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Abstract—This paper studies the performance of contention
based medium access control (MAC) protocols. In particular, a
simple and accurate technique for estimating the throughput of
the IEEE 802.11 DCF protocol is developed. The technique is
based on a rigorous analysis of the Markov chain that corresponds
to the time evolution of the back-off processes at the contending
nodes. An extension of the technique is presented to handle the
case where service differentiation is provided with the use of
heterogeneous protocol parameters, as, for example, in IEEE
802.11e EDCA protocol. Our results provide new insights into
the operation of such protocols. The techniques developed in the
paper are applicable to a wide variety of contention based MAC
protocols.

Index Terms—Carrier sense multiple-access protocol with colli-
sion avoidance (CSMA/CA), diffusion approximation, fixed point
analysis, fluid limit, IEEE 80211, IEEE 80211e, performance evalu-
ation, performance of the medium access control (MAC) protocols,
wireless local-area networks (WLANs).

I. INTRODUCTION

W IRELESS local area networks (WLANs) based on the
IEEE 802.11 standard are one of the fastest growing

wireless access technologies in the world today. They provide
an effective means of achieving wireless data connectivity in
homes, public places, and offices. The low-cost and high-speed
WLANs can be integrated within the cellular coverage to pro-
vide hotspot coverage for high-speed data services, thus be-
coming an integral part of next generation wireless communi-
cation networks.

The fundamental access mechanism of IEEE 802.11 MAC
is the distributed coordination function (DCF). The DCF is a
carrier sense multiple-access protocol with collision avoidance
(CSMA/CA). In addition to DCF, the IEEE 802.11 standard
also defines an optional point coordination function (PCF),
which uses a central coordinator for assigning the transmission
right to stations, thus guaranteeing a collision-free access to
the shared wireless medium. While DCF has gained enormous
popularity and been widely deployed, the use of PCF has been
rather limited.
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Whereas the IEEE 802.11 standard was targeted at best effort
service for data transfer, it is expected that in the future WLANs
will need to support a mix of quality of service (QoS) sensi-
tive, multimedia and interactive traffic, in addition to data traffic
which is only sensitive to the throughput. Future WLANs must
therefore provide service differentiation in order to better sup-
port the diverse QoS requirements of the applications running
on them. A new standard, namely, IEEE 802.11e, has been pro-
posed for this purpose; it defines two new access mechanisms:
EDCA (an enhancement to DCF), and HCF (an enhancement
to PCF). Of the two, EDCA appears to be gaining more early
acceptance.

In this paper, we study the performance of contention based
MAC protocols, with a specific emphasis on DCF and a simpli-
fied version of EDCA. There have been several previous works
on the performance of DCF; these include simulation studies
[1], [2] as well as analytical studies based on simplified models
of DCF [3]–[8]. Most of the analytical work is based on a de-
coupling approximation, first proposed by Bianchi in [3]; we
henceforth refer to the simplified model with this decoupling
assumption as Bianchi’s model.

More recently, several studies [9]–[13] have evaluated the
performance of EDCF, an earlier version of EDCA (see [14]).
With the exception of [13], where the authors propose an ex-
tension of the Bianchi’s model for analyzing EDCF, all these
studies are simulation based.

The main contribution of this paper is a novel technique for
estimating the throughput and other parameters of interest for
the contention based MAC protocols. Our technique is based
on a rigorous analysis of the drift of the Markovian model of
the system, and does not require the decoupling assumption of
Bianchi. In fact, through the insights it yields into the system
dynamics, it provides an intuitive justification of Bianchi’s sim-
plifying assumptions. The technique is easy to apply, and we
use it to analyze DCF as well as a simplified version of EDCA.
We now briefly sketch the key ideas behind our approach.

A common feature of all the contention based MAC proto-
cols is the concept of back-off stage for a station. The stations
can be in different back-off stages; the back-off stage for a sta-
tion depends on the number of collisions that it has encountered
since its last successful transmission (and, possibly, other infor-
mation) and can be thought of as its estimate of the current level
of contention at all stations. The stations use this estimate to
control their access probabilities. The key observation we make
in this paper is that, when the number of stations is large, the
Markov chain associated with the back-off process stays close
to what we call a typical state, which can be obtained as the
unique equilibrium point of the drift equations associated with
the back-off process. We can obtain quite accurate estimates of
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Fig. 1. Basic access method.

the throughput and other parameters of interest by assuming the
system to be in this typical state at all times.

We find that the accuracy of the throughput estimates ob-
tained using our technique is about the same as those obtained
using Bianchi’s analysis. But, in addition, we are able to provide
some key insights about the system dynamics; in fact, our results
provide a justification for Bianchi’s approximation, which may
be of separate interest.

The rest of the paper is organized as follows. We provide a
brief description of DCF and EDCA, and discuss some related
work, in the next section. Our technique for performance eval-
uation is discussed in the context of DCF in Section III. An ex-
tension of our technique in the context of EDCA is discussed
in Section IV. Some concluding remarks are presented in Sec-
tion V. Due to space constraints, all technical details and proofs
are deferred to Appendices A and B.

II. DCF, EDCA, AND RELATED WORK

In this section, we provide a brief description of DCF and
EDCA, and discuss some related work in the literature. We start
with a description of DCF.

A. IEEE 802.11 DCF

The DCF is a carrier sense multiple access with collision
avoidance (CSMA/CA) MAC protocol. The collision avoidance
scheme of DCF is based on the binary exponential back-off
(BEB) scheme [15], [16]. The DCF defines two access mech-
anisms for packet transmissions: basic access mechanism, and
RTS/CTS access mechanism.

In the basic access mechanism (see Fig. 1), any station, before
transmitting a DATA frame, senses the channel for a duration of
time equal to the distributed interframe space (DIFS) to check
if it is idle. If the channel is determined to be idle, the station
starts the transmission of a DATA frame. All stations which hear
the transmission of the DATA frame set their network allocation
vector (NAV) to the expected length of the transmission, as indi-
cated in the Duration/ID field of the DATA frame. This is called
the virtual carrier sensing mechanism. The channel is consid-
ered to be busy if either the physical carrier sensing or the virtual
carrier sensing indicates so, and in that case, the station enters

into a wait period determined by the back-off procedure to be
explained later. Upon successful reception of the DATA frame,
the destination station waits for an SIFS interval following the
DATA frame, and then sends an ACK frame back to the source
station, indicating successful reception of the DATA frame.

The RTS/CTS access mechanism uses a four-way handshake
in order to reduce bandwidth loss due to the hidden terminal
problem (see, for example, [17]). A station that wishes to send a
DATA frame first senses the channel for a DIFS duration. If the
channel is determined to be idle, then an RTS frame is sent to the
destination. Otherwise, the back-off algorithm is triggered after
the end of the current transmission and a further DIFS interval.
Upon successful transmission of the RTS frame, the destination
waits for a SIFS interval, and then sends a CTS frame back to
the source. The source can start sending the DATA frame an
SIFS interval after the reception of the CTS frame. As in the
basic access mechanism, upon successful reception of the DATA
frame, the destination waits for an SIFS interval, and then sends
an ACK frame back to the source. A station that hears either
the RTS, CTS, or DATA frame updates its NAV based on the
Duration/ID field of the corresponding frame (see Fig. 2). The
four-way handshake prevents any DATA–DATA collisions that
might occur due to the hidden terminal problem. Since the RTS
and CTS frames are very small in size, the RTS/CTS access
scheme significantly reduces bandwidth loss due to collisions.

The back-off procedure is implemented by means of the
back-off counter and back-off stages. Initially, upon receiving
a new frame to be transmitted, the station starts in back-off
stage , window size set to . Following an un-
successful transmission attempt (collision), the back-off stage
is incremented by and the contention window size is doubled
until the maximum size of the contention window, ,
is reached, after which the back-off stage and the contention
window size remain unchanged on subsequent collisions. The
back-off window size as well as the back-off stage are set
back to their initial values of and after a successful
transmission attempt or if the retry count limit for the frame
is reached. At the start of each back-off stage, the back-off
counter is set to an integer chosen uniformly at random between
zero and the value of the contention window for the
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Fig. 2. RTS/CTS access method.

current back-off stage. The back-off counter is decremented
by in every subsequent slot, as long as the channel is sensed
idle in that slot. (Here, a slot is an interval of fixed duration
specified by the protocol.) If a transmission by some other
station is detected, then the station freezes its back-off counter,
and resumes its count from where it left off after the end of
the transmission plus an additional DIFS interval. When the
back-off counter reaches , the station transmits.1

The scheme described above treats all the stations equally.
We now briefly describe the EDCA mechanism, which is an
extension of the DCF mechanism, and aims at providing service
differentiation.

B. IEEE 802.11e EDCA

The EDCA has been designed from the perspective of pro-
viding QoS in WLANs. The EDCA defines four different ACs,
each maintaining its own channel access function (an enhanced
variant of the DCF). The main differences between the EDCA
and DCF are as follows.

1) The minimum specified idle duration time, called the ar-
bitration inter frame space (AIFS), is not a constant value
unlike the DIFS in the case of DCF.

2) The contention window limits, 2 and , are
different for different ACs.

In Section IV, we consider a heterogeneous setting similar to
the one as under the above EDCA mechanism.

C. Related Work

One of the earliest analyses of the throughput of DCF was car-
ried out in [4] using a greatly simplified back-off model, namely,
that the back-off counter value is geometrically distributed with
constant parameter , irrespective of the current back-off stage
of the station. A more realistic model was proposed in the sem-
inal paper of Bianchi [3]. Here, the evolution of the back-off

1As in [3] and majority of the related literature, in our analysis, we ignore
the facts that i) the back-off procedure is not invoked immediately after a suc-
cessful transmission or during the transmission of the first data packet, and ii)
the back-off counter is not decremented if the channel is sensed to be busy. For
a more accurate model of the back-off procedure, we refer the reader to [18].

2The parameters ��� and ��� depend on the physical layer.

stage at each node is described by a Markov process; the Markov
chains at different nodes evolve independently, but in an envi-
ronment specified by the collision probability for any trans-
mission attempt. The parameter is a constant derived from the
mean transmission probability in the associated Markov chains.
This formulation leads to a fixed-point equation for . Note
that the model is analogous to mean-field models in statistical
physics; the only interaction between the Markov processes at
different nodes is through the parameter , which represents a
mean value of the environment. It is not a goal in [3] to pro-
vide a rigorous justification of the mean-field assumption. The
assumption is justified through simulations, which show that the
model predictions are quite accurate.

Several subsequent studies have built on the work of Bianchi.
In [7], the authors obtain similar fixed-point equations using
the same decoupling assumption but without the Markovian as-
sumptions of Bianchi; extensions of this fixed-point formulation
are studied in [8].3 In [6], the authors present an approximate
delay analysis based on Bianchi’s model, and also extend the
model to account for channel errors.

Recently, Proutiere et al. [30] have shown that the mean field
analysis of Bianchi is asymptotically (in the infinite station
limit) accurate. In particular, they have used ideas from the
theory of propagation of chaos to show that Bianchi-type de-
coupling holds aysmptotically as number of stations is allowed
to increase to infinity.

Several works have evaluated the performance of EDCF, an
earlier version of EDCA (see [14]). Most of these have em-
ployed simulation [9]–[12]. An exception is [13], where the au-
thors use an extension of Bianchi’s model to analyze the per-
formance of IEEE 802.11e MAC protocol. More recently, the
performance of EDCA has been analyzed in [20], [21], using
theoretical models based on Bianchi type assumptions.

Our approach differs fundamentally from the work described
above in that we do not make the decoupling assumption intro-

3In order to avoid confusion arising from the superficially similar termi-
nology, we emphasize that the fixed points we talk of in this work are different
from the fixed points in [3], [7], [8]. Their fixed points are for the one-dimen-
sional coupling parameter �; our fixed points are for the �-dimensional state
descriptor in a joint Markovian representation of the back-off stages at all �
stations. The details are provided in the next section.
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duced by Bianchi, and common to all of them except [30]. In-
stead, starting from a Markov chain description that explicitly
takes into account the interactions between stations, we show
that in a large system, namely, one with a large number of sta-
tions, the Markov chain converges to a typical state. Thus, one
can approximate the collision probability seen by any single sta-
tion by that seen in the typical state. Our analysis therefore pro-
vides a rigorous justification for Bianchi’s model, which has
been the basis of much subsequent work. In addition, it pro-
vides an alternative approach to performance analysis of MAC
protocols; performance measures of interest can be derived di-
rectly from analysis of the typical state. We validate this ap-
proach by showing that the performance predictions thus ob-
tained are close to those seen in simulations.

Finally, we point out that we focus on DCF and EDCA pro-
tocols in this paper because they are likely to be the two most
widely deployed wireless MAC protocols in the near future;
however, we do not specifically advocate their use. Several
works (see, for example, [22]–[24], and the references therein)
have identified the limitations of these protocols, and proposed
alternative MAC protcols that can provide better performance.
The techniques developed in this paper are very general, and
can be applied to evaluate the performance of these alternative
MAC protocols as well.

III. PERFORMANCE EVALUATION OF IEEE 802.11 DCF

In this section, we present a performance analysis of DCF.
We start with a description of our model.

A. The Model

We consider a wireless local-area network (LAN) with sta-
tions employing the IEEE 802.11 DCF. Every station can hear
every other station in the network, i.e., there are no hidden sta-
tions. Our discussion covers both ad hoc networks, where there
is no central access point (AP) through which all the traffic must
pass, as well as intrastructure based networks, where an AP con-
nects the wireless network with the wired infrastructure. In order
to simplify the analysis, we assume, in common with most re-
lated work, that all stations always have a packet to send. The
throughput obtained under such saturation conditions is com-
monly referred to as the saturation throughput. In some cases
(see, for example, [25]), it can be shown that the queues at all
the nodes are stable if the arrival rate at each node is less than
the saturation throughputs. We make the following additional
assumptions.

• (A1) The back-off durations are geometrically distributed,
i.e., when a station is in back-off stage , it makes a trans-
mission attempt in the next slot with a probability . In
order to maintain the same average waiting time as in the
IEEE 802.11 DCF, we set , where is the
contention window size in back-off stage .

• (A2) The back-off stage is reset to only after a successful
transmission, i.e., the retry count limit, as defined in Sec-
tion II-A, is infinite. This assumption is not necessary for
our analysis, but simplifies the exposition considerably.

All stations use the same back-off parameters. There are
back-off stages, labeled to . We adopt a discrete-time

model indexed by the slot number . To avoid confusion, note

that the term “slot” in our usage refers to a different quantity
from the slot in the IEEE 802.11 protocol description. We use
the term to denote the time period at the end of which stations
may modify their back-off counters. In particular, the duration
of a slot is not a fixed physical layer parameter, but varies de-
pending on whether it represents an idle slot, a successful trans-
mission, or a collision.

The state of the system at time can be represented by a vector
denoting the number of sta-

tions in each of the back-off stages through . It is easy to
see that , forms an irreducible and aperiodic
Markov chain on the state space

for all

In principle, one could solve for the stationary distribution
of and thereby obtain parameters of interest about the
system. However, the number of states, , is too large to
make this feasible for systems of practical interest. The key in-
sight we provide in this paper is that, when is large (and exact
computation expensive), the Markov chain stays close
to what we call a typical state. Moreover, accurate estimates of
various parameters such as throughput can be obtained by as-
suming that is in this typical state at all times.

We remark for purposes of comparison that Bianchi [3]
models the system as a Markov chain with (typically) an even
larger state space of size by considering the back-off
stage at each station. The analysis is simplified by replacing
this -dimensional Markov chain by -dimensional Markov
chains (with states each) which are assumed to be con-
ditionally independent, conditional on the collision probability

. We do not make any such independence assumptions.
We now proceed with the analysis of the Markov chain .

Let us look at the expected change in over one time slot.
For , let

where is the probability of making a transition from
to over one time slot. We now compute

for .
First consider . Let , where
denotes the transmission probability for a station in back-off

stage . Note that is the probability of an idle slot when
the system is in state . The following events can result in a
change in the number of stations in back-off stage .

• A successful transmission by a station in back-off stage ,
, resulting in an increase in the number

of stations in back-off stage .
• An unsuccessful transmission attempt by one or more sta-

tions in back-off stage , resulting in a decrease in the
number of stations in back-off stage .

For the former event to occur, the station itself must transmit
and no other station in the network should transmit; this has
probability . Noting that there are stations in
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the back-off stage to choose from, and summing over , we
obtain

(1)

to be the expected increase in the number of stations in back-off
stage due to successful transmissions by stations in other
back-off stages. Likewise, a node in the back-off stage
transmits unsuccessfully with probability and
moves to back-off stage . Therefore

(2)

is the expected decrease in the number of stations in the back-off
stage due to unsuccessful transmission attempts by stations in
the back-off stage . Combining (1) and (2), we obtain

(3)

Next, let . We now need to consider the
following events:

• a transmission attempt by a station in back-off stage ;
• an unsuccessful attempt by a station in back-off stage .
A station in back-off stage attempts to transmit with prob-

ability , following which, it either moves to back-off stage
(successful transmission) or to back-off stage (colli-

sion). Thus, the expected decrease in the number of stations in
back-off stage at time is

(4)

A station in back-off stage transmits with probability
and moves to back-off stage if it suffers a collision, i.e., if
one or more other stations in the network also transmit, which
happens with probability . Thus

(5)

is the expected increase in the number of stations in back-off
stage due to unsuccessful transmission attempts by stations in
back-off stage . Combining (4) and (5), we obtain

(6)

for .
Finally, let . In this case, we need to consider the

following events:
• a successful transmission attempt by a station in back-off

stage ;
• an unsuccessful transmission attempt by a station in

back-off stage .
A station in back-off stage transmits with probability

and, if no other station in the network transmits, an event of
probability , then the station moves to back-off stage ;

otherwise, it stays in the back-off stage . The expected de-
crease in the number of stations in back-off stage at time
due to a successful transmission is thus

(7)

A station in back-off stage transmits with a probability
and, if at least one other station in the network also trans-

mits, an event of probability , then the station en-
ters into back-off stage . The expected increase in the number
of stations in back-off stage at time due to collisions is thus

(8)

Combining (7) and (8), we obtain

(9)

Collecting (3), (6), and (9) at one place, we have

(10)

(11)

(12)

Let

and . Let be the function
with components specified by (3), (6), and (9). It is essen-
tially the one-step drift of the Markov chain . We have so
far defined the function for only; we now extend
the definition of to by using the same equations on
the extended domain.

In Appendix A, we analyze an appropriately scaled version,
, of the process for ,

and show that for all , it satisfies

a.s.

where is a deterministic process given by the unique solu-
tion of the differential equation

for

with initial condition , where
for . In words, we prove a

functional “law of large numbers” limit theorem for the process
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. We also show that the error involved in approximating
with is (almost surely) for all .

In Appendix B, we show that the equation has
a unique solution. If , we can further show that
converges to from all possible initial states. We conjecture that
such a result holds for all (as observed in our simulations).

In view of the results in Appendices A and B, we can expect
that, for large , the process remains close to the unique
point satisfying , which will hence-
forth be referred to as the equilibrium point of the system.

B. Throughput Calculation

We now estimate the throughput of IEEE 802.11 DCF, as-
suming that the system stays close to its equilibirium point
at all times. Let

• the normalized throughput of the system;
• the conditional collision probability;
• the probability of an idle slot in state ;;
• the payload duration;4

• the average time the channel is sensed busy during a
collision;

• the average time the channel is sensed busy because
of a successful transmission;

• the duration of an idle slot.
Note that some of the above defined quantities may vary with .
For the sake of brevity, we do not make explicit this dependence.

To calculate the throughput, observe that a station in back-off
stage , transmits with a probability , and the transmission is
successful if no other station in the network transmits, an event
of probability

Since there are stations in back-off stage , the probability
that a station in back-off stage transmits successfully is

Summing over all possible back-off stages, we obtain the prob-
ability of a successful transmission to be

Since the probability that at least one station transmits in a given
slot is , we have

(13)

The normalized throughput of the system can be expressed as

expected payload duration per slot
slot duration

(14)

The expected payload duration per slot is .
The expected duration of a slot is readily obtained considering

4In this paper, we consider the payload duration to be fixed. Variable payload
duration can also be analyzed as in [3].

TABLE I
IEEE 802.11 DSSS PHY PARAMETER SET [26] AND OTHER PARAMETERS

USED TO OBTAIN NUMERICAL RESULTS

that, with a probability a slot is idle; with a probability of
it contains a successful transmission, and with

a probability of it contains a collision. And plugging
this is (5),we obtain

(15)

The values of and depend on the access mechanism being
used. Let be the propagation delay, then one can readily obtain
(for details, see [3])

(16)

where (correspondingly, ) and (correspondingly,
) represent the and values for the RTS/CTS based ac-

cess (correspondingly, basic access) mechanism, respectively;
the parameters , , , , , and are
all physical layer dependent. We will use the values of these pa-
rameters as defined in the DSSS PHY (see Table I).

C. Performance Comparison

We have performed extensive simulations with different
values of and . The simulation results match extremely
well with the numerical results obtained using our technique
and Bianchi’s model. The results for the RTS/CTS access
mechanism with and are shown in Figs. 3–5.
As is evident in these figures (error bars are barely visible),
the variation of results across various simulation runs is quite
small, thereby showing the high confidence level of the simu-
lation results. An interesting thing to note is that although our
technique and Bianchi’s model are fundamentally different,
they both result in (roughly) the same fixed point (in terms of

and ), and correspondingly, the estimates of throughput
obtained using the two techniques are very close. Similar
results have been obtained for the basic access mechanism as
well. An interesting special case under which it is
possible to calculate the exact throughput of DCF is discussed
in Appendix C.
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Fig. 3. Success probability �� � � � for � � � and � � ���.

Fig. 4. Attempt probability ��� �� for � � � and � � ���.

IV. EXTENSION TO A HETEROGENEOUS SETTING

The analysis presented in the previous section can easily be
extended to a heterogeneous setting, where different nodes can
run with different values of the protocol parameters. Indeed, in
Appendix D, we consider a setting where multiple-access cate-
gories, each using its own unique set of protocol parameters, are
running simultaneously at each node as specified in the EDCA

mechanism. However, unlike the EDCA mechanism, our anal-
ysis does not allow for the variable inter-frame spacing. We plan
to address this issue in our future work.

V. CONCLUDING REMARKS

We studied the performance of contention based medium ac-
cess control (MAC) protocols. We developed a novel technique
for estimating the throughput, and other parameters of interest,
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Fig. 5. Throughput �� � for � � � and � � ���.

of such protocols. Our technique is based on a rigorous analysis
of a Markovian framework developed in the paper. The analysis
shows that in a limiting regime of large system sizes, the sto-
chastic evolution of the back-off stages at different stations con-
verges to a deterministic evolution; moreover, this deterministic
process has a unique fixed point. Thus, our analysis provides in-
sight into the dynamics of the MAC protocols, showing that they
guide the system to a typical operating point. This then allows
us to obtain the saturation throughput and other performance
measures of interest without having to calculate the stationary
distribution of the Markov chain, which would be infeasible for
systems of realistic size.

To the best of our knowledge, our technique for performance
analysis of MAC protocols is the first one of its kind with a
quantifiable accuracy. Our results provide a justification for
the decoupling approximation of Bianchi [3]. Finally, although
we focused on two representative MAC protcols (IEEE 802.11
DCF and IEEE 802.11e EDCA), the techniques developed in
the paper are quite general and are applicable to a wide variety
of MAC protocols.

Our performance analysis is based on the assumption that the
system remains at its equilibrium point at all times. A natural
refinement is to consider fluctuations around this point, which
will typically be small. A mathematical framework for studying
such fluctuations is provided by the diffusion approximation (a
functional central limit theorem for the Markov process). This
is a topic for future research. Secondly, our current framework
cannot fully handle protocols like EDCA that allow the use of
different inter-frame spacing as a means of achieving service
differentiation. It remains to extend our analysis techniques to
deal with this, and with other forms of heterogeneity. Finally,
we have assumed throughout that all nodes can hear each other;
accounting for the hidden node problem remains an important
research challenge.

APPENDIX A

Recall the setting of Section III-A. For each , let
, and consider the family of stochastic process

defined as follows:

(17)

Observe that each for each , is just a scaled version
(where the scaling is both in time as well as magnitude) of

. We also define another family of stochastic process
as follows:

(18)

where is a Poisson process with unit intensity, indepen-
dent of the sequence of Markov chains . Observe that

is a sequence of jump Markov process on , with
transition rates (intensities) , for .

We will need the following assumption.

Assumption 1: There exist positive constants
such that for and

all .

Remark 1: We note that and are kept fixed in the
IEEE 802.11 DCF, independent of the number of nodes in the
network. We allow for the to scale with to avoid trivi-
alites; for example, if and were kept fixed for all , then
as , the throughput would drop to zero and all the nodes
would eventually be in the back-off stage with probability .
The above choice of precludes this possibility. Note that the
way transmission probabilities are chosen in the IEEE 802.11
DCF, Assumption 1 would imply that
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We need some preparation before we can state our main re-
sult. Henceforth, we use to denote the norm of . For

, let

Strictly speaking, the function is not really the same for dif-
ferent ; for the sake of brevity, we will continue to follow the
above notation. We start with the following simple result.

Lemma 1: Consider and . Suppose
Assumption 1 holds. Then

whenever and are large enough.
Proof: Without loss of generality, suppose . Using

the definition of , and observing that for

we have for large enough

Now we have

proving the claim.

The following corollary is an easy consequence of the proof
of Lemma 1.

Corollary 1: Consider and . Sup-
pose Assumption 1 holds. Then

, whenever and are large enough.

For each , define a function on by setting
. We have the following result.

Lemma 2: Suppose Assumption 1 holds. Then the
sequence is uniformly bounded, i.e., there exists a con-
stant such that for all
and for all . Moreover, for , , and
large enough, we have

whenever

where is a constant that depends only on and .
Proof: To prove that is uniformly bounded, observe

that in view of Assumption 1, we have for
and for all . Thus, we have

for all and for all .
Now observe that .

Using (10)–(12), along with Corollary 1, for
we have

Similarly, it can be shown that

and

Now since

the result follows by taking
.

Remark 2: The above lemma implies that for a Cauchy
sequence in , the sequence is Cauchy in

.

Define a function on as follows:

(19)
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where is any sequence in satisfying and
. The existence of the limit in (19) follows from Re-

mark 2. To prove the uniqueness, let and be two
sequences in , satisfying

Then for large enough, we would have
, which, in view of Lemma 2, implies that

showing that

Remark 3: The definition of and Lemma 2 imply that
for all .

Remark 4: An alternative, but equivalent, way of defining
the function could be to first define for all a function

on by setting , for , and
then take as the pointwise limit of the sequence of functions

.

The following result is a direct consequence of Lemma 2,
the definition of , and the boundedness of (see Re-
mark 3).

Lemma 3: Suppose Assumption 1 holds. Then the funcn-
tion is Lipschitz continuous, i.e., there exists a constant

such that for all , we have

Next, we obtain a closed-form expression for the function
.

Lemma 4: Suppose Assumption 1 holds. Then the function
, defined by (19), satisfies

(20)

for (21)

(22)

where for , and
.

Proof: Consider , with rational coordinates, i.e.,
for , where , are nonnegative

integers. Let , where denotes the
least commom multiple. Observe that for ,
where is an integer. In view of the definition of , we
have that

which, in view of (10)–(12), satisfies (20)–(22). For an irrational
, the result now follows by appealing to the Lipschitz

continuity of (see Lemma 3).

The following result (which is similar to the notion of uniform
convergence) is now an easy consequence of the definition of

, (10)–(12), and Lemma 4.

Lemma 5: Suppose Assumption 1 holds. Then there exists
a sequence of numbers satisfying

and

For , let . We have the
following result.

Lemma 6: For , let and
. Then the sequences and are uniformly

bounded, i.e., there exists a constant such that
and .

Proof: Consider the set of states .
Observe that for all , we have for

. Thus, can take at most values,
and therefore the total number of states in is no more than

. Hence, we have

Now consider the set of states
for . A similar argument as above shows that the number of
states in can be no more than . Also, note that
for a jump of magnitude to occur, more than
nodes must transmit during the current slot; the probability of
which is smaller than

(23)

for . Thus, we have

Let

and

for . Now observing that for all such that
, we obtain

proving the claim regarding . The claim regarding
can be proved in a similar fashion.

We are now ready to prove the almost sure convergence of the
sequence to a deterministic process.
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Theorem 1: Suppose Assumption 1 holds,
, and satisfies:

Then for every , we have

a.s.

Proof: From Theorem 4.1 in [27, Ch. 6, p. 327], we have
that the jump Markov process with intensities

satisfies for less than the first infinity of jumps

(24)

where are independent standard Poisson processes. Now
for each , let , then is a Poisson
process centered at its mean. It is well known that satisfies

a.s. for all (25)

Now observe that for , we have

and therefore

(26)

Let

then using Lemma 6, we obtain

(27)

The strong law of large numbers (applied to the independent
increment process ), the uniform boundedness of the se-

quence (see Lemma 6), and the domi-
nated convergence theorem, together imply that

a.s.

Using the Lipschitz continuity of and Lemma 5, we have for
that

Appealing to Gronwall’s inequality (see, for example, [27, Ap-
pendix 5, p. 498]), it follows that

The result now follows by noting that

Our goal is to prove a result similar to Theorem 1 for the
sequence of stochastic processes . We will do this by
comparing with as follows.

Theorem 2: Suppose Assumption 1 holds. Then the se-
quences and , defined by (17) and (18), respec-
tively, satisfy

a.s., for all

Proof: Let . Note that

We need to prove that for all . Let
and . We have

(28)

Now observing that for is a martinagle, it
follows that for is a submartingale. Using
the maximum inequality for , we obtain

Using the Markov Inequality, and observing that
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we obtain

(29)

for large enough . Now we claim that for all and all
, the Markov chain satisties

(30)

To prove the above claim observe that for the event

to occur, there must be at least one time slot, out of the
time slots following the th time slot, in which

or more nodes transmit. Since the probability of a node
transmitting is no bigger than , we have that the
random variable stochastically domi-
nates the random variable corresponding to the number of nodes
that transmit during a time slot. A standard application of Cher-
noff bound shows that

and (30) follows by using the union bound. Now observe that if

occurs, then the total number of jumps up to time of the pro-
cesses and combined, is no bigger than .
Appealing to the union bound once again, we have that the
second term in (28) is no bigger than

(31)

for large enough . Combining (31) and (29), we obtain

for large enough , which implies that

and a.s. now follows from the first
Borel–Cantelli lemma.

Remark 5: Using the maximum inequality for ,
, and making appropriate changes to the proof of Theorem

2, one can show that for all .
Thus, for any , there exists a corresponding integer

such that for .

Combining the results in Theorems 1 and 2, gives the desired
result.

Theorem 3: Suppose Assumption 1 holds,
, and satisfies

for (32)

Then for every , we have

a.s.

Remark 6: The Lipschitz continuity of guarantees that
for all , there exists a unique solution to the initial value
problem (IVP) corresponding to (32).

Theorem 3 shows the convergence of to , over
bounded intervals of time. For finite, but large , Remark 5
shows that the difference between and is
for all . Next, we will characterize the error involved in
approximating with , following the approach given
in [28].

Set and let
. Then, (26) can be rewritten as

which suggests the following limiting equation:

(33)

where for , and
satisfies

The existence and uniqueness of the above limit can easily be
shown. Let be the solution of the matrix equation

(34)

and let

Then, we have

Observe that since is Gaussian with zero mean, is
Gaussian with zero mean and covariance matrix
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where

From Corollary 6, we have that Thus,
is well defined.

Let for all
and , i.e., the

space of right continuous functions having left limits. Hence-
forth, we will use the symbol “ ” to denote the convergence
in distribution in , or equivalently, weak con-
vergence in —the set of Borel probability
measures on . For the sake of definiteness, the
metric used on can be assumed to be the
Prohorov metric (see, for example, [27, Ch. 3]); and the metric
used on could be the one specified in [27, Ch.
3] that induces the Skorohod topology on . For
a detailed discussion of these metrics and related concepts, we
refer the reader to [29].

The following theorem characterizes the error involved in ap-
proximating with :

Theorem 4: Let and be as above, then
, where and .

Remark 7: A consequence of the above result is
that for large , can be well approximated by

. In view of Remark 5, the error
in such an approximation is almost surely bounded by
for any . Also, since has a finite variance for all ,
the error in approximating with is also almost
surely bounded by for any .

Proof: We have

where

and

Using (10)–(12), (20)–(22), and noting (see
Remark 1), it follows that there exists a constant such
that for all large enough, we have

Thus, . Now turning to ,
let

and

Using the results in [27, Ch. 4], it can be shown that ,
with as above. Using the Lipschitz continuity of , we have

and hence (using Gronwall’s inequality)

Since and is continuous, it follows that
, and hence the are stochasti-

cally bounded on bounded intervals. Furthermore, it is easy to
see from (20)–(22) that is continuous and bounded, which
together with the fact that are stochastically bounded on
bounded intervals implies that . With as above, we
have

Finally, noting that the mapping
given by

is continuous, the result follows from the continuous mapping
theorem (see, for example, [27, Ch. 3, p. 103]).

APPENDIX B

In the preceding section, we proved the convergence of the
sequence of stochastic processes to the deterministic
process satisfying

for

where is given by (20)–(22). We would now like to further
investigate the behavior of for large . In particular, we
would like to determine whether the vector differential equation

(35)

has an equilibrium point. Supposing it does, we would like to
find out whether that equilibrium point is unique. If the equilib-
rium point does exists and is unique, we would like to determine
if the process started from an arbitrary initial state would
converge to the equilibrium point.
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A. Existence of Equilibrium Points

In this section, we will prove that the differential equation
specified by (35) has at least one equilibrium point. The issue
of the uniqueness will be dealt with in the next section.

Define a function on as follows:

From (20)–(22), it is easily seen that the function maps
into itself. Since is a compact subset of , Brouwer’s

fixed point theorem guarantees the existence of at least one fixed
point of .

Proposition 1: The fuction has at least one fixed point
in .

Remark 8: Note that any fixed point of is an equilibrium
point of the vector differential equation specified by (35). To
see this, suppose is a fixed point of . Then

, implying that ; thus showing that is indeed an
equilibrium point of the vector differential equation specified by
(35). Similarly, we have that any equilibrium point of the vector
differential equation specified by (35) is a fixed point of .

B. Uniqueness of Equilibrium Point

We will now establish the uniqueness of the equilibrium
point:

Proposition 2: The vector differential equation specified
by (35) has a unique equilibrium point.

Proof: Let us suppose that the vector differential equation
specified by (35) has more than one equilibrium points. Then
the function must have more than one fixed points. Let and

be two different fixed points of . Then, in view of (20)–(22),
we have that must satisfy

(36)

for

(37)

(38)

and must satisfy a similar set of equations. Now the following
possibilities can arise.

1) . In this case, we have for all

. Since , we
have , which contradicts our initial assumption that

.
2) . In this case, we have for all

. If , then , for all

. However, this is not possible since
Hence, we must have .

Now let

Also, let . From the definition of , it follows
that for , and for

. Since ,
we have . In particular, we have

Using the definition of and , we have that

which contradicts our initial assumption that .
3) . In this case also, one arrives at a contradic-

tion, like in the previous case.
Since one of the above cases must occur, we have proved that
can have at most one fixed point, and, in view of Proposition 2,
the result follows.

C. Convergence to Equilibrium Point

In this section, we will investigate whether the process ,
started from any arbitrary initial state in , converges to the
unique equilibrium point. We have the following result for

:

Proposition 3: Suppose . Then the process
started from any arbitrary initial state in , converges to the
unique equilibrium point satisfying .

Proof: For , the set of equations given by (35)
simplify to

(39)

(40)

Now satisfies . Observe that for
all with , we have . Now
consider the Lyapunov function .
It is straightforward to show that

for

which implies that .

APPENDIX C

In this section, we evaluate the throughput of DCF under a
special case, namely, . For , the stationary dis-
tribution of the Markov chain (see Section III-A) can be
computed, and thereby, one can compute the exact throughput
of DCF. We start with the computation of the stationary distri-
bution of .
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Fig. 6. Random system trajectories converging to a neighborhood of the equilibrium point.

A. Computation of Stationary Distribution

Let denote the set of the system states for , i.e.,

where denotes the set of integers. Observe that con-
tains states. More precisely,

. Let be the steady-state probability of the
system being in state . We now formulate the set
of global balance equations that can be solved to obtain the
stationary distribution of .

For the sake of brevity, let , .
Now consider the state : The system leaves this state if
there is a collision, an event of probability

The system can enter the state only from the state
, provided the station in back-off stage transmits success-

fully, an event of probability . Balancing the probability
flux entering and leaving the state , we have

(41)

Now consider the state : The system leaves this state if
there is a successful transmission by a station in back-off stage

, an event of probability

or, if there is an unsuccessful transmission involving at least one
station in back-off stage , an event of probability

The system can enter the state from the state

• : following a successful transmission by
a station in back-off stage , an event of probability

• : following a collision involving exactly
one station in back-off stage , and one or more stations in
back-off stage , an event of probability

• for : following a collision involving
stations in back-off stage , an event of probability

Balancing the probability flux leaving and entering the state
, we get

(42)

Note that the summation term in (42) exists only for . Since
the sum of stationary probabilities across all the system states
must equal one, we have

(43)

Observe that we have equations in unknowns. We
leave it for the reader to verify that these equations are linearly
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independent, and therefore the stationary probabilities can be
obtained by solving these equations.

B. Throughput Calculation

Once we have the stationary probabilities, we can calculate
the throughput and other parameters of interest about the
system. For , let

• the expected system throughput given the system is
in state ;

• the collision probability given the system is in state
;

• the probability of an idle slot given the system is in
state ;

• the system throughput;
• the conditional collision probability;
• the probability of an idle slot.

Observe that . Arguing as in the
derivation of (13), we obtain

(44)

and the expected system throughput when the system is in state
is given by:

(45)

Since the probability that the system is in state is
given by , we have

(46)

Similarly, we have and .

C. Performance Comparison

We now compare the exact results obtained by using the
above approach, with the numerical results obtained using our
technique and Bianchi’s model. Note that our technique relies
on the fact that for sufficiently large , the process stays
close to the equilibrium point that satisfies .
To demonstrate the effectiveness of our technique, we compare
the random sample paths of the system with the deterministic
trajectory obtained using

for , with . As shown in Fig. 6, not only
does the system converge to a neighborhood of the equilibrium
point for large , but also the random trajectory of the system
stays close to the above deterministic trajectory at all times (see
Theorem 3, for a proof of such a result). Further, we see that the
convergence to a neighborhood of the equilibrium point is quite
rapid (within 100 slots).

Tables II–IV show various parameters of interest obtained
using the exact analysis, Bianchi’s model (BM), and our tech-
nique (OT). The results shown are for RTS/CTS access mech-
anism with . It is clear that both our technique and

TABLE II
THROUGHPUT:� � ��,� � �

TABLE III
CONDITIONAL COLLISION PROBABILITY:� � ��,� � �

TABLE IV
IDLE SLOT PROBABILITY:� � ��,� � �

Bianchi’s model are extremely accurate even for small ; and,
as expected, their accuracy increases as increases.

APPENDIX D

In this section, we show how the analysis in Section III can
be extended to a setting where heterogeneous protocol param-
eters are used as a means of providing service differentiation,
as in the IEEE 802.11e EDCA mechanism [19]. We start with a
description of our model.

Consider a similar setting as in Section III-A and suppose that
there are different access categories (ACs), each maintaining
its own set of back-off parameters. Each station maintains a sep-
arate transmit queue for each AC. All queues are assumed to be
saturated, i.e., they always have a packet to send. As in Sec-
tion III-A, we make the following additional assumptions.

• (A1) The back-off durations are geometrically distributed,
i.e., the type- AC at a station, when in back-off stage
, transmits with probability , where ,

where is the contention window size of the type-
AC in back-off stage .

• (A2) The back-off stage is reset to only after a successful
transmission.

For the purposes of analysis, we assume that the minimum idle
duration time is the same, , for all ACs and no internal
collision avoidance mechanism is used by the nodes. It should
be noted that because of these two assumptions, the throughput
obtained using our technique would not necessarily match the
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throughput obtained using the EDCA mechanism. A more exact
analysis of the EDCA mechanism is left for future work.

Let , , denote the number of back-off stages and
minimum contention window size, respectively, for the type-
AC, . Let , , de-
note the number of type- ACs in back-off stage at time . Let

and . Then
represents the state of the system at time . Clearly, for

, is a Markov chain on , and satisfies

for

It can easily be shown that the Markov chain is irre-
ducible (see [7, Theorem 8.1], for a similar proof). Since it has
only finitely many states, it follows that is positive recur-
rent and possesses a stationary distribution. However, it does not
appear possible to obtain a closed-form expression for the sta-
tionary distribution of . Therefore, we proceed as in the
previous section.

Let denote the set of nonnegative integers, and let

We denote the one-step drift of by

for ; here is the probability of making
a transition from to over one time slot. Set

for . Arguing as in Section III-A, we
obtain for

(47)

where . Let

and .
The results derived in Appendices A and B can easily be ex-

tended to the current setting. In particular, under a similar set of

assumptions, we can show that the sequence of scaled stochastic
processes

for

converges (in the same sense, and with the same error bounds, as
discussed for DCF earlier) to the deterministic limit given
by the unique solution of the differential equation

for

with initial condition , and
for . The only difference

from the DCF case earlier is that is now given by (47)
instead of by (3), (6), and (9).

Likewise, following the line of analysis in Appendix B, we
can also show that there is a unique point that satisfies

; we call it the equilibrium point.
Using the intuition that for large , the process should

remain close to the point satisfying ,
we can carry out the throughput analysis as in Section V.
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