

 1

Performance Analysis of Cryptographic Protocols on
Handheld Devices

Patroklos G. Argyroudis, Raja Verma, Hitesh Tewari and Donal O’Mahony

Networks and Telecommunications Research Group
Department of Computer Science

University of Dublin, Trinity College
{argp, vermar, htewari, omahony}@cs.tcd.ie

Abstract

The past few years have witnessed an explosive growth in the use of wireless mobile
handheld devices as the enabling technology for accessing Internet-based services, as
well as for personal communication needs in ad hoc networking environments. Most
studies indicate that it is impossible to utilize strong cryptographic functions for
implementing security protocols on handheld devices. Our work refutes this.
Specifically, we present a performance analysis focused on three of the most
commonly used security protocols for networking applications, namely SSL, S/MIME
and IPsec. Our results show that the time taken to perform cryptographic functions is
small enough not to significantly impact real-time mobile transactions and that there
is no obstacle to the use of quite sophisticated cryptographic protocols on handheld
mobile devices.

Keywords: Mobile communications, wireless security, handheld devices,
cryptographic protocols, performance analysis.

1 Introduction

The use of mobile computing devices (e.g. handhelds, palmtops, mobile phones) has
increased over the years, particularly during the last decade. Personal Digital
Assistants (PDAs) started initially as devices to store personal information. As they
have grown more compact with more powerful CPUs, they have evolved to support
more advanced communications applications that have traditionally been the domain
of workstations. At the same time there have been significant changes in the way
business is done with the introduction of electronic commerce endeavors through the
Internet. Electronic commerce involves the use of strong cryptographic functions and
protocols in order to provide adequate security services for payment transactions.
These functions can be easily afforded by fixed workstations, but the literature [1, 2]
would suggest that on mobile devices are slow and expensive due to constrained
processors, limited memory and battery life. The latest generations of mobile devices
are equipped with much faster CPUs, which facilitate the use of strong cryptographic
functions for the construction of security-related protocols. In this paper we present a
thorough performance assessment of the three most commonly used security protocols
for Internet transactions on wireless mobile devices. Specifically, we benchmark the
Secure Sockets Layer (SSL) [3] as the standard security protocol for protecting a wide
range of interactive network applications such as Web commerce, S/MIME [4] as the
industry standard for providing message-oriented security services and IP-level
security (IPsec) [5] as the primary technology for creating virtual private networks
and offering protection at the network-layer. The operational scenarios we examine

 2

describe the most common applications in mobile communications and wireless ad
hoc environments.
 In the remainder of the article we start by presenting the parameters that are
common for all the tests we have performed. Next we briefly present each of the
investigated security protocols followed by the specific parameters of the utilized
scenarios and the observed performance results. In turn we analyze the SSL, S/MIME,
IPsec protocols and we also present the timing measurements of the low-level
cryptographic primitives such as symmetric and asymmetric operations, as well as
message digests. We conclude with a discussion on the possibilities that are opened
with the use of strong cryptography on wireless mobile devices and describe potential
directions for future work.

2 Methodology

We begin by describing in detail the parameters of the experiments we have
performed. The hardware platform we use is the HP (Compaq) iPAQ H3630 [6] with
a 206 MHz StrongARM processor and 32MB RAM (16MB ROM), running the
Windows CE Pocket PC 2002 [7] operating system. For the implementation of the
investigated protocols we have employed the Windows CE port of the OpenSSL [8]
cryptographic toolkit, version 0.9.7b. We have also performed the same experiments
by utilizing the Microsoft Cryptography API [9] and the results of the timing
measurements were approximately the same. When the investigated scenarios
required a communication link between two peers, as in the case of SSL transactions,
we have used IEEE 802.11b wireless LAN [10] cards for the handheld devices.
 All the experiments were performed with RSA keys of 1,024 and 2,048 bits size,
with small public exponents (e was given the value 65,537) making the public key
operations significantly faster than the private key operations. We feel that 512 bits
keys are too short for sensitive data and therefore cannot be used in experiments that
try to capture the realistic requirements of secure transactions. Moreover, we have
created a certification authority (CA) that directly issued certificates for the public
keys of the peers involved in the tests making the certificate chains one certificate
long, thus requiring a single verification operation.

3 Secure Sockets Layer (SSL)

The Secure Sockets Layer (SSL), the latest version of which is also known as
Transport Layer Security (TLS), is by far the most widely deployed security protocol
in the world [11]. Almost all Web traffic related to electronic commerce is being
actively protected by it. Although the SSL protocol has been thoroughly analyzed on
the wired Internet and found to be especially satisfactory, its use on mobile handheld
devices has not been equally extensive mainly due to performance limitations.
Therefore, SSL-based security solutions need to be examined more thoroughly in the
context of handheld devices.
 In order to investigate the overhead of SSL in both the handshake procedure and in
bulk data transfer we employed a scenario of a simple file transmission of 1 MB
(1,048,576 bytes) between two handheld devices. As we are also interested in an ad
hoc communication environment where the participating entities function as peers, we
have enabled both client-side and server-side authentication. Although SSL session
resumption was not used, we have not measured the time required for the SSL context
initialization at each iteration. The utilized SSL context was initialized with RSA for

 3

authentication, Diffie-Hellman for key exchange, SHA-1 for message digesting and
Rijndael (with a 256 bits key) for bulk encryption. Furthermore, it should be noted
that we have used full SSL handshakes with no abbreviations and no certificate
caching. The average time required for a full handshake with both peers having keys
of 1,024 bits is 1.14 seconds (1,145 milliseconds) and 2.06 seconds (2,062.97
milliseconds) with keys of size 2,048 bits (see Figure 1). The whole transaction
including the SSL handshake and the encrypted file transfer required 7.76 seconds
(7,759.14 milliseconds) in the first case and 8.73 seconds (8,732.33 milliseconds) in
the second one. In order to have a clear understanding of the overhead introduced by
SSL in this scenario we run the same file transfer without any transport-layer
protection. The average time taken was 4.25 seconds (4,256.78 milliseconds).
Although the observed overhead is significant, it does not prohibit the use of SSL on
handheld devices since the required 2 seconds in the case of 2,048 bits key pairs
realistically allows even casual Web browsing.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 11 21 31 41 51 61 71 81 91

ITERATIONS

M
IL

LI
SE

C
O

N
D

S

SSL Handshake 1024 SSL Handsake 1024 + File Transfer SSL Handshake 2048
SSL Handshake 2048 + File Transfer Normal File Transfer

AVG
8732

AVG
7760

AVG
4257

AVG
2063

AVG
1145

Figure 1. File transfer timing measurements with and without SSL protection.

 In our experiments we have also investigated the overhead of SSL in respect to
battery power. Handheld devices are totally depended on the available battery energy
and therefore expensive operations should be identified. In order to analyze energy
consumption we have employed a file transfer of 20,480 bytes, which was run
continuously between two handheld devices until the batteries were completely
exhausted, with and without SSL protection. Both handheld devices shutdown after
the same length of time (approximately 2 hours and 45 minutes), but the SSL version
protected with 1,024 bits key pairs achieved 4,906 transfers while the non-encrypted
version achieved almost 80,000. The SSL operations are as expected more time
consuming and require a greater amount of CPU time to execute. However, the
investigated scenario was trying to capture the demands of cryptographically
expensive applications, like multiparty conferencing. In most common less CPU
demanding applications the impact on execution time is naturally lower. We must
note at this point that the energy experiments we conducted are only indicative since

 4

several factors that have an impact on battery life, such as ambient temperature and
humidity, were not taken into account.
 The overhead that is introduced by using SSL as the method of providing
transport-layer security for network transactions on handheld devices is considerable.
However, at just over 1 second for a handshake with 1,024 bits key pairs, it will not
inhibit mobile transactions.

4 Secure/Multipurpose Internet Mail Extensions (S/MIME)

Secure/Multipurpose Internet Mail Extensions (S/MIME) is the industry standard for
providing message-oriented security services for Internet electronic mail. The design
approach followed by S/MIME is to treat a message as a single object and to provide
the required security services for that object using symmetric and asymmetric
cryptography. Therefore, S/MIME can be utilized as the security solution for any
communication protocol that uses the store-and-forward delivery architecture of
electronic mail. One could argue that transport-layer security protocols, like SSL, can
also be employed for this purpose, however they do so by violating the end-to-end
security principle and do not offer non-repudiation, among other shortcomings [11].
 S/MIME provides the capability of securing normal electronic mail messages of
arbitrary content formatted according to the MIME standard. For our tests we used a
normal electronic mail formatted according to MIME 1.0, with content type plain text.
The size of this message was 2,092 bytes, a typical size of a normal message
exchanged during everyday transactions. We have investigated two different
application scenarios. In the first one the sender signs the message according to the
S/MIME standard and sends it to the receiver who verifies the signature, providing
only authentication. The average time required for a sender to sign a message is 110
milliseconds with a 1,024 bits key, and 545 milliseconds with a 2,048 bits key,
roughly five times greater. The verification operation performed by the receiver takes
an average time of 42 milliseconds using a 1,024 bits key, and 176 milliseconds when
a 2,048 bits key is used (see Figure 2).

0

100

200

300

400

500

600

700

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

ITERATIONS

M
IL

LI
SE

C
O

N
D

S

S/MIME Signing 1024 S/MIME Signing 2048 S/MIME Verification 1024 S/MIME Verification 2048

AVG
544

AVG
176

AVG
110

AVG
42

Figure 2. S/MIME signing and verification timing measurements.

 5

 The second scenario provides both confidentiality and authentication by signing
and encrypting the message. The sender initially signs the message and then randomly
generates a key known as the Content Encryption Key (CEK) that uses it to encrypt
the message using Triple-DES. The final step is to encrypt the CEK with the
recipient’s public key. The recipient decrypts the CEK using her private key and then
the message using the CEK. Finally, the sender’s signature is verified to provide
authentication. This second scenario captures in greater detail the requirements of a
real-world store-and-forward system. According to the observed results illustrated in
Figure 3 the average time required for a sender to construct such a message is 0.7
seconds (711.17 milliseconds) with a 1,024 bits key, and 1.3 seconds (1,267.84
milliseconds) with a 2,048 bits key. The operations performed by the recipient add an
overhead of 0.15 seconds (150.62 milliseconds) in the first case, and 0.64 seconds
(645.11 milliseconds) in the second.
 We believe that the timing results of both key sizes are realistic for a message-
oriented system providing both confidentiality and authentication. Specifically, the
observed overhead of approximately 1 second that is introduced at the sender side and
half a second at the receiver side when both confidentiality and authentication with
2,048 bits keys pairs is required is not prohibitive for even real-time store-and-
forward systems employed on handheld devices.

0

200

400

600

800

1000

1200

1400

1600

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

ITERATIONS

M
IL

LI
SE

C
O

N
D

S

S/MIME Receiver 1024 S/MIME Receiver 2048 S/MIME Sender 1024 S/MIME Sender 2048

AVG
1267

AVG
711

AVG
645

AVG
150

Figure 3. S/MIME sender and receiver timing measurements.

5 IP-level Security (IPsec)

IPsec consists of a set of protocols that provide security services for any application
that uses the Internet Protocol (IP). These protocols guarantee the secure transmission
of data between two systems anywhere in a networked environment. The goal of

 6

IPsec is to provide integrity, confidentiality and authenticity. Moreover, it should be
as resistant as possible to traffic analysis, replay and man-in-the-middle attacks. The
IPsec protocol suite is consisting of three different protocols [5]. First of all, the
Encapsulating Security Payload (ESP) which is added to an IP datagram and provides
confidentiality, integrity, and authenticity of the transferred data. The Authentication
Header (AH) is also added to an IP datagram and provides integrity and authenticity
of the transmitted packets. AH does not provide confidentiality for the data of
network packets since this is the service explicitly provided by ESP. The third
protocol is the Internet Key Exchange (IKE), which is based on the Diffie-Hellman
exchange and is used to negotiate the security association between the two endpoints
that need to communicate. A security association (SA) consists of the cryptographic
keys and the negotiated algorithms supported by the peers needed to exchange data
securely. IPsec has been criticized for being exceptionally complex and this fact
hinders in depth security evaluations [12]. In order to analyze the performance of
IPsec on handheld devices we chose not to implement it, as this would be error prone
and the compatibility with the specification questionable. Instead we have calculated
the time requirements of an ordinary IPsec negotiation between two peers that do not
share a pre-established security association, based on the observed performance of the
low-level cryptographic operations that take place (see Table 1).

Operation Time Iterations

DES 7.354 seconds (7,354 ms) 100,000 encryptions and
100,000 decryptions

SHA 19.111 seconds (19,111 ms) 100,000
1,024 bits RSA signing 782.593 seconds (782,593 ms) 10,000
1,024 bits RSA verification 50.125 seconds (50,125 ms) 10,000
2,048 bits RSA signing 4,972.798 seconds (4,972,798 ms) 10,000
2,048 bits RSA verification 156.006 seconds (156,006 ms) 10,000

Table 1. Timing measurements of low-level cryptographic primitives on an iPAQ H3630.

 When a host wishes to communicate with another host with whom it does not
share a security association it has to negotiate one using IKE. The entire procedure
has two phases. The purpose of the first phase is to construct a secure and
authenticated channel to exchange further IKE traffic and this can be accomplished in
two different modes, the main mode and the aggressive mode. We chose to base our
calculations on the main mode with signature authentication since it provides identity
protection by utilizing an anonymous Diffie-Hellman exchange and therefore it is
applicable to ad hoc environments. Each peer needs to perform one RSA signing and
one RSA verification operation, as well as one SHA message hashing operation.
Therefore a successful completion of the first phase requires approximately 167
milliseconds with 1,024 bits RSA key pairs and 1 second (1,026 milliseconds) with
2,048 bits key pairs. The second phase handles the establishment of security
associations, between two hosts that have completed the first phase, for a specific type
of traffic. This is accomplished with the quick mode, in which all the payloads of the
exchanged messages are encrypted with the keying material specified by the
previously negotiated security association. The successful completion of the quick
mode requires three DES symmetric encryption operations as well as three SHA
hashing operations. Hence the calculated time needed for the completion of the quick
mode procedure is approximately 0.68 milliseconds. We have to stress at this point
that we have not taken into account the time needed for possible certificate parsing,

 7

key derivation, network latency and encoding of the signatures in the PKCS #1
format. Leaving out these times, we can see that an IPsec handshake should take
approximately 0.16 seconds for a 1,024 bits key and just over a second for a 2,048
bits key.
 The calculations we have performed regarding the overhead of IPsec in key
exchanges illustrate the feasibility of using it on mobile constrained devices. Even
when the two peers that wish form a secure channel do not share a pre-existing key
the time required for negotiating one is negligible and therefore has a minimal impact
on the applications employed at a higher layer.

6 Related Work

Our work complements previous attempts to implement and use cryptographic
protocols on mobile handheld devices. Although a comprehensive comparison
between our work and previous similar attempts cannot be accomplished due to
different hardware and software parameters, there are some useful comments that can
be noted regarding advances in handheld computing technology. In [1] the authors
examine the performance of Kilobyte SSL (KSSL), a small footprint SSL client for
the Java 2 Micro-Edition platform, on a 20 MHz Palm CPU with RSA keys of sizes
768 and 1,024 bits. Their results indicate that a full SSL handshake between a
handheld client and a desktop server with only server-side authentication requires 10-
13 seconds, which can be reduced to 7-8 seconds with certificate caching. RSA
operations on the same platform require 0.5-1.5 seconds. RSA operations were also
investigated in the context of electronic commerce through the use of handheld
devices [2]. The platform in this case was a PalmPilot Professional with a Motorola
DragonBall chip at 16 MHz, running the PalmPilot port of the SSLeay cryptographic
library. The observed results for RSA operations with 512 bits key pairs were 3.4
minutes for key generation, 7 seconds (7,028 milliseconds) for signing and 1.4
seconds (1,376 milliseconds) for verification.

7 Discussion and Conclusion

This paper demonstrates the feasibility of using strong cryptographic protocols on
mobile handheld devices. We have presented a thorough performance analysis of the
three most common security protocols used for a wide variety of applications in the
wired Internet. Our investigation covered the SSL protocol that provides transport-
layer security by protecting all traffic that utilizes TCP, S/MIME that can be used to
secure systems that follow the store-and-forward architecture of the Internet electronic
mail and IPsec as a generic solution for protecting IP-based network traffic. In the
case of SSL we observed that a full handshake with mutual authentication and 2,048
bits key pairs requires approximately 2 seconds. Although this is a significant
overhead, it is small enough to allow even frequent short-lived secure HTTP
transactions. We must note at this point that the exact overhead of Web browsing
largely depends on whether persistent HTTP connections are used (by using
Connection: Keep-Alive headers) or a new connection is opened per downloadable
component. However, most modern Web browsers and servers support this
functionality by allowing the reuse of secure socket objects. Message-oriented
applications protected by the S/MIME protocol are also feasible on handheld devices
since the maximum observed measurement in the investigated scenarios was around 1
second. The comparison between our work and previous related work revealed

 8

interesting results regarding the advances of constrained devices. We have observed
that full SSL handshakes with mutual authentication have become faster by
approximately 10 seconds and the order of time required for RSA operations has been
reduced from seconds to milliseconds. However, such a comparison is only useful to
demonstrate advances in handheld computing technology since the hardware platform
we have used is more fitting to perform CPU intensive cryptographic operations. Our
plans for future work on the subject involve the investigation of other handheld
devices, like the Microsoft Smartphone, as well as other operating systems.
Furthermore, we plan to analyze the overall performance of different IPsec
implementations and determine the exact introduced overhead. We believe that
currently available handheld devices can form the foundation of secure ubiquitous
computing environments since they can facilitate the use of strong cryptographic
functions.

Acknowledgements

We would like to thank Steven Reddie for the Windows CE port of the OpenSSL
cryptographic toolkit and the anonymous reviewers for their helpful comments.

References

[1] V. Gupta and S. Gupta, “Securing the Wireless Internet”, IEEE

Communications, vol. 39, no. 12, December 2001, pp. 68-74.
[2] N. Daswani and D. Boneh, “Experimenting with Electronic Commerce on the

PalmPilot”, Proc. Eurocrypt’99, LNCS 1648, Springer Verlag, February 1999,
pp. 1-16.

[3] T. Dierks and C. Allen, “The TLS Protocol Version 1.0”, IETF RFC 2246,
January 1999.

[4] B. Ramsdell, “S/MIME Version 3 Message Specification”, IETF RFC 2633,
June 1999.

[5] S. Kent and R. Atkinson, “Security Architecture for the Internet Protocol”,
IETF RFC 2401, November 1998.

[6] iPAQ, see http://www.compaq.com/support/handhelds/iPAQ_H3600.html.
[7] Windows CE, see http://www.microsoft.com/windowsce/.
[8] The OpenSSL Project, see http://www.openssl.org/.
[9] D. Esposito, “Supporting CryptoAPI in Real-World Applications”, Microsoft

Interactive Developer, http://www.microsoft.com/mind/0697/crypto.asp, June
1997.

[10] IEEE Computer Society LAN/MAN Standards Committee, “Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications”,
IEEE Std. 802.11-1997. IEEE, New York, NY 1997.

[11] E. Rescorla, SSL and TLS – Designing and Building Secure Systems, Addison-
Wesley, 2000.

[12] N. Ferguson and B. Schneier, “A Cryptographic Evaluation of IPsec”,
http://www.counterpane.com/ipsec.html, February 1999.

	Abstract
	1 Introduction
	2 Methodology
	3 Secure Sockets Layer (SSL)
	4 Secure/Multipurpose Internet Mail Extensions (S/MIME)
	5 IP-level Security (IPsec)
	6 Related Work
	7 Discussion and Conclusion
	Acknowledgements
	References

