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Abstract

In this paper, theoretical performance analysis of watermarking schemes based on correlation detec-

tion is undertaken, leading to a number of important observations on the watermarking system detection

performance. Statistical properties of watermark sequences generated by piecewise-linear Markov maps

are investigated. Correlation/spectral properties of such sequences are easily controllable, a fact that

reflects on the watermarking system performance. A family of chaotic maps, namely the skew tent map

family, is used for verifying the theoretical analysis. Skew tent chaotic sequences are compared against

the widely used pseudorandom sequences, indicating the superiority of the former in watermarking appli-

cations. The minimum number of samples required for reliable watermark detection is also investigated.

Experiments using audio data are conducted to verify the theoretical analysis results.
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I. Introduction

During the last decades, the world has witnessed the massive digitization of photographs,

paintings, speech, music, video, documents etc, an evolution boosted by the invention of new

techniques for the representation, storage and distribution of digital multimedia information.

At the same time, the amount of digital data distributed through communication networks has

increased rapidly. In such an environment, copying, tampering and retransmission of original

digital products can be achieved easily and without leaving any traces. Consequently, the design

of robust techniques for copyright protection and content verification of multimedia data became

an urgent necessity. This demand has been lately addressed by the emergence of a variety of

watermarking methods. Such methods target towards hiding an imperceptible and undetectable

signal in the original data, which conveys copyright information about the owner or authorized

user.

In a watermarking scheme, one can distinguish three fundamental functional blocks: wa-

termark generation, embedding and detection. Watermark generation aims at constructing

the information-carrying watermark pattern, using an owner and/or host data dependent key.

Watermark embedding can be considered as a superposition of the watermark signal on the

original signal in a way that ensures watermark imperceptibility. Finally, watermark detection

is usually performed using hypothesis testing, the test statistic being the correlation between

the watermarked data and the watermark signal.

A number of watermarking techniques require that the original signal is available during the

detection phase. Such schemes are sometimes referred to as private or non-oblivious schemes [1,

2]. Watermarking methods that do not require the original signal for watermark detection are

called oblivious or blind methods [3, 4, 5, 6]. Another classification scheme for watermarking

techniques can be devised by considering the domain where the watermark signal is embed-

ded. Some methods perform data embedding in the spatial domain [6, 7], by modulating the

intensity of preselected samples, while other techniques modify the magnitude of coefficients in

an appropriate transform domain, i.e., the DCT [1, 8] DFT [9, 10, 4] or DWT [5, 11] domain.

Watermark embedding on the DFT phase has also been proposed [12]. Watermarking tech-
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niques can also be classified on the basis of the watermark signal dependence on the host signal.

Signal dependence is necessary if signal characteristics are to be exploited in order to obtain

imperceptible watermarks using masking properties of the Human Auditory System (HAS) or

the Human Visual System (HVS).

For a review of existing schemes and a detailed discussion on the main requirements of a

watermarking scheme, the interested reader may consult [13, 14, 15, 16, 17]. A general water-

marking framework is presented in [18].

So far, performance evaluation of the existing watermarking methods has been mostly ex-

perimental, without any theoretical justification of their efficiency. Only few approaches have

attempted to statistically analyze the performance of image watermarking schemes in terms

of detection reliability, by addressing the problem in a communication framework [19, 20, 21,

22]. In these papers, the statistical properties of watermarking schemes based on pseudoran-

dom watermark signals and correlation detectors, among others, are derived. In [20, 21], the

authors investigate the performance of white and lowpass-filtered pseudorandom watermarks,

concluding that the former are ideal when no distortions are inflicted on the image, whereas

the latter provide additional robustness against lowpass distortions. They also propose using

a whitening filter prior to correlation, in order to achieve optimal detection when the channel

(image) cannot be modelled as additive white Gaussian noise (AWGN).

Chaotic watermarks have been recently introduced [23, 24, 25], as a promising alternative

to pseudorandom signals. An overview of chaotic watermarking techniques can be found in

[26]. However, up to now, their performance has been evaluated solely within an experimental

framework. The analysis presented in this paper involves theoretical evaluation of the detection

performance. Furthermore, theoretical analysis provides the means for evaluating the minimum

number of samples required in order to achieve a pre-specified probability of false watermark

rejection/acceptance. The watermarking system is modeled in a communication framework,

by considering the host signal as interference while trying to detect the underlying watermark

signal. The aim of the paper is to theoretically investigate the properties of piecewise-linear

Markov chaotic watermarks and establish their superiority against the widely used pseudo-
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random watermarks. Chaotic watermarks of this class have controllable spectral/correlation

properties, a fact that renders them ideal for a variety of applications. Special attention will

be paid to the family of skew tent sequences, which can be generated with lowpass, white, or

highpass spectral characteristics. In applications where no severe distortions are expected, e.g.

in captioning/indexing applications, highpass spectrum skew tent watermarks can be used since

they guarantee superior performance. In cases where robustness to lowpass attacks is impor-

tant, e.g. in copyright protection and tracing applications, either lowpass skew tent watermarks

can be generated, or highpass skew tent watermarks can be embedded in the low frequencies of

a transform domain (e.g. DFT). To summarize, the aims of the paper are the following:

• Theoretical performance analysis of correlation-based watermarking schemes using pseudo-

random or chaotic sequences.

• Investigation of effects of watermark sequence characteristics on the system performance.

• Justification of the superior correlation properties of certain chaotic sequences compared to

pseudorandom sequences.

• Evaluation of the minimum signal length required for reliable watermark detection.

Therefore, the aim of the paper is neither to propose a new watermarking scheme nor to study

the influence of the other watermarking system modules and aspects i.e., embedding domain,

perceptual masking, attack countermeasures etc. on the system performance.

The paper is organized as follows. In Section II, the mathematical formulation of the wa-

termark embedding and detection procedures are presented and assumptions about the signal

model are adopted. In Section III, the performance of watermarking systems based on pseudo-

random white watermarks is being theoretically analyzed. Section IV describes the statistical

and spectral properties of piecewise-linear Markov chaotic watermarks. The Frobenius-Perron

operator is used to provide closed form expressions for the corresponding statistics. Section V

is devoted to Markov chaotic watermarks and their influence on watermarking schemes based

on correlation detection. In Section VI, theoretical analysis results are exemplified using wa-

termarks generated by skew tent maps. Experimental verification of the theoretical analysis,

using audio data, is reported in Section VII. Conclusions are drawn in Section VIII.
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II. Watermarking System Model

So far, the influence of the watermark sequence on the overall system performance received

limited attention within the watermarking literature. In this paper, we investigate the influence

of watermark generation functions in the performance of a correlation based watermarking

scheme and compare the widely used pseudorandom sequences with sequences generated by

chaotic systems. The watermark generation aims at constructing a sequence w, w[i] ∈ R, of N

samples using an appropriate function g:

w = g(K, N) (1)

where K denotes the watermark key that corresponds to the host signal owner or copyright

holder. Watermark embedding aims at inserting the watermark signal w in the host signal fo in

a way that ensures imperceptibility and robustness under intentional or unintentional attacks.

For the model under study, additive watermark embedding is assumed:

fw = fo + pw (2)

where fw is the watermarked signal and p is a constant that controls the watermark embedding

power, which will be called hereafter watermark embedding factor. Obviously, p is closely related

to the watermark perceptibility. Watermark embedding can be performed in any transform do-

main. In the following, we will assume, without loss of generality, spatial domain embedding.

However, readers should bear in mind that a similar analysis can be conducted for other em-

bedding domains as well.

Watermark detection aims at verifying whether a given watermark wd is embedded in the

test signal ft or not. Thus, watermark detection can be formulated as a binary hypothesis test,

the two hypotheses being the following:

• H0: The test signal ft contains the watermark wd, i.e., ft = fo +pwd, fo being the host signal.

• H1: The test signal ft does not contain the watermark wd, i.e., ft = fo, or it contains a

different watermark we 6= wd than the one under investigation.

The two events mentioned above can be summarized in the following formula:

ft = fo + pwe (3)
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where the watermark wd is indeed embedded in the signal if p 6= 0 and we = wd (event H0),

and it is not embedded in the signal if p = 0 (no watermark is present, denoted hereafter

as event H1a) or we 6= wd (wrong watermark presence, denoted hereafter as event H1b). The

presence of multiple watermarks in the host signal will not be treated in this paper since multiple

watermarking is usually considered in the watermarking literature as an attack and not as a

typical situation for a watermarking system. Furthermore, system performance analysis in

multiple watermarking situations is very complex. The reader should however bear in mind

that, in general, multiple watermarking will result in a deterioration of the system performance.

A test statistic that is often employed in examining whether the signal ft contains a watermark

wd or not, is the correlation between the signal under investigation and the watermark:

c =
1
N

N−1∑

n=0

ft[n]wd[n] =
1
N

N−1∑

n=0

(fo[n]wd[n] + pwe[n]wd[n]) (4)

Such a detection scheme is usually called a correlation detector. In order to decide on the valid

hypothesis, c is compared against a suitably selected threshold T . For a given threshold, the

system performance can be measured in terms of the probability of false alarm Pfa(T ), (i.e.,

the probability to detect a watermark in a signal that is not watermarked or, is watermarked

with a different watermark) and the probability of false rejection Pfr(T ) (i.e., the probability

to erroneously neglect the watermark existence in the signal):

Pfa(T ) = Prob{c > T |H1} (5)

Pfr(T ) = Prob{c < T |H0} (6)

In the ideal case, a threshold T should exist such that both Pfa(T ) and Pfr(T ) are zero. Pfa(T )

and Pfr(T ) can be calculated as follows:

Pfa(T ) =
∫ ∞

T
fc|H1

(t)dt (7)

Pfr(T ) =
∫ T

−∞
fc|H0

(t)dt (8)

where fc|H0
, fc|H1

are the conditional probability density functions of c under the hypotheses

H0, H1 respectively (Figure ??).

By solving (7), (8) for the independent variable T and equating the results, Pfr can be

expressed as a function of Pfa. The plot of Pfa versus Pfr is called the receiver operating
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characteristic (ROC) curve of the corresponding watermarking system. This curve conveys

all the necessary detection performance information. Depending on which of the two error

probabilities are more critical for a certain application, one can select the desired probability of

false alarm and use the ROC curve to examine whether the corresponding probability of false

rejection is satisfactory or select the desired probability of false rejection and judge whether

the corresponding probability of false alarm is satisfactory. Using the ROC curve one can also

evaluate the equal error rate (EER) point i.e., the point on the ROC curve where Pfa is equal to

Pfr. EER can be used as a single-valued metric of a watermarking scheme’s performance or for

comparing in an easy, although not always appropriate, way the performance of two algorithms.

For the watermark sequences that will be studied in this paper, i.e., the pseudorandom

sequences and the sequences generated by piecewise linear Markov maps, fc|H0
, fc|H1

are normal

distributions (see Sections III,IV). Thus, they can be fully determined in terms of their means

µc|H0
, µc|H1

, and variances σ2
c|H0

, σ2
c|H1

. As a consequence, the performance of a correlation-

based watermarking system for this type of watermark signals depends only on those four

parameters. By observing Figure ??, one can conclude that the system performance improves

(i.e. the probabilities of false alarm and false rejection for a certain threshold decrease) as the

two distributions come further apart, i.e., as the difference µc|H0
−µc|H1

increases. Furthermore

the performance improves as the variances of the two distributions σ2
c|H0

, σ2
c|H1

decrease.

The following expression can be derived for the ROC curve:

Pfa =
1
2

[
1− erf

[√
2σc|H0

erf−1(2Pfr − 1) + µc|H0
− µc|H1√

2σc|H1

]]
(9)

The following expressions for the mean and variance of the correlation c can be derived in a

straightforward manner:

µc = E[c] = E

[
1
N

N−1∑

n=0

(fo[n]wd[n] + pwe[n]wd[n])

]
=

1
N

N−1∑

n=0

E[fo[n]]E[wd[n]]+
1
N

N−1∑

n=0

pE [we[n]wd[n]]

(10)

σ2
c = E[c2]− E[c]2 = E




(
1
N

N−1∑

n=0

(fo[n]wd[n] + pwe[n]wd[n])

)2

− µ2

c

=
1

N2
E

[
N−1∑

n=0

(fo[n]wd[n] + pwe[n]wd[n])2
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+
N−1∑

n=0

N−1∑

m=0,m6=n

(fo[n]wd[n] + pwe[n]wd[n])(fo[m]wd[m] + pwe[m]wd[m])


− µ2

c

=
1

N2

[
N−1∑

n=0

(
E[f2

o [n]]E[w2
d[n]] + p2E[w2

d[n]w2
e [n]] + 2pE[fo[n]]E[we[n]w2

d[n]]
)

+
N−1∑

n=0

N−1∑

m=0,m6=n

(E[fo[n]fo[m]]E[wd[n]wd[m]] + pE[fo[n]]E[wd[n]we[m]wd[m]]

+ pE[fo[m]]E[we[n]wd[m]wd[n]] + p2E[we[n]we[m]wd[n]wd[m]]
)]
− µ2

c (11)

Note, that these expressions can be used to represent µc, σ2
c for both events H0 (wd = we) and

H1 (wd 6= we or p = 0). The obvious statistical independence between the host signal fo and

both watermarks we, wd has been exploited in order to derive the previous formulas.

By examining (10), (11), one can easily conclude that several moments need to be evaluated if

µc, σ
2
c are to be computed. To proceed in such an evaluation, an assumption about the statistical

properties of the host signal has to be adopted. Let us denote by Rg[k] the statistic of the form:

Rg[k1, k2, . . . , kr] = E [g[n]g[n + k1]g[n + k2] . . . g[n + kr]] (12)

which will be called hereafter r-th order correlation statistic of a wide-sense stationary signal

g. In our case, the host signal will be assumed to be wide-sense stationary, thus:

E[fo[n]] = µfo ∀n, n = 0 . . . N − 1 (13)

E[fo[n]fo[n + k]] = Rfo [k] ∀n, n = 0 . . . N − 1 (14)

Furthermore, a first order exponential autocorrelation function model will be assumed:

Rfo [k] = µ2
fo

+ σ2
fo

βk, k ≥ 0, |β| ≤ 1 (15)

where β is the parameter of the autocorrelation function, and σ2
fo

is the host signal variance:

σ2
fo

= E[f2
o [n]]− E[fo[n]]2 (16)

This model has been chosen because it is simple and tractable and can model fairly well the

autocorrelation function of image scanlines and speech signals [21, 22, 27]. Despite the simplicity

of this model, the theoretical results derived under these assumptions are very close to the

experimental results derived for audio signals in Section VII.
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III. Pseudorandom watermarks

Most watermarking schemes proposed so far, use a pseudorandom number generator in order

to construct the watermark signal that will be embedded in the host data. Samples generated

by such functions can be accurately modelled as independent, identically distributed (i.i.d.)

random variables obeying a uniform distribution. In our case, we will deal with zero-mean,

pseudorandom sequences distributed in the interval [−0.5, 0.5]. Obviously, since E[w[i]] = 0, ∀i

and E[w[i]w[i + k]] = δ(k)E[w2[i]] (δ(k) being the Dirac delta function), pseudorandom signals

of this type are wide-sense stationary and ergodic [28]. Furthermore, for such watermarks, the

terms of the sum (4) can be safely assumed to be sufficiently independent. Thus, due to the

Central Limit Theorem, c attains a Gaussian distribution for a sufficiently large N .

By exploiting the above properties, one can easily obtain the following results for the pseu-

dorandom watermark signal moments that appear in expressions (10), (11):

E[wm[i]] =





0 m odd

1
(m+1)2m m even

(17)

E[wl[i]wm[j]] = E[wl[i]]E[wm[j]] (18)

Similar expressions can be derived for the joint moments involving more than two random

variables. By substituting the above expressions in (10), (11), the mean value and the variance

of the correlation c for a watermarking system based on pseudorandom watermarks can be

calculated:

µc =





p
12 if wd = we (H0)

0 if wd 6= we (H1b)

0 if p = 0 (H1a)

σ2
c =





1
12N (µ2

fo
+ σ2

fo
+ p2

15 ) if wd = we (H0)

1
12N (µ2

fo
+ σ2

fo
+ p2

12 ) if wd 6= we (H1b)

1
12N (µ2

fo
+ σ2

fo
) if p = 0 (H1a)

(19)

By observing (19), one concludes that µc|H1a
= µc|H1b

while σ2
c|H1a

< σ2
c|H1b

, proving that event

H1b is the worst case among events H1a, H1b. Thus, the experiments in Section VII will be

conducted using the event H1b.

Another very important observation is that µc depends only on the watermark embedding

factor p, whereas σ2
c depends also on the mean value and the variance of the host signal.

For certain classes of signals (i.e., images), the term µfo is considerably large, especially in
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comparison to σ2
fo

. Thus, the subtraction of the mean value µfo from the test signal can result

in lower variance for the correlation and, subsequently, to a considerable improvement of the

system’s performance. For a zero mean watermark, µfo can be easily shown to be equal to the

mean value of the test signal ft:

E[ft] = E[fo + pwe] = E[fo] + pE[we] = E[fo] = µfo (20)

By subtracting E[ft] from the test signal, we obtain the signal ft
′
:

ft
′
= ft − E[ft] = (fo − µfo) + pwe = fo

′
+ pwe (21)

where fo
′
= fo − µfo and µf ′o = 0. Mean value subtraction has been proposed in the past as a

heuristic for improving the system performance. However, no formal justification of the effect

of the subtraction has been provided so far. Experimental verification of this result will be

provided is Section VII.

IV. Statistical Analysis of Chaotic Sequences generated by Markov Maps

Sequences generated by chaotic maps constitute an efficient alternative to pseudorandom

watermarking sequences. A chaotic discrete-time signal x[n] can be generated by a chaotic

system with a single state variable by applying the recursion

x[n] = f(x[n− 1]) = fn(x[0]) = f(f(. . . (f︸ ︷︷ ︸
n times

(x[0])) . . .)) (22)

where f(·) is a nonlinear transformation that maps scalars to scalars and x[0] is the system initial

condition. Thus, a chaotic signal is generated through an iterative procedure, starting from

x[0]. The notation fn(x[0]) is used to denote the n-th application of the map. To proceed with

the performance analysis of watermarking systems based on chaotic sequences, the correlation

statistics of such sequences, that are involved in expressions (10) and (11), must be derived.

Let pn(·) denote the probability density function of the n-th iterate x[n]. A linear operator

can be defined such that:

pn(·) = Pf{pn−1(·)} = Pn
f {p0(·)} (23)

This operator, which is referred to as the Frobenius-Perron (FP) operator [29], describes the

time evolution of the density pn(·) for a particular map. Although, in general, the densities
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at distinct iterates n will differ, there can be certain choices of p0(·) such that the densities of

subsequent iterates do not change, i.e.,

p(·) = Pn
f {p(·)}, ∀n (24)

Such a density p(·), is referred to as the invariant density of the map f(·), and constitutes a

fixed point of the FP operator. For a given map, more than one densities may satisfy (24).

The invariant density plays an important role in the computation of time-averaged statistics

of time series from nonlinear dynamics. When p0(·) is chosen to be an invariant density, it

is straightforward to verify that the resulting stochastic process is stationary and, subject to

certain constraints on the map, ergodic [29].

A rich class of 1-D chaotic systems that are particularly amenable to analysis are the even-

tually expanding, piecewise-linear Markov maps. A map M : [0, 1] → [0, 1] is an eventually

expanding, piecewise-linear, Markov map if the following conditions hold:

1. The map is piecewise-linear, i.e., there is a set of points α0, α1, . . . , αM satisfying 0 = α0 <

α1 < · · · < αM = 1 such that, when restricted to each of the intervals (αi−1, αi), the map

is affine. α0, α1, . . . , αM are called partition points and the corresponding intervals partition

elements.

2. The map possesses the Markov property i.e., partition points are mapped to partition points:

∀ i ∈ [0, . . . ,M ], ∃ j ∈ [0, . . . ,M ] : M(αi) = αj (25)

3. The map has the eventually expanding property, i.e., there exists an integer r > 0 such that

inf
x∈[0,1]

∣∣∣∣
d

dx
Mr(x)

∣∣∣∣ > 1 (26)

For simplicity, maps satisfying the above definition will be referred to as ”Markov maps”

when there is no risk of ambiguity. Markov maps possess a number of useful properties. All

Markov maps have invariant densities and are ergodic under readily verifiable conditions [30].

In addition, suitably quantized outputs of Markov maps are equivalent to Markov chains. In

particular, for almost all initial conditions, the sequence of partition element indices correspond-

ing to successive iterates of the map is indistinguishable from a sample path of a Markov chain

[31].
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The statistics of Markov maps can be determined in closed form. A strategy for computing

these statistics was developed in [32]. A unique property of the FP operator acting upon

piecewise-linear Markov maps is that their invariant subspaces contain piecewise polynomials.

Thus, the image of piecewise polynomials of degree K is also piecewise polynomials of degree

K. Moreover, by representing the density p0(·) of the initial condition on a suitable system of

basis functions (a polynomial space for the calculation of moments), the FP operator can be

formulated as matrix operator. The densities can be uniquely represented by vectors, hereafter

referred as coordinate vectors, comprised of the piecewise polynomial factors. As a result, all

calculations required for the statistics of Markov maps involve finite dimensional linear algebra.

The matrix PK , which we will refer to as the FP matrix, describes how the coefficients of

expansion, in terms of the polynomial basis, map under the FP operator. The subscript K

denotes the sufficient dimension for the basis expansion. For a detailed definition of the matrices

and vectors involved in statistics calculations that will be used in the sequel, one may consult

[32].

Based on the representation of the FP operator on a finite set of basis functions, the invariant

density p(·) of a Markov map, or equivalently the invariant density coordinate vector p, can be

calculated by solving the corresponding eigenvector problem:

P0p = p (27)

where P0 is the FP matrix of zero expansion. Thus, this coordinate vector is the nonnegative

eigenvector corresponding to the unit eigenvalue of the FP matrix. Moreover, Markov maps

have the property that all invariant densities of interest are piecewise constant.

Accordingly, using the FP matrix, the higher order correlation statistics of Markov maps can

be derived. To do so, the FP matrix and the basis correlation matrix must be expanded in a

sufficient dimension [32]. For example, for calculating the autocorrelation function of a chaotic

sequence, the FP matrix P1 and the corresponding basis correlation matrix are needed. The

Markov sequences that will be used in the sequel, attain exponential autocorrelation function

given by (15), where β is an eigenvalue of the corresponding FP matrix [33]. For higher order

correlation statistics given by (12), the sufficient dimension for the basis expansion is linearly

DRAFT



13

increased. According to (10) and (11), the highest order correlation statistic required for eval-

uating the mean value and the variance of the detector in the presented watermarking system

is of third order and the corresponding FP matrix that need to be evaluated is P3.

V. Employing Chaotic Sequences in Watermarking Schemes

From the preceding discussion, one can conclude that a chaotic sequence x is fully described

by the map f(·) and the initial condition x[0]. By imposing certain constraints on the map or

the initial condition, sequences of infinite period can be obtained. Thus, if we consider two finite

sequences x,y generated by the iterative application of the same map on two distinct initial

conditions x[0], y[0], respectively, that belong to the same chaotic orbit, there will always be an

integer k > 0 such that:

x[0] = fk(y[0]) or y[0] = fk(x[0]) (28)

The corresponding samples x[n], y[n] are associated through the following expression for a suit-

ably selected k > 0:

y[n] = fn(y[0]) = fn(fk(x[0])) = x[n + k] or x[n] = y[n + k] (29)

From now on, constant k will be called sequence shift. Having described how a chaotic sequence

x can be generated in the interval [0, 1], the corresponding chaotic watermark sequence is given

by:

w = x− d1 (30)

where d is a constant that controls the range of the watermark sequence and 1 = [1, 1, . . . , 1]T .

By substituting (30) in (10) and (11) and considering that wd[n] = we[n+k], according to (29),

it is straightforward to show that the mean value and the variance of the correlation c are given

by:

µc = µfoµx − dµfo + pRx[k]− 2pdµx + pd2 (31)

σ2
c = B(d2 + 2Rx[k])− pd3µfo + 2pd2µx(3µfo − 2pd)

+
1
N

[
2B(Rx[0] + Rx[k])− 2B

d
Rx[0, k]− 2p2dRx[k, k] + (d2 − 2dµx + Rx[0])Rfo [0] + p2Rx[0, k, k]

]

+
2

N2

[
B

N−1∑
m=1

(N −m)(2Rx[m] + Rx[m + k] + Rx[k −m])− B

d

N−1∑
m=1

(N −m)(Rx[k, m] + Rx[m,m + k])
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−p2d

N−1∑
m=1

(N −m)(Rx[k, k −m] + Rx[k, m + k]) + (d2 − 2dµx)
N−1∑
m=1

(N −m)Rfo
[m]

+
N−1∑
m=1

(N −m)Rx[m]Rfo
[m] + p2

N−1∑
m=1

(N −m)Rx[m, k,m + k]

]
− µ2

c (32)

where B = p2d2 − pdµfo , µx is the mean value of the chaotic sequence, and R[k] is given by

(12).

Expressions (31) and (32) are sufficiently broad to include all events that occur in the water-

marking model described in Section II, provided that piecewise linear Markov maps are used

to generate the watermark sequence. That is, the case of watermark absence (event H1a) is

represented by setting the watermark embedding factor p equal to zero. The case of watermark

presence is represented by a positive watermark embedding factor and k = 0 in the case of cor-

rect watermark presence (event H0), or k > 0 in the case of wrong watermark presence (event

H1b). The correlation statistics needed for evaluating expressions (31) and (32) can be derived

in closed form, or evaluated numerically [32, 34]. Furthermore, by using the appropriate expres-

sions for correlation statistics, the above formulas can be used to describe correlation based,

additive embedding watermarking schemes incorporating a wider class of watermark sequences.

For example, expressions for a watermarking scheme based on zero-mean pseudorandom white

watermarks can be obtained by substituting the expressions:

Rx[k] = δ(k)E[x2], Rx[k1, k2] = δ(k1)δ(k2)E[x3], Rx[k1, k2, k3] = δ(k1)δ(k2)δ(k3)E[x4] (33)

in equations (31), (32).

The constant value d is usually chosen to be the mean value of the chaotic sequence x in order

to have a DC free watermark which, according to [22], results in better system performance.

Moreover, by subtracting the test signal mean value prior to detection (see Section III), we can

decrease the variance of the correlation, thus obtaining better system performance as will be

shown in Section VII. By using a DC free watermark and subtracting the test signal mean value

prior to detection, the mean value and the variance of the correlation c have a much simpler

form:

µc = p(Rx[k]− µ2
x) (34)
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σ2
c =

p2

N2

N−1∑

m=0

(N −m)(2− δ(m)){µ2
x(2Rx[m] + Rx[m + k] + Rx[k −m])

−µx(Rx[k, m] + Rx[m,m + k] + Rx[k, k −m] + Rx[k,m + k]) + Rx[m, k, m + k]}

+
1

N2

N−1∑

m=0

(N −m)(2− δ(m))(Rx[m]− µ2
x)Rfo [m]− p2(Rx[k]− 2µ2

x)2 (35)

where δ(m) is the Dirac delta function.

Although samples of Markov chaotic watermarks are correlated for small k > 0, since they

possess exponential autocorrelation function and wd is a shifted version of we, the Central Limit

Theorem for random variables with small dependency [35] may be used in order to establish that

the correlation c in (4) attains a Gaussian distribution, even in the case of wrong watermark

presence (assuming that N is sufficiently large). Furthermore, under the worst case assumption

(event H1b), both µc and σ2
c , given by (31) and (32) respectively, converge to constant values

for large k. In such a case, Pfa|H1b
substitutes Pfa|H1

since this is the worst case. Pfa|H1b
can

be estimated using the limit values (k → ∞) of µc and σ2
c . Pfr values are estimated using the

values of µc and σ2
c for k = 0 (event H0) and ROC curves are evaluated from (9).

Moreover, if we examine in detail the mean value of the correlation given by (34), we can

notice that the mean value converges to zero for event H1. Additionally, for event H0 the mean

value of the detector is equal to the variance of the watermark multiplied by the embedding

power. This addresses the fact that the mean value of the correlation depends only on the

power and the variance of the watermark and not on the watermark generator (chaotic or

pseudorandom), or the spectral properties of the watermark signal.

The aforementioned remark leads us to the conclusion that, for watermark signals of the

same power and the same variance, the watermarking system performance is affected only by

the variance of the correlation detector. That is, the lower the variance of the correlation for

events H0 and H1, the better the watermarking system performance. Therefore, the objective

is to construct watermarks that result in small correlation variance. According to (35), this can

be achieved by utilizing watermark signals with suitable first, second and third order correlation

statistics. In order to elaborate on eqs. (34) and (35), we rewrite them for the two events H0

and H1a.

µc =





0 p = 0 (H1a)

pσ2
x k = 0, p 6= 0 (H0)

(36)
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σ2
c =





1
N

σ2
xσ2

fo
+

2
N2

N−1∑
m=1

(N −m)(Rx[m]− µ2
x)Rfo

[m] p = 0 (H1a)

1
N σ2

xσ2
fo

+ p2

N (4µ2
xRx[0]− 4µxRx[0, 0] + Rx[0, 0, 0])− p2(Rx[0]− 2µ2

x)2

+
2p2

N2

N−1∑
m=1

(N −m){4µ2
xRx[m]− 2µx(Rx[0,m] + Rx[m,m]) + Rx[0,m, m]}

+
2

N2

N−1∑
m=1

(N −m)(Rx[m]− µ2
x)Rfo [m] k = 0, p 6= 0 (H0)

(37)

When event H1a holds, it can be easily observed that the correlation variance depends only

on the watermark autocorrelation function Rx[m]. The autocorrelation function of a signal is

directly associated with its power spectral density (psd):

Sx(ω) =
∞∑

k=−∞
Rx[k]e−jωk = Rx[0] +

∞∑

k=1

Rx[k]
(
e−jωk + ejωk

)
(38)

Therefore, the spectral properties of the watermark signal determine the variance of the corre-

lation for the event H1a. Moreover, if we consider the exponential autocorrelation function of

Markov chaotic sequences given by (15), it can be easily derived that the correlation variance

given by (37) depends on the sum over the samples of the autocorrelation function in the inter-

val [0, N − 1], which is minimized for β → −1, and maximized for β → 1. Using (38), one can

observe that the two cases correspond to the most highpass and most lowpass signals that can

be generated having exponential autocorrelation function. Considering the above discussion,

one can conclude that highpass watermarks perform better than lowpass ones, when no attacks

on the watermarked signal are considered, since the correlation variance is reduced. When event

H1b holds, the correlation variance σ2
c|H1b

still depends only on the spectrum of the watermark

signal, as will be presented in Section VII.

A final interesting conclusion that we can draw on the basis of the previous analysis is that,

even when two sequences have the same power, variance and spectral properties, their perfor-

mance in a watermarking scheme might be different. For such sequences, the correlation mean

and variance for event H1, would have the same value. However, the correlation variance for

event H0 could differ, since it also depends on the second and third order correlation statistics

Rx[0,m], Rx[m,m], Rx[0,m, m] of the watermark sequence. As a consequence, it is possible
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to generate white chaotic watermark sequences that perform better than pseudorandom white

sequences, as will be presented in the following Sections.

VI. The Skew Tent Map

In this section, analysis techniques presented so far are being exemplified using the skew tent

map, which is a piecewise linear Markov map. The skew tent map [36] is illustrated in Figure ??

and can be expressed as:

T : [0, 1] → [0, 1]

where T (x) =





1
α x 0 ≤ x ≤ α

1
α−1 x + 1

1−α α < x ≤ 1
, α ∈ (0, 1) (39)

A trajectory t[k] of the dynamical system is obtained by iterating this map i.e.,

t[k] = T (t[k − 1]) = T k(t[0]) (40)

The invariant density of the skew tent map is uniform, as can be derived using (27). Following

the methodology described in Section IV, the statistical properties of sequences produced using

the skew tent map can be derived. The analytical expressions for the first, second and third

order correlation statistics, required for evaluating the performance of watermarking schemes

based on the skew tent map, can be found in Appendix A. For example, the first order correlation

statistic (autocorrelation function) is given by:

Rt[k] =
1
4

+
1
12

ek
2 =

1
4

+
1
12

(2α− 1)k (41)

where e2 = 2α− 1 is an eigenvalue of the FP matrix P3. It can be observed that the autocor-

relation function depends only on the parameter α of the skew tent map. Thus, by controlling

the parameter α, we can generate sequences having any desirable exponential autocorrelation

function. Using (38), (41), the power spectral density of the skew tent map sequences are

derived:

St(ω) =
1− e2

2

12(1 + e2
2 − 2e2 cosω)

(42)

Thus, by varying the parameter α, either highpass (α < 0.5), or lowpass (α > 0.5) sequences

can be produced. For α = 0.5, the symmetric tent map is obtained. Sequences generated by the
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symmetric tent map possess white spectrum, since the autocorrelation function becomes the

Dirac delta function. The control over the spectral properties is very useful in watermarking

applications, since the spectral characteristics of the watermark sequence are directly related to

watermark robustness against common types of attack, such as filtering and compression.

Using the analytical expressions for the correlation statistics of skew tent sequences given in

Appendix A, one can derive the mean value and the variance of the correlation detector for this

map:

µc =





0 p = 0 (H1a)

p
12 k = 0, p 6= 0 (H0)

(43)

σ2
c =





σ2
fo

12N2

N−2βe2−Nβ2e2
2+2(βe2)N+1

(1−βe2)2
p = 0 (H1a)

p2

180N2

N−2e1−Ne2
1+2eN+1

1
(1−e1)2

+
σ2

fo

12N2

N−2βe2−Nβ2e2
2+2(βe2)N+1

(1−βe2)2
k = 0, p 6= 0 (H0)

(44)

where e1, e2 are eigenvalues of the FP matrix P3 and β is the parameter of the host signal

autocorrelation function given by (15).

VII. Experimental Results and Discussion

In this Section, the experimental verification of the results obtained through theoretical anal-

ysis is reported. Discrete-time, continuous-valued signals have been considered throughout the

previous sections. Unfortunately, experimental verification involves loss of accuracy, since all

simulated signals must be discrete-valued (quantized). However, as it will be shown in the

sequel, experimental evaluations are in agreement with theoretical results.

In order to experimentally verify the theoretical performance analysis of a watermarking sys-

tem based on correlation detection, the system is fed with a music audio signal of 1sec duration,

sampled at 44.1kHz with 16 bits per sample (N = 44100). The audio signal is assumed to

comply with the signal model of (15). The value of the audio signal autocorrelation parameter

that is required for calculating the theoretical expressions derived above, was estimated using

Mean Square Error minimization for the first 10 samples of the calculated test signal autocor-

relation function. Using more than 10 samples for β calculation does not alter the estimated

value. Furthermore, it has been proven experimentally that incorrect estimates of β (±15%

of the actual value) do not significantly affect the obtained theoretical results. For the audio
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signal used in the experiments, the parameter β was found to be 0.97. The audio signal auto-

correlation function complies with the assumed model as it will be verified by the accordance of

the theoretical and experimental curves. System performance was measured for three classes of

watermark signals, namely, chaotic watermarks generated by tent maps with different spectral

properties, pseudorandom white watermarks and watermarks generated by Bernoulli sequences,

exhibiting lowpass characteristics [26]. A watermark embedding factor p that resulted in water-

marked signals with SNR=30dB has been used in all cases. Experiments were conducted using

a total of 10000 keys for each class of signals. In subsequent analysis, ROC curve evaluation

is performed under the worst case assumption for Pfa evaluation, corresponding to the signal

being watermarked by a watermark different than the one used in detection (event H1b).

At first, the statistical and spectral properties of the tent chaotic watermarks are experimen-

tally evaluated and compared with the analytical expressions. Figure ?? illustrates the power

spectral density (psd) St(ω) of the tent generated chaotic watermarks for different values of the

map parameter α (0.1,0.3,0.5,0.7,0.9). The experimental curves are almost identical with the

theoretical ones. It is easily observed that the spectrum of tent chaotic watermarks is highpass

for small values of α, becomes white for α = 0.5 and tends to lowpass as α → 1. This obser-

vation justifies our earlier remark about the controllable spectral/correlation properties of the

tent chaotic watermarks. Tent chaotic watermarks, generated for the above mentioned values

of α, were used in all subsequent experiments in order to illustrate the influence of α (spectral

properties) on the system performance.

Experimental verification of the dependency of µc, σ2
c on the watermark shift k, for watermark

signals generated by tent maps was also pursued. Figure ?? shows the theoretical and empirical

curves for the mean and variance of the correlation, for various values of α. When k = 0,

the detected watermark is identical to the embedded one (wd = we). The main observation

here is that the correlation variance for the correct watermark (k = 0) is smaller than the

correlation variance observed when the test watermark is different from the embedded one.

Moreover, correlation mean and variance quickly converge to constant values. The convergence

depends on the parameter α of the tent map. As the chaotic sequence becomes more lowpass
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or highpass, the correlation mean and variance converge slower to a constant value. This leads

to the conclusion that the probability of detecting a shifted watermark as the correct one,

reduces as the parameter α of the map tends to 0.5. Subsequent analysis will proceed under the

assumption that k is sufficiently large to guarantee convergence of µc, σ2
c to their limit values.

Under this assumption, the respective correlation detector attains a Gaussian distribution.

The influence of the map parameter α on the watermarking system performance was also

considered. The ROC curves for lowpass (α = 0.7), white (α = 0.5) and highpass (α = 0.3) tent

chaotic watermarks were theoretically and experimentally evaluated. The superior performance

of the highpass tent chaotic watermarks can be easily observed in Figure ??a. The performance

of the watermarking system is considerably inferior for white tent watermarks, whereas the

worst performance is observed when lowpass watermarks are used.

It is obvious that in case of lowpass attacks, such as filtering or compression, the lowpass wa-

termark will be more robust. In order to take advantage of the superior correlation properties of

highpass watermarks even in the case of lowpass attacks, one can perform embedding in another

domain and not in the spatial one. For example, if a highpass watermark is embedded in the low

frequencies of the DFT domain, as it has been proposed in many watermarking algorithms [37,

38], the watermark becomes robust to lowpass attacks, while retaining its correlation properties.

Next, we proceed to illustrate the fact that schemes utilizing watermark signals of the same

spectral properties may exhibit different behavior. In other words, we will experimentally verify

the theoretical expressions that indicate the fact that two watermarking schemes using sequences

of the same spectral properties attain the same correlation mean and variance for event H1,

but exhibit different correlation variance for event H0, since in that case σ2
c depends also on

the second and third order correlation statistics (35). In order to do so, we compare the white

tent chaotic watermarks (α = 0.5) with the pseudorandom white watermarks. Furthermore, we

compare lowpass tent watermarks against watermarks generated by Bernoulli maps, possessing

the same spectral characteristics. The autocorrelation function of Bernoulli watermarks can

be derived using the methodology described in Section IV. For such sequences, the first order
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correlation statistic is:

Rb[k] = E[b[n]b[n + k]] =
1
4

+
1

12mk
(45)

where m ∈ Z+ is the number of Bernoulli map partition elements. By comparing (41), (45) one

can conclude that for α = m+1
2m the tent map generates sequences that have the same spectral

properties with the corresponding Bernoulli sequences. It is worth noting here that Bernoulli

chaotic maps can generate only lowpass sequences. Lowpass characteristics of Bernoulli se-

quences weaken as m → ∞, where the sequences obtain a white spectrum. The most lowpass

sequence that can be generated using Bernoulli maps is the one obtained for m = 2. This

is a very crucial limitation in the flexibility of Bernoulli maps. On the contrary, tent chaotic

watermarks can generate any sequence with exponential autocorrelation function and thus, any

desirable spectral characteristics.

Experimental results show that sequences produced by tent maps have superior performance,

in terms of the ROC curve, compared to white pseudorandom and Bernoulli sequences attaining

the same spectral properties. The theoretical ROC curves for white tent (α = 0.5), pseudoran-

dom white, lowpass tent (α = 0.6) and lowpass Bernoulli (m = 5) are plotted in Figure ??b. The

experimental ROCs are also plotted in the same Figure and illustrate the accordance between

theoretical and experimental results.

Another issue that is worth commenting, is the influence of the watermark embedding factor

p on the watermarking system performance. It can be observed in (19),(34) that, in both

tent and pseudorandom watermarks, p multiplies the correlation mean value for the correct

watermark (event H0). Therefore, the system performance improves with the the watermark

embedding factor in both cases. However, expressions (19), (35) highlight that the correlation

variance is also affected by the watermark embedding factor. The correlation variance for

tent chaotic watermarks using different embedding factors is illustrated in Figure ??. It is

obvious that, as the watermark becomes stronger, the correlation variance decreases for event

H0 (k = 0) while it increases, but to smaller extent, for event H1b (k →∞). This is not the case

with pseudorandom watermarks, where the correlation variance increases with the watermark

embedding factor for both events H0,H1b, according to (19). In other words, an increase of p
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results in the same performance improvement for both pseudorandom and tent watermarks, in

what concerns the effect of the mean values. However, in what concerns the contribution of

variance in the system performance, an increase of p results in a decrease of performance for

pseudorandom watermarks whereas for tent watermarks the performance increases. Thus the

gap in the performance between white pseudorandom and white tent watermarks increases as

p increases.

Another important aspect that can be treated by exploiting the theoretical analysis presented

in the previous Sections, is the minimum number of watermarked data samples required for a

watermarking scheme based on correlation detection in order to achieve a certain prespecified

performance. This number can be estimated by setting the desired Pfa and Pfr values in (9) and

using (34), (35). The EER (operating state where Pfr = Pfa) versus the number of watermarked

data samples is plotted in Figure ??a for a system based on tent chaotic watermarks. It can

be observed that the number of samples required, for a reliable watermarking scheme (e.g.

EER ≈ 10−12), is 80000 for a highpass spectrum watermark and this number increases to

190000 samples for a white watermark. For a lowpass tent watermark, the minimum number

is much larger. The influence of the test signal mean value in the watermark performance

is also illustrated in this example (Figure ??b). By subtracting the test signal mean value,

the number of watermarked samples required reduces significantly. That is, 10000 samples are

enough to ensure reliable watermark detection (EER ≈ 10−12) for a highpass tent watermark

(α = 0.3), whereas for white tent watermarks more than 15000 samples are required. The worst

case occurs for lowpass tent watermarks where more than 35000 samples should be contained in

the host signal. The issue of the minimum watermark sequence length that achieves a certain

performance is very critical in multi-bit watermarking, where this number corresponds to the

minimum number of samples needed for encrypting just one bit. The reader should bear in

mind that, in order to encrypt a message consisting of L bits, one needs at least L times the

number of samples derived above.

Experiments were conducted to investigate robustness of the pseudorandom and the chaotic

sequences against mean filtering of window size 3. The ROC curves after mean filtering are plot-
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ted in Figure ??. It can be observed that watermarks having lowpass characteristics (Bernoulli

with m = 5, tent with α = 0.6) attain better performance than white or highpass ones. The

best performance is achieved using lowpass tent watermarks having α = 0.7.

Finally, the argument that controllable spectral characteristics can be also obtained using

prefiltered pseudorandom white sequences can be easily confronted. The advantage of Markov

chaotic watermarks is that no prefiltering is required and the probability distribution of the

generated samples is not affected (when it is chosen to be the invariant density of the map) by

the modification of the sequence spectral characteristics. In the case of tent chaotic watermarks,

this distribution is uniform regardless of the sequence spectral characteristics. On the contrary,

prefiltering of pseudorandom watermarks modifies their initial uniform distribution. Thus,

filtered watermarks with long tailed probability density function can result, increasing the risk

of obtaining perceptible watermarks. Moreover, generating uniformly distributed sequences

with predefined first, second and third order correlation statistics by filtering pseudorandom

sequences is a very complicated task.

VIII. Conclusions

In this paper, chaotic watermarks generated by Markov maps are introduced and their sta-

tistical properties related to watermarking are investigated. Furthermore, statistical analysis

of the employed correlation detector is undertaken, leading to a number of important observa-

tions on the watermarking system detection performance. Highpass chaotic watermarks prove

to perform better than white ones, whereas lowpass watermarks have the worst performance

when no distortion is inflicted on the watermarked signal. The controllable spectral/correlation

properties of Markov chaotic watermarks prove to be very important for the overall system

performance. Moreover, Markov maps that have appropriate second and third order correla-

tion statistics, like the skew tent map, perform better than sequences with the same spectral

properties generated by either Bernoulli or pseudorandom number generators.
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Appendix A

In order to estimate the correlation statistics for sequences generated by skew tent maps, we must

first derive the FP matrix for this map. According to (10) and (11), the highest order correlation

required for evaluating the mean value and the variance of the detector in a watermarking system

is of third order and thus, the corresponding FP matrix needed is P3. This matrix can be derived

in a straightforward manner using the definitions in [32].

P3 =




α 1− α 0 1− α 0 1− α 0 1− α

α 1− α 0 1− α 0 1− α 0 1− α

0 0 α2 − (α− 1)2 0 −2 (α− 1)2 0 −3 (α− 1)2

0 0 α2 − (α− 1)2 0 −2 (α− 1)2 0 −3 (α− 1)2

0 0 0 0 α3 − (α− 1)3 0 −3 (α− 1)3

0 0 0 0 α3 − (α− 1)3 0 −3 (α− 1)3

0 0 0 0 0 0 α4 − (α− 1)4

0 0 0 0 0 0 α4 − (α− 1)4




(A-1)

where α is the parameter of the map. The corresponding correlation basis matrix is:

M3 =




α 0 α2

2 0 α3

3 0 α4

4 0

0 1− α 0 1−α2

2 0 1−α3

3 0 1−α4

4

α2

2 0 α3

3 0 α4

4 0 α5

5 0

0 1−α2

2 0 1−α3

3 0 1−α4

4 0 1−α5

5

α3

3 0 α4

4 0 α5

5 0 α6

6 0

0 1−α3

3 0 1−α4

4 0 1−α5

5 0 1−α6

6

α4

4 0 α5

5 0 α6

6 0 α7

7 0

0 1−α4

4 0 1−α5

5 0 1−α6

6 0 1−α7

7




(A-2)

In order to facilitate the calculations and derive closed form expressions for the correlation

statistics, the FP matrix must be expressed in the form

P3 = VEV−1 (A-3)
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where V is the generalized eigenvectors matrix and E = diag(e) is the diagonal matrix of the

corresponding eigenvalues. The eigenvalues of P3 are:

e =
[

e1 e2 . . . e8

]
=

[
1− 3 α + 3 α2 −1 + 2α 4 α3 − 6 α2 + 4 α− 1 1 0 0 0 0

]

(A-4)

and the corresponding eigenvectors are the columns of

V =




1 1 1 1 a−1
a

a−1
a

a−1
a

a−1
a

1 1 1 1 1 0 0 0

6 a− 6 −2 6 a− 6 0 0 2 (a−1)2

a2 3 (a−1)2

a2
(a−1)2

a2

6 a− 6 −2 6 a− 6 0 0 0 0 1

−9 a + 6 0 12 (a− 1)2 0 0 (a−1)3

a3 3 (a−1)3

a3 0

−9 a + 6 0 12 (a− 1)2 0 0 1 0 0

0 0 −16 a2 + 20 a− 8 0 0 0 (a−1)4

a4 0

0 0 −16 a2 + 20 a− 8 0 0 0 1 0




(A-5)

The objective is to calculate correlation statistics of the form:

Rt[y1, y2, · · · , yr] = E [t[n]t[n + y1]t[n + y2] . . . t[n + yr]] =
∫

g1(x)g2(x) dx (A-6)

where

g1(x) = x (A-7)

g2(x) = P
yr−yr−1
t {x · · ·P y2−y1

t {xP y1
t {xp(x)}} · · ·} (A-8)

where p(·) is the invariant density of the Markov map, which in the case of tent maps is uniform.

In matrix notation, the correlation is given by:

Rt[y1, y2, · · · , yr] = gT
1 Mg2 (A-9)

where

g1 = g = [0 0 1 1 0 0 0 0 ] (A-10)

is the coordinate vector of g(x) = x and

g2 = Pyr−yr−1(g¯ · · · ¯Py2−y1(g¯Py1g) · · ·) (A-11)
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In the previous formula P, M are the FP and the correlation basis matrices of sufficient di-

mension, respectively, and ¯ denotes the polynomial product operator. For two coordinate

vectors u1,u2, the notation u1¯u2 denotes the coordinate vector of the corresponding product

of piecewise polynomials u1(x), u2(x) in a basis of suitably high dimension. Let y(k) be the

k-th order statistic of the samples y1, y2, . . . , yN , where y(0) = min{y}, y(N−1) = max{y}. The

correlation statistics of first, second and third order for tent sequences can be derived in closed

form using A-9:

Rt[y1] =
1
4

+
1
12

e
y(0)
2 (A-12)

Rt[y1, y2] =
1
8

+
1
24

(
e
y(0)
2 + e

y(1)
2 + e

(y(1)−y(0))
2

)
+

a

12h
e
y(0)
2

(
e
(y(1)−y(0))
1 − e

(y(1)−y(0))
2

)
(A-13)

Rt[y1, y2, y3] =
1
16

+
1
48

(
e
y(0)
2 + e

(y(1)−y(0))
2 + e

(y(2)−y(1))
2

)
+

1
144

(ey(1)
2 + e

(y(2)−y(1)+y(0))
2 + e

(y(2)−y(0))
2 ) +

1
72

(e(y(2)−y(1))
1 e

(y(1)−y(0))
2 + e

y(0)
2 e

(y(1)−y(0))
1 ) +

1
216

(e(y(2)−y(1)+y(0))
2 e

(y(1)−y(0))
1 + e

y(1)
2 e

(y(2)−y(1))
1 ) +

1
432

e
y(2)
2 − 1

54
e
y(0)
2 e

(y(2)−y(0))
1 +

1
36h

(e(y(2)−y(1))
1 e

(y(1)−y(0))
2 − e

(y(2)−y(0))
2 + e

y(0)
2 e

(y(1)−y(0))
1 − e

y(1)
2 )− (A-14)

1
54h

(ey(0)
2 e

(y(2)−y(0))
1 + e

y(2)
2 )− 1

108h
e
y(1)
2 e

(y(2)−y(1))
1 +

1
216h

e
(y(2)−y(1)+y(0))
2 e

(y(1)−y(0))
1 +

1
27h2

(ey(2)
2 + e

y(0)
2 e

(y(2)−y(0))
1 − e

y(1)
2 e

(y(2)−y(1))
1 − e

(y(2)−y(1)+y(0))
2 e

(y(1)−y(0))
1 ) +

1 + 2a2

40v1
e
y(0)
2 e

(y(1)−y(0))
1 e

(y(2)−y(1))
3 +

a(a− 1)2

4hv1
e
(y(2)−y(0))
1 e

y(0)
2

where h = 3α − 2 and v1 = 4α2 − 5α + 2. Moreover, correlation statistics for the special case

(37) are:

Rt[m] =
1
4

+
1
12

em
2 (A-15)

Rt[m,m] =
1
6

+
1
12

em
2 (A-16)

Rt[0,m] =
1
6

+
α− 1

6(3α− 2)
em
2 +

α

12(3α− 2)
em
1 (A-17)

Rt[0,m, m] =
1
9

+
α− 1

6(3α− 2)
em
2 +

9α− 1
90(3α− 2)

em
1 (A-18)
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