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Abstract—This paper investigates the effects of channel esti-
mation errors on the symbol-error-rate (SER) performance of a
cooperative communication system operating in an amplify-and-
forward (AF) mode. A pilot symbol assisted modulation scheme
with linear minimum mean square estimation (LMMSE) is used
for the channel estimation. An accurate and easy-to-evaluate SER
expression is presented for uncoded cooperative communication
systems with quadrature amplitude modulation (QAM) and
phase-shift keying (PSK) constellations. Numerical simulations
are conducted to verify the correctness of the proposed analytical
formulation. It is shown that the performance loss caused by
channel estimation errors increases mainly with the normalized
maximum Doppler frequency.

I. INTRODUCTION

In wireless communications, fading caused by the move-
ment of the mobile station in a multipath propagation envi-
ronment often has a severe impact on the system performance.
However, the effects of fading can be substantially mitigated
by the use of diversity techniques. Among the various forms
of diversity techniques, a form of spatial diversity named “co-
operative diversity” is particularly attractive, since it provides
effective diversity benefits for those devices that cannot be
equipped with multiple antennas due to the size, complexity
and cost.

According to the way in which the information is trans-
mitted from the source terminal to the relay terminals, and
the way it is processed at the relay terminals, the existing
cooperative protocols can usually be divided into two types
[3]: decode-and-forward (DF) protocols and amplify-and-
forward (AF) protocols. In the DF protocol, the relay terminals
decode the received signal first before checking whether errors
have occurred or not. If the information sequence could be
successfully decoded, then the sequence will be re-encoded
by either the same or a different code before it will be
finally transmitted to the destination terminal. An erroneously
decoded information sequence is not relayed to avoid causing
extra errors at the destination terminal. On the other hand, in
AF protocols, the relay terminals simply re-transmit a scaled
version of the signal that they receive from the source terminal
to the destination terminal. Depending on the scaling factor,
the AF relaying scheme can be further divided into two types

which are called fixed gain AF system and variable gain AF
system [11].

The performance analysis of AF techniques is one of the
active research areas in cooperative communication systems.
It has been studied in the past from various aspects. For
example, [3]–[5] analyzed the performance of AF systems
in terms of the outage probability and diversity gain under
different assumptions for the amplifier gain. Various bounds
and accurate expressions for the symbol error probability of
a cooperative communication system have been derived in
[6]–[10]. Thus far, most of the work in performance analysis
of AF systems has been carried out under the assumption
of perfect channel state information (CSI) at both the relay
and destination terminal. In practice, however, the relay and
destination terminals never have the perfect knowledge of
the CSI. Imperfect CSI occurs either due to an imperfect
channel estimation algorithm or due to variations of the
channel after it has been accurately estimated. Thus, it is
important to investigate the error performance of AF systems
with imperfect CSI. In recent works [11, 12], the effects
of the channel estimation error on the performance of AF
cooperative communication systems have been studied by
means of Monte Carlo simulations. While in [13], the error
performance of AF system is investigated by using a simple
and notional model of the channel estimation error, where
the variance of the channel estimation error is assumed to
be fixed for all values of the signal-to-noise ratio (SNR).
To our best knowledge, accurate analytical symbol-error-rate
(SER) expressions for AF cooperative systems, taking into
account the varying variance of the channel estimation error
for different values of the SNR, have not been derived yet.

In this paper, we focus on variable-gain AF cooperative
communication systems with a pilot symbol assisted modu-
lation (PSAM) scheme. We study their end-to-end SER per-
formance by assuming that the linear minimum mean square
estimation (LMMSE) is used for the channel estimation. We
first investigate the detector at the destination terminal with im-
perfect channel estimation. We then derive both the probability
density function (PDF) and the moment generating function
(MGF) of the instantaneous SNR at the destination terminal.
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Finally, these statistical quantities are applied to derive the
accurate SER expression for AF cooperative communication
systems with quadrature amplitude modulation (QAM) and
phase-shift keying (PSK) constellations.

The rest of the paper is organized as follows. In Section
II, we describe the system model and introduce some prelim-
inaries on the AF cooperative system with a PSAM scheme.
In Section III, we derive the accurate SER expression for
the AF cooperative communication scheme with LMMSE.
Various simulation results and their discussions are presented
in Section IV. Finally, Section V contains the conclusions.

The following notation is used throughout the paper: (·)∗,
(·)T , (·)H , and (·)−1 denote the complex conjugate, vec-
tor (or matrix) transpose, conjugate transpose, and matrix
inverse, respectively. The symbol E[·] denotes the expecta-
tion operator, |z| represents the absolute value of a com-
plex number z, and the complex Gaussian distribution with
mean m and covariance P is denoted by CN (m,P ). Finally,
x ∼ CN (m,P ) denotes a complex random variable x with
distribution CN (m,P ).

II. SYSTEM MODEL

We consider an AF-based cooperative communication sys-
tem which consists of a source, relay, and destination terminal.
We assume that each terminal is equipped with a single
transmit and receive antenna, and operates in a half-duplex
mode, i.e., it cannot transmit and receive simultaneously.
Furthermore, we adopt the so-called Protocol II proposed by
Nabar et al. [3] as the user cooperative protocol. This means
that two time slots are used to transmit one data symbol. In
the first time slot, the source terminal communicates with the
relay and destination terminal. In the second time slot, only
the relay terminal communicates with the destination terminal.
This protocol realizes a maximum degree of broadcasting and
exhibits no receive collisions [3]. To simplify the following
analysis, we consider a symbol-by-symbol transmission, so
that the time slot index 1 and 2 can be dropped. Throughout
this paper, we assume that the system operates in a Rayleigh
flat fading environment with perfect synchronization, no CSI is
available at the transmitters, and imperfect channel estimation
is assumed at the receiver. As in [11], we use a PSAM scheme
for the channel estimation. Pilot symbols are periodically
inserted in data symbols with an insertion period of L symbols.
Since the design of an optimal channel estimator is very
complex, we resort to a suboptimal LMMSE. We further
assume that the data information symbols are equally probable
from a constellation set composed of QAM symbols or PSK
symbols with size M , and the pilot symbols are selected from
a binary phase-shift keying (BPSK) constellation.

With the above assumptions, the received signals corre-
sponding to the kth transmitted symbol at the destination
terminal and the relay terminal during the first time slot are
given by

rSD(k) =
√

PShSD(k)x(k) + nSD(k), (1)

rSR(k) =
√

PShSR(k)x(k) + nSR(k), (2)

respectively, where PS is the average power of the transmitted
signal at the source terminal; hSD(k) and hSR(k) are the
channel coefficients from the source terminal to the destination
terminal with distribution CN (0, σ2

SD) and from the source
terminal to the relay terminal with distribution CN (0, σ2

SR),
respectively; x(k) is the kth transmitted symbol from the
source terminal, and nSD(k) and nSR(k) are the additive
receiver noises at the destination terminal and the relay
terminal, respectively, with the same distribution CN (0, N0).
Throughout this paper, we assume that the transmitted symbols
have an average energy of 1, i.e., E[|x(k)|2] = 1. According to
Protocol II, the relay terminal will first normalize the received
signal by a factor of

√
E(|rSR(k)|2) (to ensure the unity of

average energy). Then, the normalized signal will be amplified
and forwarded to the destination terminal during the second
time slot. Therefore, the received signal of the kth symbol at
the destination terminal within the second time slot is given
by

rRD(k) =
√

PR√
PS |hSR(k)|2 + N0

hRD(k)rSR(k) + nRD(k),

(3)
where PR is the average power of the transmitted signal at
the relay terminal, hRD(k) is the channel coefficient from
the relay terminal to the destination terminal with distribution
CN (0, σ2

RD), and nRD(k) is the additive receiver noise at the
destination terminal with distribution CN (0, N0). Using (2),
we can rewrite (3) as

rRD(k)

=
√

PSPR√
PS |hSR(k)|2 + N0

hSR(k)hRD(k)x(k) + n′
RD(k),

(4)

where

n′
RD(k) =

√
PR√

PS |hSR(k)|2 + N0

hRD(k)nSR(k) + nRD(k).

(5)
Assuming that nSR(k) and nRD(k) are independent,

it can be shown that the noise term n′
RD(k) is a

complex Gaussian random process with distribution
CN (0, (

√
PR/

√
PS |hSR(k)|2 + N0 + 1)N0).

Since the PSAM scheme is used for the channel estimation,
the packed transmission can be divided into blocks by pilot
symbols. In each block, there are L symbols where the first
symbol is assigned to a pilot symbol and the remaining L− 1
symbols are assigned to data symbols. The channel estimation
at each symbol position in a block is obtained using N1

pilot symbols on the left of the symbol position and N2

pilot symbols on the right of the symbol position. Therefore,
N = N1 + N2 pilot symbols are employed to estimate the
channel coefficient at the desired symbol position.

Let us denote the pilot symbols employed to estimate the
channel gain hSD(k) of the desired data symbol x(k) as an
N ×1 vector pSD = [x(k−L(N1−1)− l), ..., x(k− l), x(k+
L − l), ..., x(k + LN2 − l)]T , where l = 1, 2, ..., L − 1 is the
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CrSD
=

⎡
⎢⎢⎢⎣

PSRSD(0) + N0 PSRSD(L) · · · PSRSD((N − 1)L)
PSRSD(L) PSRSD(0) + N0 · · · PSRSD((N − 2)L)

...
...

. . .
...

PSRSD((N − 1)L) PSRSD((N − 2)L) · · · PSRSD(0) + N0

⎤
⎥⎥⎥⎦ (6)

chSD,rSD
(l) = [

√
PSRSD(−L(N1 − 1) − l), · · · ,

√
PSRSD(L − l), · · ·

√
PSRSD(L(N2 − 1) − l)] (7)

offset of the desired data symbol x(k) to the first pilot symbol
on its left side. Using (1), we obtain the received signal vector
rSD, corresponding to the transmitted pilot vector pSD at the
destination terminal as

rSD =
√

PS diag(pSD)hSD + nSD, (8)

where hSD = [hSD(k−L(N1−1)−l), ..., hSD(k−l), hSD(k+
L− l), ..., hSD(k +LN2 − l)]T and nSD = [nSD(k−L(N1 −
1) − l), ..., nSD(k − l), nSD(k + L − l), ..., nSD(k + LN2 −
l)]T are the channel gain and noise components at the pilot
symbols’ positions, respectively.

Without loss of generality, we assume that positive unit
energy symbols are transmitted as pilot symbols, i.e., pSD

is an all-one vector. Then, (8) simplifies to

rSD =
√

PShSD + nSD. (9)

With these observations, the channel estimate for hSD(k) can
be obtained by the LMMSE as [4]

ĥSD(k) = wSDrSD. (10)

where wSD = chSD,rSD
(l)C−1

rSD
is an 1 × N LMMSE

filter vector, CrSD
= E[rSDrH

SD] and chSD,rSD
(l) =

E[h∗
SD(k)rSD] are the autocorrelation matrix of rSD and

cross-correlation vector of hSD(k) and rSD, respectively.
From the LMMSE theory [4], we know that ĥSD(k) is
distributed as CN (0, chSD,rSD

(l)(C−1
rSD

)HcH
hSD,rSD

(l)). Let us
define the discrete autocorrelation function of hSD(k) as
RSD(κ) = E[hSD(k)hSD(k + κ)∗]. Then, using the system
model and channel properties described above, we finally
obtain CrSD

and chSD,rSD
(l) as shown at the top of this page.

From the LMMSE filter vector wSD, we can see that each data
symbol in a block will have a different estimator. Therefore,
we need totaly L−1 different estimators for L−1 data symbols
in a block. However, due to the periodic pilot insertion, an
identical estimator will be adopted for the data symbol in
the same positions across all blocks in a packet. Therefore,
without loss of generality, we will henceforth only consider
L−1 different estimators for the data symbols in one particular
block and employ the index l instead of k to distinguish them.
With this in mind, we can express the estimation error of the
lth estimator as

eSD(l) = hSD(l) − ĥSD(l). (11)

Furthermore, the estimation error eSD(l) is distributed
as CN (0, σ2

e,SD(l)), where σ2
e,SD(l)) = σ2

SD −
chSD,rSD

(l)(C−1
rSD

)HcH
hSD,rSD

(l). From (11) it follows

that we can model the channel gain hSD(l) as the sum of the
channel estimate ĥSD(l) and the estimation error eSD(l), i.e.,

hSD(l) = ĥSD(l) + eSD(l). (12)

Similarly, we can model the channel gain from the source
terminal to the relay terminal hSR(l) and the channel gain
from the relay terminal to the source terminal hRD(l) as

hSR(l) = ĥSR(l) + eSR(l), (13)

hRD(l) = ĥRD(l) + eRD(l), (14)

where

ĥSR(l) = chSR,rSR
(l)C−1

rSR
rSR,

ĥSR(l) ∼ CN (0, chSR,rSR
(l)(C−1

rSR
)HcH

hSR,rSR
(l)),

eSR(l) ∼ CN (0, σ2
e,SR(l)),

σ2
e,SR(l) = σ2

SR − chSR,rSR
(l)(C−1

rSR
)HcH

hSR,rSR
(l),

ĥRD(l) = chRD,rRD
(l)C−1

rRD
rRD,

ĥRD(l) ∼ CN (0, chRD,rRD
(l)(C−1

rRD
)HcH

hRD,rRD
(l)),

eRD(l) ∼ CN (0, σ2
e,RD(l)),

σ2
e,RD(l) = σ2

RD − chRD,rRD
(l)(C−1

rRD
)HcH

hRD,rRD
(l).

Note that rSR, chSR,rSR
(l), CrSR

, rRD, chRD,rRD
(l), and

CrRD
can be determined similarly as rSD, chSD,rSD

(l) and
CrSD

.

Throughout this paper, we assume that ĥSR(l) is known
to the relay terminal, while ĥSD(l), ĥSR(l), and ĥRD(l) are
known to the destination terminal. Note that this assumption
will increase the load for the transmission between relay and
destination terminals. However, from a theoretical point of
view, it can serve as a benchmark for the evaluation of other
practical schemes. With these assumptions, we can rewrite the
received signals at the destination terminal during two time
slots as

rSD(l) =
√

PS ĥSD(l)x(l) + n1(l), (15)

rRD(l) = A(l)
√

PSPRĥSR(l)ĥRD(l)x + n2(l), (16)
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where

n1(l) =
√

PSeSD(l)x(l) + nSD(l), (17)

n2(l) = A(l)
√

PSPR

(
eRD(l)eSR(l) + ĥSR(l)eRD(l)

+ĥRD(l)eSR(l)
)

x(l) + nRD(l) (18)

+A(l)
√

PR(ĥRD(l) + eRD(l))nSR(l),

A(l) =
1√

PS |ĥSR(l)|2 + PSσ2
e,SR(l) + N0

. (19)

It turns out that both the effective noise terms n1(l)
and n2(l) have zero mean. After some manipulations,
it can also be shown that the variance of n1(l) and
n2(l) equals σ2

n1(l) = PSσ2
e,SR(l) + N0 and σ2

n2(l) =
A2(l)PSPR(|ĥRD(l)|2σ2

e,SR(l) + |ĥSR(l)|2σ2
e,RD(l) +

σ2
e,RD(l)σ2

e,SR(l))+N0(A2(l)PR|ĥRD(l)|2 +σ2
e,RD(l)+N0),

respectively. Note that the effective noise term n1(l) is
Gaussian distributed, while the effective noise term n2(l)
is non-Gaussian distributed due to the presence of the
product terms of two independent Gaussian variables in (18).
However, our simulations have shown that the PDF of n2(l) is
almost Gaussian distributed when the variance of the channel
estimation errors is small. Note that with a properly selected
value for L, the variance of the channel estimation errors of
cooperative communication systems using the PSAM scheme
should in general be very small. To simplify the following
analysis, we will treat n2(l) as Gaussian distributed, i.e.,
n2(l) ∼ CN (0, σ2

n2(l). As we can see from the simulation
results in Section IV, this approximation is reasonable.

III. SER ANALYSIS FOR AF COOPERATIVE SYSTEMS

With the above assumption and the estimated channel coef-
ficients, maximum ratio combining (MRC) can be applied at
the destination terminal to minimize the SER of the system.
The combined signal from the MRC detector at the destination
terminal can be written as [15]

r(l) = c1(l)rSD(l) + c2(l)rRD(l), (20)

where the combing factors c1(l) and c2(l) are given by

c1(l) =
√

PS ĥ∗
SD(l)

PSσ2
e,SD(l) + N0

,

c2(l) =
A(l)

√
PSPRĥ∗

SR(l)ĥ∗
RD(l)

N0Δ0(l) + A2(l)PSPRΔ1(l)
,

respectively, with

Δ0(l) = A2(l)PR|ĥRD(l)|2 + N0 + σ2
e,RD(l),

Δ1(l) = |ĥRD(l)|2σ2
e,SR(l) + |ĥSR(l)|2σ2

e,RD(l)

+σ2
e,RD(l)σ2

e,SR(l).

Using (1), (4), and (20), we can present the instantaneous SNR
γ(l) of the output signal from the MRC detector as [15]

γ(l) = γ1(l) + γ2(l)

where

γ1(l) =
PS |ĥSD(l)|2

PSσ2
e,SD(l) + N0

, (21)

γ2(l) =
PSPR|ĥSR(l)|2|ĥRD(l)|2
PSPRΔ1(l) + N0Δ2(l)

, (22)

Δ2(l) =
(
PS |ĥSR(l)|2 + N0

) (
1 + σ2

e,RD(l)
)

+ PR|ĥRD(l)|2. (23)

Now, the SER of the system conditioned on the estimated
channel coefficients with M-QAM and M-PSK can be ex-
pressed in the following form [16]

PQAM (l|ĥSD(l), ĥSR(l), ĥRD(l))

=
4B

π

∫ π
2

0

exp
(
−KQγ(l)

2 sin2 θ

)
dθ

− 4B2

π

∫ π
4

0

exp
(
−KQγ(l)

2 sin2 θ

)
dθ, (24)

PPSK(l|ĥSD(l), ĥSR(l), ĥRD(l))

=
1
π

∫ (M−1)π
M

0

exp
(
−KP γ(l)

sin2 θ

)
dθ, (25)

respectively, where B = 1 − 1/
√

M , KQ = 3/(M − 1), and
KP = sin2(π/M). Recall that the MGF ΦZ(s) of a random
variable Z can be expressed in terms of its PDF pZ(z) as [16]

ΦZ(s) =
∫ ∞

−∞
exp(−sz)pZ(z)dz (26)

for any real number s. Averaging the conditional SER in
(24) and (25) over the Gaussian distributed channel estimates
ĥSD(l), ĥSR(l), and ĥRD(l), we obtain the SER of the system
with M-QAM and M-PSK as follows:

PQAM (l)

=
4B

π

∫ π
2

0

Φγ1

(
l,

KQ

2 sin2 θ

)
Φγ2

(
l,

KQ

2 sin2 θ

)
dθ

− 4B2

π

∫ π
4

0

Φγ1

(
l,

KQ

2 sin2 θ

)
Φγ2

(
l,

KQ

2 sin2 θ

)
dθ, (27)

PPSK(l) =
1
π

∫ (M−1)π
M

0

Φγ1

(
l,

KP

sin2 θ

)
Φγ2

(
l,

KP

sin2 θ

)
dθ,

(28)

where Φγ1(l, s) and Φγ2(l, s) are the MGF of γ1(l) and γ2(l),
respectively.

From (21), we can easily see that γ1(l) has an exponen-
tial distribution with the parameter α1(l) = [PSσ2

e,SD(l) +
N0]/[PSσ2

ĥ,SD
(l)]. Therefore, the MGF of γ1(l) can be written

as
Φγ1(l, s) =

1
1 + s

α1(l)

. (29)

To attain the MGF Φγ2(l, s), we first need to derive the PDF
of γ2(l). Applying the same procedure as in the proof of
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Therorem 1 in [13], we can finally express the PDF of the
instantaneous SNR γ2(l) as

pγ2(l, z) =
∫ 1

0

α2(l)α3(l)[β(l)x + z]
x2(1 − x)2

· exp
[
−α2(l)z

x
− α3(l)(β(l)x + z)

1 − x

]
dx, z ≥ 0,

(30)

where

α2(l) =
(PR + N0)σ2

e,RD(l) + N0

PRσ2

ĥ,RD
(l)

,

α3(l) =
PSσ2

e,SR(l) + N0

PSσ2

ĥ,SR
(l)

,

β(l) =
PSPRσ2

e,SR(l)σ2
e,RD(l) + (1 + σ2

e,RD(l))N2
0

(PSσ2
e,SR(l) + N0)[(PR + N0)σ2

e,RD(l) + N0]
.

Then, the MGF Φγ2(l, s) is given by

Φγ2(l, s) =
∫ ∞

−∞
exp(−sz)pγ2(l, z)dz

=
∫ ∞

0

exp(−sz)
∫ 1

0

α2(l)α3(l)[β(l)x + z]
x2(1 − x)2

× exp
{
−α2(l)z

x
− α3(l)[β(l)x + z]

1 − x

}
dxdz

=
∫ 1

0

α2(l)α3(l) exp
{
−α3(l)β(l)x

1 − x

}
× [a(l, x, s) + b(l, x, s)] dx, (31)

where

a(l, x, s) =
β(l)

α2(l) + (s − 2α2(l) + α3(l))x + υ(l, x, s)
,

υ(l, x, s) = (−2s + α2(l) − α3(l))x2 + sx3,

b(l, x, s) =
1

(α2(l) + [s − α2(l) + α3(l)]x − sx2)2
.

By substituting the derived MGFs Φγ1(l, s) and Φγ2(l, s)
into (27) and (28), we can express the SER at the lth data
position with M-QAM and M-PSK as

PQAM (l) =

1
π

∫ π/2

0

∫ 1

0

4Bη(l)

α1(l) + KQ

2 sin2 θ

f(l, t,
KQ

2 sin2 θ
) dtdθ

− 1
π

∫ π/4

0

∫ 1

0

4B2η(l)

α1(l) + KQ

2 sin2 θ

f(l, t,
KQ

2 sin2 θ
) dtdθ, (32)

PPSK(l) =

1
π

∫ (M−1)π
M

0

∫ 1

0

η(l)
α1(l) + KP

sin2 θ

f(l, t,
KP

sin2 θ
) dtdθ, (33)

respectively, where

f(l, t, s) = exp
(
−α3(l)β(l)t

1 − t

)
[a(l, t, s) + b(l, t, s)] ,

η(l) = α1(l)α2(l)α3(l) exp[α3(l)β(l)].

Averaging PQAM (l) and PPSK(l) over all L−1 data positions
in one block, we finally get the accurate SER expression for
the considered system with M-QAM and M-PSK signals as

PQAM =
1

L − 1

L−1∑
l=1

PQAM (l),

PPSK =
1

L − 1

L−1∑
l=1

PPSK(l).

Note that if we assume that there is no channel estimation
error at the receiver, i.e., σ2

e,SD(l) = σ2
e,SR(l) = σ2

e,RD(l) = 0
for l = 1, ..., L − 1, the above results lead to the SER of a
cooperative system with perfect CSI, which is in agreement
with the results in [10].

IV. NUMERICAL RESULTS

We verify the correctness of the theoretical results ob-
tained for the SER of cooperative communication systems
by simulations. Exemplarily, we consider a AF cooperative
communication system with 4-QAM and 8-PSK modulation
formats using the PSAM scheme for the channel estimation. In
our performance evaluations, we set PS = PR and the variance
of the noise was chosen to be N0 = 1. We also assume that
the complex channel gains are described by the autocorrelation
functions RSD(κ) = RSR(κ) = RRD(κ) = J0(2πfmaxκTs),
where J0(x) is the zeroth order Bessel function of the first
kind, fmax is the maximum Doppler frequency, and Ts is
the symbol duration. Note that the variances of the complex
channel gains are normalized to unity. We further assume
that a pilot spacing of L = 5 is used in all simulations.
This value ensures adequate channel sampling for the system
under consideration. The power loss resulting from the pilots
is accounted for in all curves. Finally, we assume that the
LMMSE is used for the channel estimation and N=4 pilot
symbols are employed to estimate the channel coefficients.

Figure 1 shows the theoretical and the Monte Carlo sim-
ulation results of the SER for the AF cooperative commu-
nication system with 4-QAM. The results are presented for
two different values of the normalized maximum Doppler
frequency, namely fmaxTs = 0.01 and fmaxTs = 0.05. The
graphs with perfect CSI at the relay and destination terminal
are also provided to serve as benchmarks. From Fig. 1, we
observe that the theoretical results fit well with the simulated
SER for both cases. This justifies the Gaussian approximation
assumed for the distribution of n2(l) in (16). We also find that
when the PSAM scheme is used for the channel estimation,
the SER performance of the AF cooperative communication
system will degrade as the normalized maximum Doppler fre-
quency fmaxTs increases. However, if we assume perfect CSI,
the normalized maximum Doppler frequency will not affect
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Fig. 1. Comparison of the theoretical and simulation results obtained for
the SER of AF cooperative communication systems with 4-QAM signals for
various values of the normalized maximum Doppler frequency fmaxTs.

the SER performance of the AF cooperative communication
system.

Figure 2 shows the theoretical and Monte Carlo simulation
results of the SER for the AF cooperative communication sys-
tem with 8-PSK. Also shown is the SER of the AF cooperative
communication system with perfect CSI. Again, we can see
that the theoretical results fit well with the simulated SER for
both fmaxTs = 0.01 and fmaxTs = 0.05 cases. The simulation
results in Figs. 1 and 2 confirm the validity and accuracy of
our SER analysis.

V. CONCLUSIONS

We dealt with the problem of performance analysis of
AF cooperative communication systems with a PSAM-based
LMMSE scheme used for the channel estimation. By deriving
the PDF and the MGF of the instantaneous SNR at the
destination terminal, we developed an accurate SER formula
for AF cooperative communication systems with M-QAM and
M-PSK signals. The results encompass the SER performance
of AF cooperative communication systems with perfect CSI
as a special case. Computer simulation results demonstrated
the correctness of our performance analysis. The simulation
results also show that the performance of the AF cooperative
communication systems are affected by the quality of the
channel estimation.
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