheme and the
asymptotic results match well with the simulation results at
high SNRs!2.,

The probability of outage with varying transmit power for
the system with random /N and R = 1 BPCU is shown in Fig.
4 for MBS/RRHs with MRT. Again in this case, the MBS and
RRHs are assumed to transmit with maximum transmit power
P. It can be observed that, at low SNRs the ARP scheme

12This match is good at high SNRs, because as was discussed in footnote
3, the approximation used in the derivations is accurate in the high SNR
regime. At low SNRs, this approximation is not accurate and therefore, there
is mismatch between analytical and simulation results.
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performs better compared to the ST scheme. However, at high
SNRs both schemes give similar performance, implying that
in actual networks it might be better to adopt the ST scheme
due to its lower complexity. In addition, Fig. 4 also shows that
when nyp is fixed, a larger density Agrrpy can provide a better
outage performance and increasing the number of antennas at
the MBS, mr, gives significant performance gain and also a
higher diversity gain as was discussed previously. It can be
observed from Fig. 4 that the analytical results for ST match
the simulation results exactly. Whereas the analytical results
for the ARP scheme and the asymptotic results match well
with the simulation results at high SNRs.

Next, we consider the scenario in which there is a total
power constraint on the network and the total power, Pr,
is equally distributed among the MBS and the RRHs. In
case of the ST scheme, as only the MBS/RRH with the best
channel is selected for transmission, all transmission power
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Fig. 7. Probability of outage for ST and ARP schemes with varying total

transmit power for N RRHs with MRT where NV is Poisson RV, v = 2 and
R =1

will be allocated to it. Whereas, for the ARP scheme, when
N RRHs aid the MBS in transmission, the power allocated
to each MBS/RRH is P = Np—fl. Fig. 5 and Fig. 6 show the
probability of outage of both the ST and ARP schemes with
varying the total transmit power, Pr, when the MBS/RRHs
employ MRT and TAS, respectively. Again, the performances
of ST and ARP schemes are compared for different antenna
allocations. The outage probability decreases with increasing
the total transmit power or the total number of antennas.
However, due to a total power constraint and equal power
allocation policy, the ST scheme performs better compared to
the ARP scheme. This was not the case in Fig. 2 and Fig. 3,
where ARP outperformed ST scheme because each additional
RRH increased the overall system power. By employing other
power allocation schemes, the performance of ARP can be
improved. However, deriving the optimal power allocation
policy for ARP scheme will be considered in a future work.
Furthermore, for the ARP scheme with MRT, comparing the
system with (N,np,mrp) = (3,2,1) with the system with
(N,np,mr) = (2,3,1), the system with higher N gives
higher outage probability, as increasing N results in a lower
transmit power at the MBS/RRHs and a lower coding gain.
However, for the ARP scheme with TAS, increasing N gives
higher coding gain that is sufficient to overcome the lower
transmit power and thus, give better outage performance.
Moreover, for the ST scheme, the outage performance is the
same as that in Fig. 2 and Fig. 3. It can be observed from
Fig. 5 and Fig. 6 that the analytical results for ST match the
simulation results exactly. Whereas the analytical results for
the ARP scheme and the asymptotic results match well with
the simulation results at high SNRs.

The probability of outage with varying total transmit power,
Pr, for the system with random N and R = 1 BPCU is shown
in Fig. 7 for MBS/RRHs with MRT. Similar to Fig. 4, it can be
observed in Fig. 7 that at high SNRs both schemes give similar
performance. Furthermore, the performance can be improved
by increasing the density of the RRHs or increasing the
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with adaptive transmit power at the RRHs where N = 5.

number of antennas at the MBS/RRHs. Similarly, the diversity
gain of the system can be increased only by increasing the
number of antennas at the MBS. It can be observed from Fig.
7 that the analytical results for ST match the simulation results
exactly. Whereas the analytical results for the ARP scheme and
the asymptotic results match well with the simulation results
at high SNRs.

Next we consider the scenario, where the RRHs transmit
with adaptive transmit power and compensates the path loss.
In Fig. 8, the averaged minimal numbers of RRHs, with
adaptive power policy, to meet different pre-defined data rates
are plotted against mean channel power u, where N = 5. It
can be observed from Fig. 8, for a fixed data rate, the minimal
number of RRHs required decreases with increase in SNR and
vice versa. When the SNR is fixed, more RRHs are needed to
meet a higher data rate. Furthermore, using MRT fewer RRHs
need to be employed to achieve a certain target rate compared
to TAS. This happens because MRT offers higher array gain
compared to TAS. It can be observed that the analytical results
match the simulation results quite well.

VI. CONCLUSION

In this work, the downlink performance of CRAN with
randomly distributed multiple antenna RRHs was investigated.
The MBS and the RRHs were assumed to employ MRT or TAS
for transmission. For this system, the performance of three
downlink protocols, namely, ST, ARP and MRP were analysed
and the analytical expressions for the outage probability were
obtained. Furthermore, for the MRP scheme, the minimal
number of RRHs required to meet a pre-defined data rate
was also studied. The derived analytical expressions were
validated through numerical simulations. Our results showed,
that in the case of power constraint per MBS/RRHs, the ARP
scheme outperformed the ST scheme, whereas in case of the
sum power constraint, the ST scheme outperformed the ARP
scheme. In addition, at high SNRs, the diversity could only
be improved by increasing the number of antennas employed
on the MBS. On increasing the density of the RRHs, the
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outage probability was reduced, but the diversity order was
not impacted.

VII. APPENDIX
A. Statistics of SNR from n-th RRH
The CDF of ~,, can be obtained as

) lenl® < @ = { CUw <2} (39)

(= (=
Pri —

No \1+dy
where U, (ﬁ) Hgn”2 In order to obtain the CDF
of U,, first we need to find the statistics of ||g,|”

Fy, (®) =

SO | gnatl®. gnt is CA (0, ), therefore, is an ex-
ponential RV with mean x and ||g,|” W gt %,
is thus, Erlang distributed. The PDF of ||gnH2 is glven

as £y, 2 (W)=7mrimyy"? ‘e # and the CDF of g |?
iS FHQW,HQ(y):—F(:@T) (nT’u)_<1 Z"LT 1 F(i+1)€ -5 (E)”L Where
¢(+,-) denotes the lower incomplete Gamma function [19, Eq.
(8.350.1)] and T'(+) is the Gamma function [19, Eq. (8.310.1)].

The CDF of U, — (

statistics of ||gn||2 as

/ Fig 2 (v

Substituting the CDF of || gn|| and the PDF in (1) into (40)
and doing some simplification yields

np—1 _ .
e # Yy ©2 R 7%1’“ LU\ -
_;F(iJrl) (;) ﬁ/o Te (1+J,)d.
(41)
Using the binomial theorem, doing some simplification yields
and making change of variable z = 2" yields

ﬁ |gn |l can be derived using the

Fy,, (y 1 +x )) fay, (z)dz. (40)

Fy, (y)=1

np—1 4 kA . v
_ N R
= B Ority (2) i [ D
(42)
which can be expressed in terms of lower incomplete gamma

function as
. Jh o,
7 2e H y 7r—(1+;) ) 2y,
i=0 j:o(j)r‘(iJrl)vR2 <M> C(J+v7,uR>'
(43)
Finally the CDF of 7, can be obtained by substituting y =
2o in (43) to yield (6).

B. Approximation of Statistics of SNR from n-th RRH

The CDF of U, is given as Fy,(y)=1—
. _ Y i— . 2
S S O e F () U2 ).
Replacing the lower incomplete Gamma function and

the exponential function with its series representation in [19,
eq. (8.354.1) and eq. (1.211.1)] yields

np—1 4 (1)1

o 1
Fy, (y) =1— Z Z( )r(l_g_l)u (;F(l-ﬁ-l) <l%> > *

i=0 j=0

= (—1)* y o\
(,;F(k+1)(k+j+%) (ER> )

After rearranging the terms and doing some simplification,
(44) can be expressed as

(44)

i oo oo 2(;) (_1)l+k+1 (R/u)k+i (%)k+m+l
Fy, (y) =1+ Z ZZZD(kJr]JF TGF DT+ DIGT D"
(45)




In the above series representation, the terms with power of y
less than ny are zero, therefore Fy, (y) can be expressed as

np—1 ;

Fu, )= >, > >

i=0 j=0u=l+k>np—i

24;*1(;) (_1)u+1 (R’U)k+i (%)14,+7,
(k+j+%)F('L+1)F(l+1)r<k+1)

(46)

which can be compactly expressed as

np np+1
Fu, (y) =Eo <2> +E1 <2> + ..+
w Iz

(1]

p <2>”T“‘... (47)

H

20— 1 (Jz (71)14,+1(R17)k+7,

n

= _ 7—1 i
where =,=3"1"%, Dm0 Xutdh=npdp—i (

Limiting to K + 1 terms, and approximation of Fy, (y) is
obtained as

K >7LT+p

Fo, )~ 3=, (2

p=0 H

(48)

Again the approximate CDF of ~,, can be obtained by substi-
tuting y = 2@ in (48) to yield (7).

C. Statistics of overall SNR when all RRHs transmit

We need to find statistics of y = S0, = = N Un.
Unfortunately, it is not trivial to obtain the statistics of ~.
However, the approximate statistics of v can be derived using
the approximation of the CDF of ~,,. First step is to obtain
the statistics of T' = 22;1 U,,. Using the MGF approach to
obtain the distribution of T'. The idea is to obtain the CDF of
T can be obtained by taking the inverse Laplace transform of

the MGF of T'. The MGF of U,, can be obtained as

Muy,, (s) = S/Ooo e " Fy, (z)dz. (49)

Substituting the CDF from (48) into (49) and solving the
resulting integration yields the MGF as

Mo, ()= 3=, (L) e tisn),

nopti
=0 H s

As the channel is assumed to be i.i.d., the MGF of T =
Zﬁ;l U,, can be obtained as

K /IN\"TH T (np +i+1) N
Mo (s) = 257(—) )

i=0 H

(50)

(51

Representing the product of sum in terms of sum of products
yields

K K K N IN"T+Hi T (ng +i; + 1)
) = =, (= — " (52
M (s) 7,12:0 i22:0 7,]\201:]:[1 I (H) SnT i (52)
which can be compactly expressed as
Mr (s) = Z%IN <%>NnT+£IN S*N”T*§IN (53)
In

where ) _; is shorthand notation of Zf:o Zf;o Zﬁ,:o

and &1, = SO i and s, = [y B0 (np 4+ 1).
Finally, the CDF of T C?I; be obtained by taking inverse
M (s

Laplace Transform of =~ to yield
N Iy l Nonp+&ry  Nnpter 54
FT(y)_gF(N’ﬂTJrEINJrl) (H) Y v (4

The CDF of v can be obtained by substituting y = %(ﬁ in
(54) to yield (8).

ki +2 )P+ DT I+D0(k+1) |
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D. Statistics of SNR from n-th RRH
The CDF of Y,, can be obtained as

0= (£ (g o) <o} = <o)
' (55)

where H, = ﬁ) maxt{|gn,t|2}. In order to obtain
the CDF of H,, first we need to find the statistics of
G, = max; {|gn,t|2}. The CDF of G,, = max; |gn,t|2 can
be obtained as

_ y nr nr . /nr _%t
Fon )= (R0 (1) 7 =10 o0t () B 56)
and the PDF of GG,, can be obtained as
np ,
fen ) ==> (1" (")) bt (57)
t=1
. 1 .
Given d,,, the CDF of H,, = (—1+d’;) G, is
X 7 - 1 V)¢
Fylday, (yldn) =1+ tzzl (-1)* ( LtT)e L(tap)e (58)

The CDF of H, can be obtained by averaging the CDF over
the PDF of d,, as

a2 SR e (MY [T e E(rat) 59
Fito (1) = 14 77 3 1>(t)/0 we ¥ de.  (59)
Substituting z = ¥ and then x = %tz yields
2 4
Fitn (y):1+E;(71)1(t)e " /0 e
(60)

The above integral can be expressed in terms of lower incom-
plete Gamma function to yield

_ 2 (X ¢ (T —Le (0 Y -3 2 Y, e
P ) =10 23 () (m ) e (2 en).
(61)
Finally the CDF of Y, can be obtained by substituting y =
o d in (61) to yield (14).

E. CDF of On.n,

Conditioned on the (n + 1)-th largest order statistics, the n
largest order statistics are i.i.d [20]. Therefore, conditioned on
the (n + 1)-th largest order statistic, the Laplace transform of
the n-th largest order statistic is

My (ny (5) = ﬁ /:Q e % fy, (2) dz. (62)
Substituting the approximate PDF of #,, yields
L K /i \nT+i (np +1) _ —(np+i) o
M5n) (8) = ;) (;) mﬂié TTYIT (nr + 4, sy) -
(63)

The Laplace transform of the PDF of the sum of n largest
order statistics is

B L[ fawven) (W)
Moy, )= [ For ()"

K et .
(;} (%) T+ (nt +1) Eq,s*(nTﬂ)F (nr + 4, sy)> dy.
(64)



Expressing the product of sum as the sum of products yields

L\rTrte
_ ) — - ,—(nrntg;)
My, ()= Y oe (1)1 o)

o f (v) (65)

o r i, s F(N—n) Y d

/0 lzl_Il (nr + i1, sy) = ()" o ()" Yy
where >, is shorthand notation of ij 02 p—y and
s =11y (nr+4)E;, and & = >0 0. Usmg summatlon

representation of ' (n + 1,2) =T (n+ 1)

yields

ey o I m+1)

1 npn+§ n
_ Z e <7> i —,LT7L+5 ) H nT + Zl
T H 1=1
(sy)™ )

n nptip—1
oy fwv n) (y)
J, (H X Fmin) G
(66)

Again expressing the product of sum as the sum of products
yields

1\ nTntéi
= istm,i | — s (nrntg;i—gm)
g () .

/°° ney €
>< 67 y m
0 (1- (y))"

where ), is shorthand notation of Z”TJ_F“_l D DA

m1=0 My =0
m = Zle my and s, ; = L, D t) Substituting PDF
fy(n—ny (y) yields

Lo, Timi+1)

N!

A ;ZWW(;
s—(nTn+5fsm)/°°e

0

npn+§;
) x

Moy, (8) =

Tyt s ()N T fy () dy.

(68)
Substituting the CDF F5, (y) and PDF f5, (y) and simplifying
yields

(l) npn+€; S*(”T”+§i*5m) o

N!%i%'m.,i
() = 21:%: (N—n—Dln)! \u

=0 K

o K g\ T Motk = ynT et
/ eyt (S (7) S (nr + k) =T
0 k=0

(69)
Expressing the product of sum as the sum of products and
simplifying yields (71).

ONREES 3 3 3D o

s (nntgi—gm) / e—nsyy<N—n>nT+sm+§,-+k—1dy

Nlscisem iz ( 1 >§i+N”T+€j+k
—n—1)l(n)!

(70)

K
where szv ; 1s1shorthand notation of Zh o Z]&vﬂﬁllzo’
w =12 Ejsae = (nr +k)Epand & =37, i,

Solving the integral and taking the inverse Laplace Transform
of (71) yields the CDF in (35).

E CDF of Oy

Conditioned on the (n + 1)-th largest order statistics, the n
largest order statistics are i.i.d [20]. Therefore, conditioned on
the (n + 1)-th largest order statistic, the Laplace transform of
the n-th largest order statistic is

1 sz
= m/y e Jan () dz. (72)

M5y (8)
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The PDF of 4, = ||g.||® is given as

1
prTT (nr)

Fom () = g e (73)

and the CDF of 4, is
B 1 v\ np—1 1 L y\
Fy, () = m( (nT,;> = (1— ; N m <;> > .
(74)

Following a similar procedure as before, the Laplace transform
of the order statistic is obtained as
1
(. (s ;) v). (75)

My (s) = <1 — Fin (y)) (s + ‘%)_WT

pu"TT (nr)
The Laplace transform of sum of largest order statistics is

Mi = ()

Jo G O G i))) R

76)

Substituting the PDF of f5(n_,) (y) yields

Moy, (9= (WLTrl(nT))n N - o DI (+3)

[ C )

Substituting the CDF F’, (y) and PDF f;  (y) and simplifying

yields
Mg (s) = —( nT;(?LT)) -
ON,n - (N —n—1)!(n)!

)
oo (s ny np—1
/0 T'(np)"e (s+%) ( (F(mzl)) ) X

m:()

np—1 N-n—1
1 -4 y>7' 1 np—1 —4

1-— —e K [ = ——y'T e mrdy.

( 2 TG (u ) T (n) ! Y

(78)

Expressing product of sum as sum of products yields
1 \" 1 N! 1\ ~"nr
Moxn @ = (7)) rem T Ot E)

[ (o (1)) ):

VSR N ety (R ek oy R “ia
2( ;e ;F(i+1)(;> vooe W
(719)
where >, = Z%;;EZZZ:O &m = Yoiym; and

Again expressing product of sum as
IIED DHIPD e

5 and §; = > _ i, Rearranging terms
and solving the resulting integral yields (81). Representing
Mg, (s) in terms of Gamma functions yields (82). The CDF
can be obtained by taking the inverse Laplace transform of

£ M (s) which is given as

Fm = T Tm+1)

sum of products yields (80), where ),
S ) 1
kr = 1lo=1 17,

N—-n—1

- Y

—n—1
T )X
M j=0 I

(—1)9 Nin~(Emtn4G) D (60 4 nr 4 &) om
T (n) (N —n — 1)l(n)! %
R / 7T IR T (ps + by (K))
q—ir TIh_1 T (us+ap (k))

9N n

(83)

eVds
27
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_ ~ NUseisem 32,5250 (N = n) ne + &m + &5 + k) NRTHEGHEHE _(Nnprejreirr)
May ., () = ; ; ; ,; —n — D))V =nmIng+emte;+k) (u) ® o 71
“ B 1 \n 1 N_n—1 o o o
o ()= (u”—T> WTT (nr) (N—n— DI () e (80)
—nnp+E&m S £
3 — £m b+ 7Ly K 7;J Z J n —1 7“’
(a + M) / Z re (M) y"T e dy
Nt —n—1 k1 (—=1)7 N'T' (&, + nr + &) Km ) —nngtEm 1 . —(&m+nr+e;)
My, () = Z Z Z( )r(nT)(N—n—1)!(n)!n(£m+w+&j) (us +1)"""T (ua+ ;(n+]+1)> 81)
N—-n—1 —n—1 (— 1)] N|n*(£m+wT+§J)F(§m + 1+ &) Km
My 8 =§ 2 ZK ( ) T (nr) (N —n — Di(n)! 2

T (ps + 1)"”T’£m I (p,s +1+ 71L

(j + 1))(§m+nT+£j)

T(pus+1+ 1)"”T*£m I (p,er 1+ 71L

(j+1)+1)(§m+nT+£j)

where m = I + nnr — &n (fm +nr + gj)» [9]
p = 1+ nnr Em Em +nr+§&), v =
(J+1) (G+1) (G+1) 1ol
J J J
0,1,1,..,1,1+ 14 sl
——— n n
e =ém (EmAnr+E;) [11]
and ap = by + 1 =
. . . [12]
j+1 j+1 j+1
1,2,2,...,2,2+( ),2+( ),...,2+—( )
—— n n n
—€m [13]
e 6. (Em+nr+E5) )
The CDF in (83) can finally be represented in terms of
Meijer-G function as (37). [14]
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