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Abstract

In this paper we investigate the coded bit-error rate in an orthogonal frequency-division mul-
tiplexing (OFDM) system. The system uses a pilot-based channel estimator and the effects of
non-ideal channel knowledge and non-ideal interleaving are analysed. The resulting coded bit-
error rate is calculated with an analytical method proposed by Cavers and Ho. This method
avoids time-consuming simulations, which is important when designing a communication sys-
tem. The theoretical results are compared with simulations and a good agreement is achieved.
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Chapter 1

Introduction

Orthogonal frequency-division multiplexing (OFDM) is an emerging technique for wireless
communication. It is used in Europe in digital audio broadcasting (DAB) [1]| and is proposed
for digital video broadcasting [2]. Tts resistance to multipath fading has shown it to be useful
in broadcasting applications and it is currently also considered for multiuser systems [3, 4]. In
those systems, a high spectral efficiency is needed to use the available bandwidth. Hence, mul-
tiamplitude modulation schemes may become necessary to use. These can be made differential
[5], which, since explicit channel estimation is not necessary, simplifies the receiver. However,
a penalty in the form of increased noise power is introduced, which is avoided by coherent de-
modulation. In that case channel estimation becomes an important part of a communication
system.

Channel estimators are usually evaluated by their mean-squared error performance. How-
ever, in a communication system the average bit-error rate (BER) is a more relevant measure.
The BER can be obtained by simulations but that is time consuming and offers little or no
insight to the design problem of a channel estimator. Analysis tools for coded systems have
existed for some time [6, 7] but these usually assume perfect channel knowledge and are not
applicable in this case. In 1992, Cavers and Ho [8] derived a new method for calculating the
bit-error rate of a coded system that assumes ideal interleaving but allows for non-ideal channel
knowledge. In 1992 and 1996, non-ideal interleaving was analyzed in [9, 10].

The purpose of this report is to apply the general techniques mentioned above to a coded
OFDM system, where we investigate the impact of channel estimation in those systems. The
effects of interleaving and channel estimator complexity are analyzed and verified with simula-
tions. This analysis will be important in the design of a channel estimator in a OFDM system
since the BER curves can be obtained very quickly. Hence it is easy to vary certain parameters
and almost immediately see the result without lengthy simulations.

The system model of the OFDM system we are considering is described in Section 2. The
channel estimator structure and the code used are also explained there. In Section 3 the error
analysis method is described for both the channel estimator and the decoder. In Section 4 the
results from the analytical method are compared with simulations, and in Section 5 the results
are discussed.






Chapter 2

System description

2.1 OFDM model

Figure 2.1a depicts the OFDM base-band model used in this paper. We assume that the use of a
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Figure 2.1: OFDM system. (a) Base-band model, (b) equivalent model.

cyclic prefix (CP) [11] both preserves the orthogonality of the tones and eliminates intersymbol
interference (ISI) between consecutive OFDM symbols. Further, the channel g(7;¢) is assumed
to be slowly fading, so it is considered to be constant during one OFDM symbol. The number
of tones in the system is N, which makes the effective symbol length T = NT,, where Ty is
the sampling period of the system. The length of the cyclic prefix is T = LT and the total
symbol length is T+ T¢;. If the duration of the impulse response of the channel is shorter than
the cyclic prefix, we can describe the system as a set of parallel Gaussian channels [12], shown
in Figure 2.1b, with correlated channel attenuations hj. The received signal on subchannel k
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can thus be described as
Ye = hip + N, (2.1)

k
hk:G<N—TS),k:O...N—1,

is the attenuation at subcarrier k& and G (-) is the frequency response of the channel g (¢, 7)
during the OFDM symbol. However, it should be noted that intercarrier interference (ICI)
occurs if the channel fades during an OFDM symbol [13, 14]. This ICI increases with the
fading rate and for fast fading environments, this should be taken into consideration. In
[14], it is shown that ICI can be modelled as Gaussian additive interference if the number of
subcarriers is large. This interference is uncorrelated with the frequency response hy. For a
Rayleigh-fading channel the signal-to-interference ratio (SIR) is [14]

1—%(N+2Z_:(N—k)(]o <2W£Dk>>] , (2.2)

k=1

where

SIRic1 =

where fp is the maximum Doppler frequency (relative to the intertone spacing) and Jy (+) is
the zeroth order Bessel function of the first kind [15]. In this report the SIR is large enough
to ignore intersymbol fading, see next section, and we use the simple model (2.1) without
considering the ICI.

2.2 Scenario

The system we are considering is a wireless multiuser system, e.g. a third generation mobile
telephone system. It is operating at the 2.2 GHz-band with a bandwidth of 5 MHz and 1024
subcarriers. This means that the intertone spacing is 5 - 10¢/1024 = 4.88 kHz and the symbol
duration (excluding the cyclic prefix) is 1/4.88- 10 = 205 us. The length of the cyclic prefix is
chosen to be 50 samples, which makes the overhead equal to 50/1024 = 5 % and the effective
OFDM symbol length 205 - 1.05 = 215 us. In this report we assume perfect synchronization
between transmitter and receiver. We will only deal with the downlink, where synchronization
is easier, although the methods are general and are applicable to the uplink as well. The
environment the system is working in is assumed to be a macrocell which can be characterized
by a Rayleigh-fading channel with a Doppler frequency of 240 Hz (corresponding to 120 km/h)
and a maximum time dispersion of 10 us. Normalized to the intertone spacing and sampling
interval respectively, this means fp = ﬁ/ﬂom ~ 5% and Ty = 11951%: = 50 samples. This
Doppler rate gives us a SIR of 24 dB, see (2.2). Since we evaluate the system for SNR < 16
dB, this interference becomes negligible and we ignore the ICI caused by channel fading within
an OFDM symbol.

The impulse response of the channel at time ¢ is modelled as [16]

G =S an(®)s (7 — ), (23)

where the fading amplitudes «,,(t) are independent, complex Gaussian random variables and
the delays 7, are uniformly distributed between 0 and 7,.,. This dispersion is shorter than
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the cyclic prefix and hence ISI is avoided. The power spread profile is exponentially decaying
with a root-mean-square (RMS) width of 2.2 us = 11 samples, i.e.

b

9 CeiT/Trms 0<1< Tmax
E{lg (r; )"} = { 0 otherwise

where E; is the expected value over ¢ and C' is a normalization constant.

2.3 Channel estimation

Pilot-symbol assisted modulation [17] has been proposed as an efficient way of combating fad-
ing. Pilot symbols, known to the receiver, are multiplexed into the transmitted symbol stream
and with the aid of these, the fading channel is estimated by interpolating between the pilot
symbols. For OFDM this interpolation can be done in two dimensions (time and frequency),
but this usually leads to estimators with a high complexity. Therefore, separating the chan-
nel estimator into two one-dimensional estimators has been proposed [18]. First the channel
attenuations on all subcarriers are estimated in only those OFDM symbols that contain pilot
symbols, see Figure 2.2. Then all channel attenuations are estimated using these estimates.

Frequency [subcarriers]

I D @ D

©)

Time [symbols]

Figure 2.2: Pilot symbols, marked in gray, used for channel estimation. The channel attenua-
tions are first estimated in the frequency direction (1) and then in the time direction (2).

The separate channel estimators can be FIR-filters [18] or low-rank estimators [19] that are
designed to minimize the mean-squared error (MSE). In this report we will consider only the
FIR filters. Nominal values of the channel correlation and signal-to-noise ratio (SNR) are used
in order to keep the estimator fixed, which simplifies the implementation. Design for the worst
case has shown to be robust and beneficial with regard to the maximum error level [17, 18, 19].
In this report we will design the estimators for a uniform power-delay profile (for 0 < 7 < T.x),
SNR =30dB and fp = 5%. If Ny and V; denote the number of taps in the frequency and time
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filters, the average number of multiplications per attenuation is Ny/4 + Ny, since only every
fourth OFDM symbol needs to be estimated in the frequency direction [20]. We analyze two
estimators with different complexities: one with 25 taps in the frequency direction and 7 taps
in the time direction and one with 5 and 2 taps, respectively. These two estimators have an
average complexity of 13.25 and 3.25 multiplications per estimated attenuation, respectively.

2.4 Coding

For error protection, a convolutional code is used. To make the analysis tractable we use a
rather small code with constraint length 3, which has been found to be very effective on fading
channels [21]. The in-phase and quadrature signals are encoded separately with a rate 1/2
code with generator polynomials [22]:

9(D) = 1+ D+ D?
9 (D) = 1+ D"

The encoder is depicted in Figure 2.3. The encoded outputs are modulated using 4-PAM and

Figure 2.3: The convolutional encoder.

concatenated to a 16-QAM symbol. For a fading channel the diversity order of a code is not
the free distance but the length of the shortest error event [6]. The length of an error event,
L, is the number of symbols on an erroneous path that differ from the correct path. From the
trellis of the code, Figure 2.4, it can be seen that the shortest error event is Ly, = 3. The
receiver first equalizes the received signal y; using the channel estimate h; and then separates
the signal into its in-phase and quadrature parts

2k = /% = z,(f) —}—jz,iQ).

k

The decoding is performed separately with the decoding metric

M) =Y ] -l (24)
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Figure 2.4: Trellis for the rate 1/2 convolutional code used. The bold path is the shortest error
event.

where 7, is the sequence for which the metric is computed and Zz; is either z,(f) or z,(CQ). Using

the Viterbi algorithm, the sequence Z; which minimizes this metric is found, i.e.
X = argmin M (X) .

It should be noted that the metric in (2.4) is not the maximum-likelihood metric when multi-
amplitude modulation is used [8], but we will nevertheless use it for simplicity.

In order to obtain diversity in the system from the channel code, interleaving must be used.
Interleaving breaks up the channel correlation and, in the ideal case, provides the decoder
with uncorrelated symbols. In this report we will use frequency interleaving on a symbol level,
1.e. interleaving is performed after the bits have been assigned to constellation points. The
symbols are block interleaved with depth D; subcarriers across the tones. The interleaving is
illustrated in Figure 2.5 with Dy = 3.

Frequency [subcarriers]

A

10119 | 28 37|46 |55 | 64|73

O |W |00 | U N | (= |+~

>
Time [symbols]

Figure 2.5: Interleaving in frequency across the tones.



In this report we assume a M = 10 path channel which allows the code to use its full
diversity of order 3 [23]. By choosing Dy = 128, we have 1024/128 = 8 symbols whose distance
from each other is large enough to minimize the effects of correlation. In Figure 2.6 the
frequency correlation of the channel is depicted for the scenario in this report, see Section 2.2 for
parameters. Two consecutive channel symbols into the decoder have the correlation coefficient
|E {h(m)h*(m —128)}| /o2 = 0.118, which is small enough not to degrade the performance
significantly.

Correlation coefficient

0 100 200 300 400 500
Subcarriers

Figure 2.6: Frequency correlation for the multi-path channel. The correlations for the inter-
leaved system (D; = 128) are marked with ’o’.



Chapter 3

Performance analysis

3.1 Channel estimation

In order to evaluate a coded OFDM system, we will need four covariances from the system,
see Section 3.2:

(k) 2 E{R(m)h*(m — k)}
ro(k) 2 E{h(m)ﬁ*(m—k)}
k) 2 B {hm)(m - k)}
rak) 2 E{n(m)h(m— k) }

Notice that we assume the channel and the additive noise to be uncorrelated, £ {n(m)h*(k)} =

0, Vm, k. How to derive explicit expressions for the above correlations is described in Appendix
B.

3.2 Coding

To evaluate the probability of error for a code, one usually starts with the error event proba-
bility. An error event is defined as a path in the trellis which starts at the same node as the
correct path, diverges and re-emerges some stages later with the correct path. The probabil-
ity of such an error event can be upper bounded with, e.g., the Chernoff bound [6, 7]. To
obtain the average bit-error rate, a union bound over all error events may be applied. This
enumeration of all error events can be calculated with the transfer function of the error-state
diagram [6, 7] of the code. This technique, however, assumes perfect knowledge of the channel
so it is not suitable for this report. We are investigating the impact of channel estimation, i.e.,
when we do not have perfect channel knowledge. Instead, we will use the analysis introduced
by Cavers and Ho [8, 21]. This technique is applicable to a more general description of the
system, which includes non-ideal channel knowledge.
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3.2.1 Pairwise error probability

The exact probability of an error event was found in 1992 by Cavers and Ho [8]. Assume that
the decoder chooses the sequence which minimizes the metric

M (e) = 3 |y = Pucar g (3.1)

where c; is a possible sequence of codewords and k labels the symbols after interleaving, i.e.
the order in which they input to the decoder. The sequence which minimizes (3.1) can be
found with the Viterbi algorithm. The probability of an error event, i.e. that the transmitted
sequence c; is decoded as c; can be written as

Pr(c; = ¢;) =Pr(M(c;) > M (c;)) =Pr(D <0), (3.2)

where D = M (c;) — M (c;) is the metric difference for the two sequences. The probability in
(3.2) can be written as [21]

Pr(D <0) =—> " Residue F)L(S)

S

, (3.3)

:| RHP poles

where the sum is over the poles of ®p(s)/s which lies in the right halfplane of the complex
plane (Re > 0) and ®p(s) is the two-sided Laplace transform of the probability distribution
function of D. By rewriting D as

D = M(c;)—M(c;)
~ ~ —~ |2
= > luel® — ukhich, — vihess + )hk) lejel* —
k
2 T x *7 ~ |2 2
Z yel” — yrhicl — yihwe + ‘hk‘ |Cik]
k
~ ~ —~ |2
= Y urhi (G — ) + vl (cin — ci8) + ‘hk‘ (leswl® = lewl®) (3.4)
k

we note that it is a quadratic form in the complex Gaussian variables (yk,/h\)k) Using matrix
notation and denoting the length of the sequences c; and c¢; by L, (3.4) can be written as
H

(1 0 0 Ci1—Cjip v 0 (7
YL 0 0 0 G — GjL YL H
D=1 = N N 2 2 =~ =z"'"Mz.
ha ¢~ Ci 0 e ™ = leal” -+ 0 hy
. . . 2 2 >
i 0 g 0 o el el )\ R
N ~~ N——
M z

By using a linear transformation and an eigenvalue decomposition, see Appendix D, D can be
written as [24]
2L
D= Z >\k |Qk|2 )
k=1
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where g are independent complex Gaussian random variables, A\; are the eigenvalues of R,,M
and R,, = F {zzH } is the autocovariance matrix of z. Since D is a sum of independent
variables, the Laplace transform ®p(s) is found as |9, 25]

2L 1
op(s) =[] .
oy LT Aes

Note that the poles of ®p(s) are —1/A,. Hence, to find the probability of a given error event
in (3.3), we find the eigenvalues A of the matrix R,,M and calculate the residues of ®5(s)/s
at the poles, —1/\g, who lie in the right halfplane.

In the case of non-ideal interleaving, the correlation matrix R,, is non-trivial but can be
calculated as [10]

p Hy E{ywyit - E{nwyr} FE {yl/}\f{} e B {ylﬁz}

hn hn ‘ ‘ . ‘ . ‘
R.—E YL YL . E{yL?ff} E{yLyE} E {yrhi - F yL/]”\LE
= hy I g{hyh - By} B{Rb} - B{Rb;
\ TLL TLL / A * ) A: * AA* ) A: T x
E{hLyl} E{hLyL} E{thl} E{thL}

The elements of this matrix are
E{yyy = E{(hwzr +ng) (b +m)"} = Rpn(k — Dagz) 4+ 026(k — 1)
E {y,ﬁ;j} 0 {(hkxk + ) ﬁ;} =R (k— )z + R ;(k—1)
E{hi} = E {ylﬁ;;}* — R*(l— k)aj + R (1— k)
E {E,ﬁ;f} = R (k—1)

and depend on the channel estimator used.

3.2.2 Bit-error probability

To find the average bit-error probability we can sum up all the error events (each associated
with a number of information bits) to construct a union bound. This can be done with the
transfer function of the code [6]. However, the error event probabilities (3.3) are not in a form
suitable to use the transfer function. We will truncate the sum and only consider error events
of small lengths [8]. This will not be an upper bound to the bit-error rate anymore. However,
truncating the union bound can be a good approximation as argued in [8].

The average bit-error probability is approximated by

1
P~ — ZP ’ i)
= S )

11




where n is number of input bits per encoding interval and m,; is the average number of bit-
errors associated with each error event [7]. The sum is truncated to contain only error events of
length L < L,y . The maximum length L, .« is chosen as in [21]. Define P,(k) as the estimated
BER when error events of length L < k are considered. When the increment P, (k+1) — P, (k)
is much smaller than the increments for smaller k, we choose L., = k. In our case we found
Ly.x = 5 to be a suitable choice, since considering longer error events did not change the
estimated BER significantly. The error events can be enumerated using the transfer function
of the error state diagram [6]. The output bits of the (1 + D + D? 1 + D?)-code are mapped
to a 4-PAM constellation. The trellis for this code along with the bit mapping for the 4-
PAM constellation are shown in Figure 3.1. Note that we encode the in-phase and quadrature

. 00,11
11,00
10,01
01,10
00 01 11 10
| ] >
3 1 +1 +3
61
—

v

Figure 3.1: Trellis of the convolutional code and the 4PAM constellation used in the OFDM
system.

dimensions separately, so for a coded 16-QAM symbol, we have two input bits and two output
bits. Because we encode the in-phase and quadrature separtely, we can also analyze the two
systems separately. To enumerate all error events, we use the technique described in [7, Chap.
5.3.2]. From the 4-PAM constellation, we can associate each error with a distance

W(00) = 0
W(Ol) = &
W(10) = (5 + )
W(1l) = 6.

12



1
5(61+63)L

Figure 3.2: Error-state diagram for the convolutional code (1 + D + D? 1+ D?)-code with
APAM modulation.

The distance W (10) may derived as follows: when the error 10 occurs, the associated distance
will be 6; when 01 or 11 is transmitted and 63 when 00 or 10is transmitted. Hence we can
denote W (10) by 3 (61 + 63) , which can be interpreted as 6; half of the time and 63 half of the
time. Figure 3.2 displays the error-state diagram for this implementation of the code. Each
branch in the error-state diagram is labeled by W (-)I" L, where W (-) is the Euclidean distance
associated with the error, » denotes the number of information bit errors and L enumerates the
branches. Using a state-space description of the error-state diagram, the error events shown
in Table 3.1 can be derived (see Appendix C for the details).

Error event # ‘ Actual length | Effective length ‘ M5 ‘ 61 ‘ 6o ‘ 03 ‘

1 3 3 051 12 (0
2 3 0510 |2 |1
3 4 4 2 21210
4 5) 4 0512 (210
) 4 1 1121
6 4 05|10 (2 |2
7 ) 1513 1210
8 ) 1512 |2 |1

Table 3.1: Description of the dominating error events. The effective length is the number
of symbols that differs from the transmitted codeword, m,; is the average number bit errors
associated with the error event, and 6; are the Euclidean distances of the codeword symbols,
see Fig. 3.1.

The effective length of a code as defined in section 3.2.2 denotes the number of channel
symbols that differ in the transmitted and decoded sequence. The smallest effective length
determines the diversity order of system [8]. Hence, for the code considered here we have a
diversity order of 3.
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Chapter 4

Simulation

4.1 Perfect channel estimation

To evalute the effect of non-ideal interleaving on our OFDM system, we apply the techniques
described in section 3.2 for the case of ideal and non-ideal interleaving with perfect channel
estimation. The ideal interleaving assumes that all channel attenuations are uncorrelated and
the non-ideal interleaving is done as described in Section 2.4. The coding and modulation is
done with the (1 + D + D? 1 + D?)-code and 4-PAM, respectively, separately on the inphase
and quadrature signals. They are then combined to form a 16-QAM symbol. In the analysis
all error events of length 5 and shorter are considered. In Figure 4.1 the analytical bit-error
rate curve is shown together with simulations. As can be noted from the figure, the difference
between ideal and non-ideal interleaving is very small. Thus the resulting channel correlation
after interleaving does not degrade the performance in any significant way.

4.2 Channel estimation

The channel estimation in these simulations is as described in Section 2.3. We first use an
FIR filter to estimate the channel attenuations on all tones in a given OFDM symbol that
contain pilot symbols. We then use an FIR filter in the time-domain to obtain estimates of all
tones. Thus the channel estimator is a separable two-dimensional linear filter that interpolates
between the initial estimates obtained at the pilot positions. The first estimator uses a 5-tap
filter in the frequency direction and a 2-tap filter in the time direction, which gives an average
of 3.25 multiplications per attenuation. The second estimator uses 25 and 7 taps, respectively,
which results in 13.25 multiplications per attenuation. The theoretical bit-error rate for these
two estimators is shown in Figure 4.2 together with the simulations. As a reference the bit-error
rate with perfect channel knowledge is included.

The degradation compared to perfect channel knowledge is approximately 3 dB for the low
complexity estimator and 1.3 dB for the high complexity estimator. The theoretical results
show good agreement with the simulations, except for low SNR. For those low SNR values, the
analytical method over-estimates the bit-error rate.
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Figure 4.1: Bit-error rate with known multi-path fading channel. Simulations for ideal and non-

ideal interleaving are marked with ’o’ and 'x’, respectively. The solid lines are the analytical
results (indistinguisable for the two cases).
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Figure 4.2: Bit-error rate for the multipath fading channel. From bottom to top: known
channel, estimator A (13.25 mult./tone) and estimator B (3.25 mult./tone).
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Chapter 5

Conclusions

In this report we have applied a general analysis method to a coded OFDM system. This
method is most useful in the design of a system, with respect to channel estimator complexity,
interleaving schemes etc., since it does not require any time-consuming simulations. Further-
more, it is general and allows the analysis to consider systems with non-ideal channel estimation
and interleaving. We have investigated two versions of a channel estimator with different com-
plexities. The lower complexity estimator is about 3 dB from the known channel, while the
degradation for the higher complexity estimator is about 1.3 dB. The theoretical results agree
well with simulations, except at low SNRs where it over-estimates the bit-error rate. However,
for these low SNRs, the difference between the different estimators is not interesting from a
design point of view as all the estimators give approximately the same bit-error rate. Thus
the investigated method shows a high potential for use in the design phase of coded OFDM
systems, since it is fast, simple and accurate. In this report we have only considered the effect
of channel estimation, but other parameters can also be investigated, such as pilot density,
choice of code, etc.
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Appendix A

Channel correlation

The frequency response of the channel model in (2.3) is

M

Bfit) =3 o (6) 92

m=1

and the frequency correlation between two attenuations spaced [ subcarriers apart is

k k—1 M
R = B{n(5pt)0 () =2 {Z am (0 eﬂmmmn}
s 8 m=1

1 M LT,
— Oe—Tm/Trmse—jQWITm/NTSdTm
LT, 2 ;
m=1

1 exp (—£L — jamik)

T

- OCM-

Lo 4 joml % ’
where the normalization coefficient C' is chosen such that Rp.e, (0) = 1. The channel estimator
is designed for a uniform power delay profile, which can be obtained when 7, — o0,

CM L
R req uni orm l - 1 - - ’2 l_ .
freq,uniform (1) jQﬂ%( eXP( J?TN))

The time variation of the channel follows Jakes’ model [15], whose time correlation is
R(t) = Jy (2mFpt), where Jy (+) is the zeroth order Bessel function of the first kind and Fp
is the maximum Doppler frequency. Thus the correlation between two attenuations with a
distance of m OFDM symbols is

Rtime (m) = Jo (27TFDm (N + L) TS) = JO (27‘(‘fDm <1 + %)) ,

where fp is the relative (to the intertone spacing) maximum Doppler frequency.

19



20



Appendix B

Channel estimator

The channel estimator used here is a separable Wiener filter [18]. Consider first the channel
estimation in the frequency direction. In those OFDM symbols where there are pilots, these
estimates are

R (k,0) = " @l (k= mNy = i,0), i = 0,..., Ny — 1,

where (k,l) denotes subcarrier k at symbol [, superscript (i) indicates that the estimated
attenuation lies ¢ subcarriers from a pilot and /Ny is the distance between pilot symbols. Note
that pilots are placed at i = 0 and that we need Ny different estimators o) since the estimated
attenuations are placed differently relative to the pilots. These preliminary estimates are then

used for the estimation in the time direction:
b = 3" BPRD (k1 —nN, — ), j=0,...,N,— 1

> " al) B9 hy, (k —mNy —i,1 —nN, — j) .

Here the superscript (j) denotes the distance between the estimated attenuation and an OFDM
symbol with pilots. By placing all the used pilots in a vector p, the estimator may be expressed
as

2@d) _ T
th = &; jPk—ii—j>

where ' '
Oé?g?min ’f(ZJn?in hls (k - mmian7 l - nminNt)
g = O{'E:L)max 7(ljn?in p _ hls (k - mmaXNfu [ — nminNt)
imj - A j kvl - T
agb)mhwl 7(1]131]1 ’ hls (k - mmian; [ — nmin+1Nt)
a'gzb)max 7(1313“ hls (k — Mpax Nf7 l - nmath)

From this description it is straightforward to obtain the correlations needed for the analysis.
Due to the periodic pattern of the pilots there will be N;N; different estimators, all with differ-
ent performance. Hence we average over all estimated attenuation to get a scalar parameter.
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For instance, the cross-correlation between the channel and the channel estimate is set to be

1 ~ij
R (b, 5K, 1) = ZE {hwhk,j?} .

This can be justified in that there is only a small variation among the estimated attenua-
tions and they have all approximately the same properties. Note that the correlations should
be calculated after de-interleaving and that the indices of the variables should be adjusted
accordingly.
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Appendix C

Error event enumeration

The error-state diagram for the (1 + D + D? 1 + D?)-code with 4-PAM modulation considered
in this report is depicted in Figure 3.2. To calculate the transfer function of the error-state
diagram we use a state-space description [6]:

&1 0 IL 0 £ 8,1 L
3 = 5(614+63)L 0 61 L & |+ 0 &in
& S.IL 0 L(6+68)L & 0

~— v —_——

A B

&1

gout == (O 62L O) §2
| S 63
C

The transfer function is

gout
é-in

By noting that (I — A)~" = 37°  A*, and that all matrices contain the scalar L, the transfer
function can be written as

—C(I-A)'B

gout - = A kD Tk+2
gin B Z CA'BL
k=0

where A = LA B = LB and C = LC. Hence, &out/&n is a polynomial in L and all error

events of length k+ 2 can be found as CAF*B. This can now be used to find all dominant error
events.
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Appendix D

Laplace transform ®p(s)

This derivation of the Laplace transform of the quadratic form D follows Turin [25] and Mazo
and Salz [24]. The quadratic form

D =z"Mz
is easier to work with if we make the elements in z uncorrelated, i.e., p = R-./*z. Now we
have E {ppH } =F {R;zl/ 2221 R} 2} = I which is the identity matrix. Note that R, is

Hermitian, i.e., R,, = REZ. From the new quadratic form
D =p"R/*MR/’p
we do an eigenvalue decomposition
RY/?MRY/? = UAUZ,
where U contains the eigenvectors and A =diag ( Al 0 Ao ) is a diagonal matrix with the

eigenvalues. The quadratic form is now

2L
D =p"UAU"p = qAq=> Ml|al,

k=1

where q = U”p contains uncorrelated elements since U is an unitary matrix [26]. Thus g
are independent complex Gaussian variables with unit variance. Since the real and imaginary
part of g are independent, A\ \qk\z is x? (2)-distributed with corresponding Laplace transform
(14 Aks)”" [27]. The Laplace transform of a sum of independent variables is the product of
their individual transforms [27] and hence,

2L 1
o = :
D (S) H 1 + )\ks
k=1
Note that the eigenvalues Ay of R;QQMRif are the eigenvalues of R,,M:

det (R;QQMR;QQ - /\I) = det (RZ2 (R..M — A) R}/2) =
det (R,/?) det (R..M — AI) det (R1/?) = det (R..M — AI).

zZ

25



26



Bibliography

1

[10]

[11]

Radio broadcasting systems; Digital Audio Broadcasting (DAB) to mobile, portable and
fixed receivers. ETS 300 401, ETSI — European Telecommunications Standards Institute,
Valbonne, France, February 1995.

Digital broadcasting systems for television, sound and data services. European Telecom-
munications Standard, prETS 300 744 (Draft, version 0.0.3), April 1996.

C. Reiners and H. Rohling. Multicarrier transmission technique in cellular mobile com-
munication systems. In Proc. IEEE Vehic. Technol. Conf., pages 1645-1649, Stockholm,
Sweden, June 1994.

H. Rohling and R. Griinheid. Multicarrier transmission technique in mobile commu-
nication systems. In Proc. RACE Mobile Commun. Summit, pages 270-276, Cascais,
November 1995.

Volker Engels and Hermann Rohling. Multilevel differential modulation techniques (64-
DAPSK) for multicarrier transmission systems. Eur. Trans. Telecommun. Rel. Technol.,

6(6):633-640, November 1995.

Ezio Biglieri, Dariush Divsalar, Peter J. McLane, and Marvin K. Simon. Introduction to
trellis-coded modulation with applications. Macmillan, New York, 1991.

S. Hamidreza Jamali and Tho Le-Ngoc. Coded-modulation techniques for fading channels.
Kluwer Academic Publishers, 1994.

James Cavers and Paul Ho. Analysis of the error performance of trellis-coded modulation
in Rayleigh-fading channels. IEEE Trans. Commaun., 40(1):74-83, January 1992.

Paul Ho and Dominic Fung. Error performance of interleaved trellis-coded PSK modula-
tions in correlated Rayleigh-fading channels. IEEE Trans. Commun., 40(12):1800-1809,
December 1992.

Robert van Nobelen and Desmond P. Taylor. Analysis of the pairwise error probability of
noninterleaved codes on the Rayleigh-fading channel. IEEE Trans. Commun., 44(4):456—
463, April 1996.

A. Peled and A. Ruiz. Frequency domain data transmission using reduced computational
complexity algorithms. In Proc. IEEFE Int. Conf. Acoust., Speech, Signal Processing, pages
964-967, Denver, CO, 1980.

27



[12]

[13]

[14]

[15]

[16]
[17]

18]

[19]

[20]

[21]

22]

23]

[24]

[25]

[26]
[27]

John A. C. Bingham. Multicarrier modulation for data transmission: An idea whose time
has come. IEEE Commun. Mag., 28(5):5-14, May 1990.

A. Miiller. OFDM transmission over time-variant channels. In Proc. Int. Broadc. Conwv.,
number 397, pages 533538, Amsterdam, Netherlands, September 1994.

Mark Russell and Gordon Stiiber. Interchannel interference analysis of OFDM in a mobile
environment. In Proc. IEEE Vehic. Technol. Conf., volume 2, pages 820-824, Chicago,
IL, July 1995.

William C. Jakes. Microwave mobile communications. Classic Reissue. IEEE Press, Pis-
cataway, New Jersey, 1974.

J.G. Proakis. Digital communications. Prentice-Hall, 3rd edition, 1995.

James K. Cavers. An analysis of pilot-symbol assisted modulation for Rayleigh-fading
channels. IEEE Trans. Vehic. Technol., 40(4):686-693, November 1991.

Peter Hoher. TCM on frequency-selective land-mobile fading channels. In Proc. Tirrenia
Int. Workshop Digital Commun., Tirrenia, Italy, September 1991.

Ove Edfors, Magnus Sandell, Jan-Jaap van de Beek, Sarah Kate Wilson, and Per Ola
Borjesson. OFDM channel estimation by singular value decomposition. Research Report
TULEA 1996:18, Div. of Signal Processing, Luled University of Technology, September
1996.

Magnus Sandell and Ove Edfors. A comparative study of pilot-based channel estimators
for wireless OFDM. Research Report TULEA 1996:19, Div. of Signal Processing, Lulea
University of Technology, September 1996.

Paul Ho, James Cavers, and Jean Varaldi. The effects of constellation density on trellis-
coded modulation in fading channels. IEEE Trans. Vehic. Technol., 42(3):318-325, August
1993.

Stephen G. Wilson. Digital modulation and coding. Prentice-Hall, New Jersey, USA, 1996.

Sarah Kate Wilson. Digital audio broadcasting in a fading and dispersive channel. PhD
thesis, Stanford University, CA, August 1994.

J. Mazo and J. Salz. Probability of error for quadratic detectors. Bell System Tech. J.,
44(9):2165-2185, November 1965.

George L. Turin. The characteristic function of Hermitian quadratic forms in complex
normal variables. Biometrika, 47:199-201, 1960.

Gilbert Strang. Linear Algebra and Its Applications. Academic Press, 2nd edition, 1980.

G.R. Grimmett and D.R. Stirzaker. Probability and random processes. Oxford University
Press, Oxford, England, 2nd edition, 1992.

28



